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Purpose: To perform a prospective epigenome-wide association study of DNA methylation (DNAm) and 28-
year proliferative diabetic retinopathy (PDR) incidence in type 1 diabetes (T1D).

Design: Prospective observational cohort study.
Participants: The Pittsburgh Epidemiology of Diabetes Complications (EDC) study of childhood-onset (< 17

years) T1D.
Methods: Stereoscopic fundus photographs were taken in fields 1, 2, and 4 at baseline, 2, 4, 6, 8, 16, 23, and

28 years after DNAm measurements. The photos were graded using the modified Airlie House System. In those
free of PDR at baseline (n ¼ 265; mean T1D duration of 18 years at baseline), whole blood DNAm (EPIC array) at
683 597 CpGs was analyzed in Cox models for time to event. Associations between significant CpGs and clinical
risk factors were assessed; genetic variants associated with DNAm were identified (methylation quantitative trait
loci [meQTLs]). Mendelian randomization was used to examine evidence of causal associations between DNAm
and PDR. Post hoc regional and functional analyses were performed.

Main Outcome Measures: Proliferative diabetic retinopathy was defined as the first instance of a grade of �
60 in at least 1 eye or pan-retinal photocoagulation for PDR. Follow-up time was calculated from the study visit at
which DNAm data were available (baseline) until PDR incidence or censoring (December 31, 2018 or last follow-up).

Results: PDR incidence was 53% over 28-years’ follow-up. Greater DNAm of cg27512687 (KIF16B) was
associated with reduced PDR incidence (P ¼ 6.3 � 10�9; false discovery rate [FDR]: < 0.01); 113 cis-meQTLs
(P < 5 � 10�8) were identified. Mendelian randomization analysis using the sentinel meQTL as the instru-
mental variable supported a potentially causal association between cg27512687 and PDR. Cg27512687 was also
associated with lower pulse rate and albumin excretion rate and higher estimated glomerular filtration rate, but its
association with PDR remained independently significant after adjustment for those factors. In regional analyses,
DNAm of FUT4, FKBP1A, and RIN2 was also associated with PDR incidence.

Conclusions: DNA methylation of KIF16B, FUT4, FKBP1A, and RIN2 was associated with PDR incidence,
supporting roles for epigenetic regulation of iron clearance, developmental pathways, and autophagy in PDR
pathogenesis. Further study of those loci may provide insight into novel targets for interventions to prevent or
delay PDR in T1D.
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Despite the widespread adoption of intensive insulin therapy
and subsequent improvements in glycemic control over the
past 25 to 30 years, proliferative diabetic retinopathy (PDR)
remains common in people with type 1 diabetes (T1D). By
30 years’ duration of T1D, prevalence of PDR is estimated
to be > 30%.1 Proliferative diabetic retinopathy is a leading
cause of vision loss; thus, preventing its occurrence or
slowing its progression is imperative. While there is a
strong relationship between higher glycemic exposure and
PDR,2 even people with hemoglobin A1c (HbA1c) at or
below the current clinical target of 7% can develop it.3
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Thus, there remains a critical need for novel markers to
identify people at increased risk for PDR. Such markers
may also improve understanding of the pathophysiology
of PDR and aid in finding new intervention targets to
prevent or delay its development.

DNA methylation (DNAm) provides a link between ge-
netic risk and environmental or lifestyle exposures and its
study may reveal insights into novel mechanistic pathways
to complex diseases like PDR. Furthermore, DNAm has
potential to be pharmacologically modified.4 To our
knowledge, there has only been 1 epigenome-wide
1https://doi.org/10.1016/j.xops.2024.100497
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association study (EWAS) of PDR in T1D to date.5 In that
cross-sectional study comparing 28 PDR cases to 30 con-
trols, with DNAm measured in whole blood, the authors
identified CpGs in loci related to inflammation, retinal
development, oxidative stress, and other diabetes compli-
cations. However, their study had limited data on clinical
risk factors and was unable to adjust for important con-
founders of DNAm-outcome associations such as smoking
and blood cell composition. The importance of incorpo-
rating known clinical risk factors to discern the potential
independent contribution of DNAm to T1D complication
risk is apparent from more recent reports. For example,
although a full EWAS of PDR has not been performed in the
Diabetes Complications and Control Trial (DCCT)/Epide-
miology of Diabetes Interventions and Complications study,
the investigators found DNAm at HbA1c-associated candi-
date CpG cg19693031 explained 41% of the association
between HbA1c and PDR.6 Additionally, in the Pittsburgh
Epidemiology of Diabetes Complications (EDC) study of
childhood-onset T1D, the same cohort examined in the
current analysis, we observed that associations between
DNAm and cardiovascular disease were only modestly
attenuated after adjustment for traditional cardiometabolic
risk factors, suggesting epigenetic regulation of the identi-
fied loci may make an independent contribution to future
cardiovascular disease risk.7

Given the prior evidence that DNAm may influence the
risk of T1D complications, we hypothesized that DNAm is
prospectively associated with risk of PDR independent of
traditional risk factors, including HbA1c, in T1D. To test
our hypothesis, we performed an EWAS of 28-year PDR
incidence and examined whether the identified associations
remained significant after adjustment for traditional clinical
risk factors. We additionally sought to identify genetic
variants associated with DNAm at significant CpGs and
examined functional data to elucidate potential pathophys-
iologic pathways underlying PDR.

Methods

Study Population

Data were from the Pittsburgh EDC study, a prospective cohort study
of childhood-onset (<17 years old) T1D (n ¼ 658).8 Participants
were followed 1986 to 1988 to 2016 to 2018. DNA was collected
at study visits between 1988 and 1998, with 86% of the DNA
specimens collected at the 1988 to 1990 visit, 9% at the 1990 to
1992 visit, and the remaining 5% between 1992 and 1998. A
diagram detailing the derivation of the total analytic sample of
n ¼ 411 participants is shown in Figure S1 (available at https://
www.aaojournal.org). Research protocols were approved by the
University of Pittsburgh institutional review board (approval
#19040065). All participants provided written informed consent,
and the research adhered to the tenets of the Declaration of Helsinki.

DNAm Arrays, Quality Control, and Data
Processing

The methylation arrays, methylation data quality control (QC)
and data processing have previously been described in detail.7

Briefly, high molecular weight DNA was isolated from whole
blood-derived leukocytes. DNAm was assayed using Illumina
2

Infinium MethylationEPIC BeadChip arrays (Illumina).9 We
implemented QC in 2 stages: first using a standard QC pipeline
in minfi v1.32.010 and then using a second pipeline to confirm
and expand QC in SeSAMe v.1.8.10,11 both in R v4.1.0 (R
Core Team 2021). Of the 865 918 probes on the EPIC array,
we dropped a previously published curated exclusion set12 of
95 923 and an additional set of 72 868 poor quality probes
with detection rate < 95% in all samples, resulting in a final
analytic set of 683 597 probes mapped to autosomal
chromosomes. The final methylation fraction b values for
analysis were generated using SeSAMe11 as previously
described.7 For each methylation probe we excluded b values >
�3 standard deviations from the mean to remove extreme
outliers prior to analysis. Cell type composition was estimated
using the estimateCellCounts2 function from the R package
FlowSorted.Blood.EPIC v1.5.2.13

Assessment of PDR and Clinical Risk Factors

Stereoscopic fundus photographs were taken in fields 1, 2, and 4
using a Zeiss camera (Carl Zeiss) at each study visit. The photos
were graded at the Fundus Photography Reading Center, Univer-
sity of Wisconsin, Madison, using the modified Airlie House
System.14 PDR was defined as the first instance of a grade of �60
in at least 1 eye or pan-retinal photocoagulation for PDR. Follow-
up time was calculated from the study visit at which DNAm data
were available (baseline) until complication incidence or censoring
(December 31, 2018 or last follow-up).

Each participant’s clinical risk factor data were taken from the
same study visit when their DNAm data were available. Details
regarding ascertainment of the clinical measures have been pub-
lished previously.7 Fasting blood samples were obtained to
measure HbA1, lipids, and serum creatinine. HbA1 values were
converted to DCCT-aligned HbA1c values using a regression
equation derived from duplicate assays (DCCT
HbA1c: 0.14 þ 0.83 [EDC HbA1]).15 Total cholesterol and
triglycerides were determined enzymatically and high-density
lipoprotein (HDL) cholesterol was determined using a modified
precipitation technique.16 Non-HDL cholesterol was calculated
by subtracting HDL cholesterol from total cholesterol. Height and
weight were measured using standard methods to calculate body
mass index. Blood pressure was measured according to the Hy-
pertension Detection and Follow-Up protocol with a random-zero
sphygmomanometer.17 Hypertension (HTN) was defined as blood
pressure > 140/90 or reported use of blood pressure lowering
medication for indication of HTN or high blood pressure. Pulse
rate (beats per minute) was determined by palpitating the radial
pulse for 30 seconds and multiplying by 2. To assess
albuminuria, 3 timed urine specimens (24-hour, overnight, and
4-hour) were collected during the 2 weeks before each study visit.
Albumin excretion rate (AER) was calculated for each specimen;
the median of the 3 AER was used in analysis. Serum creatinine
was measured using an Ectachem 400 Analyzer (Eastman Kodak
Co.). Glomerular filtration rate was estimated (estimated
glomerular filtration rate [eGFR]) using the Chronic Kidney
Disease Epidemiology Collaboration creatinine equation.18

Smoking and insulin regimen were self-reported via question-
naire. Insulin dose was calculated as total insulin units per day
divided by body weight (kg).

PDR EWAS and Clinical Risk Factor Associations

After excluding prevalent cases of PDR at baseline, 265 were
eligible for analysis (Figure S1, available at https://
www.aaojournal.org). A time-to-event EWAS for PDR incidence
was performed using Cox regression. Each CpG probe b-value was

https://www.aaojournal.org
https://www.aaojournal.org
https://www.aaojournal.org
https://www.aaojournal.org


Miller et al � DNA Methylation and PDR in Type 1 Diabetes
modeled as the main independent variable, adjusting for T1D
duration, sex, pack years of smoking, cell type composition vari-
ables, plate/run number, well position, green CpC to TpC bisulfite
score, and DNA extraction method. Because the identification of
genetic variants associated with DNAm was a prespecified aim of
our study, the first 2 ancestry principal components based on
GWAS data 19 were also included as covariates. CpGs with a
Benjamini-Hochberg false discovery rate (FDR) < 0.05 were
considered statistically significant. The EDC is an exclusively
childhood-onset (<17 years) T1D cohort; thus, age and T1D
duration are highly correlated (r ¼ 0.86; P < 0.0001). Because
T1D duration is the exposure of greater interest in the current
analysis, the results we present were adjusted for T1D duration
only. However, results remained the same in alternative models
adjusting for age instead of T1D duration. Because the conven-
tional l can overestimate test statistic inflation in EWAS, we used
the bacon method (l.bacon) developed specifically for EWAS 20 to
assess evidence of inflation.

We assessed cross-sectional associations between significant
CpGs and continuous baseline clinical risk factors using linear
regression. Risk factors were HbA1c, body mass index, HDL
cholesterol, non-HDL cholesterol, triglycerides, systolic blood
pressure (SBP) and diastolic blood pressure, HTN, pulse rate,
AER, and eGFR. For each significant CpG, we re-fit the corre-
sponding Cox model, adjusting for the identified CpG-associated
clinical risk factors, to obtain risk factor independent estimates of
DNAm-PDR associations. CpG x risk factor interaction terms
were also assessed. We also assessed whether significant CpGs
were associated with longitudinal risk factors over the subsequent
28 years using linear mixed models. Models of the form Yst ¼
b0 þ S0S þ bCpGXCpG þ b1X1 þ.þ bjXj þ est were fit for each
significant CpG probe, where Y is the postbaseline longitudinal
risk factor for subject s at time t, S0s is the subject-specific random
intercept offset, and est is the subject-specific error term. Models
were adjusted for T1D duration, sex, pack years of smoking, and
cell type composition (denoted as b1X1 through bjXj in the
equation). Model residuals were plotted and visually examined to
assess fit.
Identification of Methylation Quantitative Trait
Loci and Mendelian Randomization

For each significant CpG (FDR< 0.05), we identified methylation
quantitative trait loci (meQTLs) via GWAS using existing imputed
genotyping array data in the EDC cohort,19 applying a genome-
wide significance cut-off of P < 5 � 10�8. Linkage disequilib-
rium (LD)ebased clumping was performed in PLINK v1.90.b6.24
to select the top single nucleotide polymorphisms (SNPs) from the
LD block. Results were compared to the Genetics of DNA
Methylation Consortium database of meQTLs 21 and the Human
Whole Blood meQTL Atlas from the Chronic Renal
Insufficiency Cohort.22 We examined evidence of the meQTLs’
effects on gene expression by determining whether the variants
were annotated as whole blood expression quantitative trait loci
(eQTLs) in the Genotype-Tissue Expression (GTEx) project data-
base (data obtained from the GTEx Portal 30 May 2023).

We used Mendelian randomization (MR) to examine a potential
causal association between DNAm and PDR. As large GWAS data
for PDR in T1D are limited, 2-sample MR was not feasible, so we
performed a 1-sample MR analysis using individual-level data
from the EDC cohort in the R package OneSampleMR v0.1.3.23

The causal log odds of PDR associated with each 5% increase in
DNAm was estimated using 2-stage predictor substitution estima-
tors with a logit link and the representative SNP as the instrumental
variable (IV).24 Mendelian randomization models were adjusted for
the same covariates as the main EWAS. Model assumptions were
assessed using Hansen J-test.

Differentially Methylated Region and Post Hoc
Functional Analyses

Differentially methylated regions (DMRs) were identified using the
Enmix-comb method in the ENmix v1.28.8 Bioconductor package
for R.25 The P values from the EWAS, Chromosome and CpG start
and end positions were provided as inputs to the combp function,
using a region size of 1000, bin size of 310, and seed of 0.05.
DMRs containing < 3 CpGs were excluded. To account for
multiple comparisons, a �Sidák value of < 0.05 was considered
significant.

Loci containing individual CpGs with FDR < 0.05 or signifi-
cant DMRs (�Sidák value < 0.05) were considered. We performed
Gene Set Enrichment Analysis based on gene ontology and Kyoto
Encyclopedia of Genes and Genomes pathways using the Database
for Annotation, Visualization, and Integrated Discovery 2021.26

We also identified a Reactome Functional Interaction network 27

with clustered modules28 using Cytoscape.29 We performed
Reactome pathway analysis on the resulting modules with �5
total nodes.

Results

The 28-year incidence of PDR was 52.5% (139 of 265),
with a median PDR-free survival time of 16 years after the
study baseline (interquartile range 7e28 years). Baseline
characteristics overall and by PDR incidence status are in
Table 1. The 10 most statistically significant CpGs for PDR
are shown in Table 2. Only cg27512687 in KIF16B
(P ¼ 6.27 � 10�9; FDR < 0.01) reached the significance
threshold of FDR < 0.05. There was no evidence of
meaningful inflation or deflation of the EWAS test
statistics (l.bacon ¼ 1.04). To gain additional insight into
potential pathways through which DNAm at cg27512687
may influence risk of PDR, we assessed associations
between cg27512687 and traditional clinical risk factors
(Table S3, available at https://www.aaojournal.org). In
cross-sectional analysis, greater DNAm of cg27512687
was inversely associated with pulse rate and ln(AER) and
positively associated with eGFR. After adjusting for those
risk factors, the cg27512687-PDR association effect size
was reduced by 4.3% but remained significant (log[hazard
ratio] ¼ �2.68, standard error ¼ 0.50, P ¼ 6.38 � 10�8).
There was a significant interaction between cg27512687 and
SBP (P ¼ 0.0002) with respect to PDR, such that DNAm of
cg27512687 was more strongly protective against PDR with
lower SBP. There were no significant interactions between
cg27512687 and the other risk factors, including HbA1c.
Associations between cg27512687 and subsequent longitu-
dinal risk factors were similar to those observed at baseline,
except that cg27512687 in addition to being associated with
lower pulse rate and ln(AER) and higher eGFR over follow-
up, cg27512687 was also associated with lower SBP
(Table S4, available at https://www.aaojournal.org).

meQTLs and MR

We identified 113 cis variants in the KIF16B region of chro-
mosome 20 that were significantly (P < 5 � 10�8, genomic
3
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Table 1. Baseline Characteristics of EDC Study Participants by 28-Year Microvascular Complication Incidence Status

Proliferative Retinopathy

Yes (n ¼ 139) No (n ¼ 126)

Age, yrs 27.7 (7.3) 26.5 (8.2)
Type 1 diabetes duration, yrs 18.8 (6.4) 18.3 (7.4)
Age at type 1 diabetes onset, yrs 8.9 (4.0) 8.2 (4.4)
Female sex, % (n) 46.8% (65) 49.2% (62)
Bachelor’s degree and/or beyond, % (n) 35.3% (49) 37.3% (47)
HbA1c, % 9.5 (1.5) 8.5 (1.4)
HbA1c, mmol/mol 79.9 (16.9) 69.4 (15.2)
Smoking, pack-yrs* 0 (0e2.4) 0 (0e0)
Body mass index, kg/m2 24.3 (3.3) 23.6 (3.3)
Insulin dose, insulin units/kg body weight 0.8 (0.2) 0.8 (0.3)
MDIy or insulin pump use, % (n) 9.4% (13) 16.7% (21)
Self-monitoring of blood glucose, % (n) 69.1% (96) 77.0% (97)
Total cholesterol (mg/dl) 192.9 (42.5) 172.1 (41.0)
HDLc (mg/dl) 54.5 (12.6) 53.6 (13.0)
Non-HDLc (mg/dl) 138.4 (41.6) 118.4 (38.2)
Triglycerides (mg/dl)* 81 (56e119) 67 (51e108)
Systolic blood pressure (mmHg) 113.7 (15.3) 109.2 (11.7)
Diastolic blood pressure (mmHg) 73.0 (10.0) 69.6 (8.9)
Hypertension, % (n) 11.5% (16) 3.2% (4)
Pulse rate, bpm 75.9 (10.5) 72.8 (10.1)
Albumin excretion rate, mg/min* 11.0 (6.6e49.4) 7.4 (4.7e13.5)
Estimated clomerular filtration rate, ml/min/1.73 m2 120.5 (26.6) 120.2 (28.6)
White blood cell count, �109 cells/l 6.7 (1.9) 6.6 (2.0)

EDC ¼ Epidemiology of Diabetes Complications; HbA1c ¼ hemoglobin A1c; MDI ¼ multiple daily injections.
Participants with prevalent PDR at baseline were excluded. Values are mean (SD) unless specified.
*Median (p25, p75).
yMultiple daily injections (� 3 insulin injections per day).

Ophthalmology Science Volume 4, Number 4, August 2024
inflation factor l ¼ 1.00) associated with DNAm at
cg27512687 (Figure 2, panel A and Table S5, available at
https://www.aaojournal.org). There were no significant
meQTLs for cg27512687 in the Genetics of DNA
Methylation Consortium database, but 126 SNPs in the
KIF16B region were significant meQTLs for cg27512687 in
the Chronic Renal Insufficiency Cohort. Furthermore, 96 of
the 113 variants identified as meQTLs in EDC were also
annotated as whole blood eQTLs in GTeX (Figure 2, panel B).
Table 2. DNA Methylation and 28-Year Incidence of Proliferative Ret
CpGs Sorted by Asc

CpG Chr hg38 Position Location Gene
Lo

cg27512687 20 16279513 Open Sea KIF16B
cg04202206 9 86282804 Island ISCA1
cg14678509 1 34532068 Open Sea n/a
cg19776580 22 23898936 S. Shelf MIF-AS1
cg21665700 20 2450393 Open Sea n/a
cg06825886 1 30775696 S. Shelf n/a
cg04399632 16 11743690 S. Shore TXNDC11
cg11843868 5 158382704 Open Sea LOC1019227697
cg20073831 6 30466458 Island n/a
cg06644457 10 133164642 Island KNDC1

Bolded text indicates CpGs with FDR < 0.05.
Chr ¼ chromosome; EDC ¼ Epidemiology of Diabetes Complications; FDR ¼

4

As the identified significant cis-meQTLs/eQTLs support
a possible functional role for cg27512687 DNAm on PDR
development, we performed an exploratory MR analysis to
assess evidence of a causal association between cg27512687
and PDR. After clumping, 13 SNPs were selected as
representative of the 113 variants identified as meQTLs in
the KIF16B LD block. Of those, rs35834087 was the most
strongly associated with cg27512687 (P ¼ 2.97 � 10�29),
and thus was selected as the IV. The MR estimated odds
inopathy in the EDC Cohort: The 10 Most Statistically Significant
ending P Value

cation Relative
to Gene

Log (HR)
per 5% Methylation SE P Value FDR

Body L2.798 0.482 6.27E-09 < 0.01
TSS1500 �2.436 0.481 4.00E-07 0.14
Intergenic �0.833 0.167 6.34E-07 0.14
TSS200 �1.087 0.229 1.99E-06 0.21
Intergenic �0.901 0.191 2.51E-06 0.21
Intergenic �0.713 0.152 2.64E-06 0.21
TSS1500 �1.141 0.246 3.39E-06 0.21
Body �0.810 0.174 3.45E-06 0.21

Intergenic �1.803 0.389 3.55E-06 0.21
Body �0.532 0.115 3.81E-06 0.21

false discovery rate; HR ¼ hazard ratio; SE ¼ standard error.

https://www.aaojournal.org


Figure 2. LocusZoom plots of genetic variants significantly associated with methylation of cg27512687 in the Epidemiology of Diabetes Complications
cohort (panel A) and variants annotated as eQTLs in GTEx in the same genomic region (panel B).
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ratio for PDR associated with each 5% methylation of
cg27512687 was 0.029 (95% confidence interval: 0.002,
0.330), suggesting a significant causal protective effect.

DMRs and Post Hoc Functional Analyses

Detailed results of the DMR analyses are shown in Table 6.
Based on a �Sidák value < 0.05, we identified 17 significant
DMRs for PDR, 15 of which were annotated to a gene(s),
including ACY3, CDK2AP1, FKBP1A, FUT4, GABRG1,
GCSAML, LAPTM5, LINC00028, LINC00649, LSP1,
NOS1AP, RIN2, SDCBP2, SDHAP3, SLC44A4, and
VSTM5. Those loci and KIF16B were further examined in
functional analyses. There were no significantly enriched
gene ontology terms or Kyoto Encyclopedia of Genes and
Genomes pathways; however, we identified a Reactome
Functional Interaction network comprising 4 modules in
which a total of 7 subpathways were significantly enriched
within transport of small molecules, vesicle-mediated
transport, metabolism, signal transduction, and immune
system top-level pathways (Figure 3 and Table S7, available
at https://www.aaojournal.org).

Discussion

In this prospective EWAS of PDR incidence in T1D, we
observed that greater methylation of cg27512687 in KIF16B
(also known as SNX23) was associated with decreased PDR
incidence independent of established clinical risk factors,
including HbA1c. These findings suggest epigenetic regu-
lation of KIF16B may provide insight into novel pathways
to PDR in T1D. In addition, we identified meQTLs for
cg27512687 which were validated in an external diabetes
cohort and annotated in GTEx as eQTLs in a wide variety of
vascular tissues, neural tissues, and whole blood, supporting
a possible functional role of cg27512687 DNAm in PDR
development. The results of our MR analysis provide
additional supporting evidence of a causal association be-
tween cg27512687 DNAm and PDR. In addition to
cg27512687, we also identified several genomic regions
where DNAm was associated with PDR. Those regions
include FUT4, FKBP1A, and RIN2, genes with prior evi-
dence of biologically plausible roles in PDR development,
including retinal development,30 mTOR-depdendent auto-
phagy,31 and VEGF signaling,32 respectively.

The KIF16B locus encodes Kinesin Family Member
16B, which is involved in receptor recycling and degrada-
tion, intracellular transport, and microtubule formation.33

There is evidence KIF16B is required for transport of
basolateral transferrin receptor (TfR) from common
recycling endosomes to apical recycling endosomes in the
retinal pigment epithelium, thus it is likely KIF16B plays
a role in preventing iron accumulation in the retina.34 Iron
accumulation leads to oxidative damage and inflammation,
both of which are involved in the underlying pathogenesis
of PDR.35 Increased DNAm at gene bodies is generally
5
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Table 6. Significant Differentially Methylation Regions Associated with Proliferative Retinopathy Incidence in the EDC Cohort

Chr
hg38 Start
Position

hg38 End
Position

# CpGs in
the DMR Location Gene

Location Relative
to Gene P Value FDR �Sidák Value

11 67650487 67650895 9 Open Sea ACY3 TSS200, TSS1500, 5’UTR 4.49E-13 1.21E-11 7.52E-10
11 93850343 93850808 7 Island, S. Shore VSTM5 TSS200, TSS1500, 1stExon 2.22E-09 2.00E-08 3.26E-06
6 31180555 31180890 14 Island, S. Shore Intergenic n/a 4.37E-09 2.95E-08 8.92E-06
5 1594561 1594619 4 Island SDHAP3 TSS200 1.50E-09 2.00E-08 1.77E-05
7 1505886 1506184 4 S. Shore Intergenic n/a 9.36E-09 3.61E-08 2.15E-05
11 94545241 94545438 6 Island FUT4 1stExon 1.32E-08 4.46E-08 4.59E-05
20 31485596 31485774 5 S. Shore LINC00028 TSS200 2.23E-08 6.70E-08 8.58E-05
20 1336956 1337103 3 Open Sea FKBP1A-SDCBP2;

SDCBP2-AS1
Body 3.56E-08 9.62E-08 0.0002

4 46124049 46124357 6 Open Sea GABRG1 TSS200, TSS1500 1.03E-07 2.52E-07 0.0002
11 1890948 1890957 3 Open Sea LSP1 3’UTR 7.81E-09 3.51E-08 0.0006
20 19889335 19889574 3 Open Sea RIN2 TSS200, 1stExon, 5’UTR 2.17E-07 4.53E-07 0.0006
6 31878992 31879252 8 Open Sea SLC44A4 TSS200, TSS1500, 1stExon, 5’UTR 2.56E-07 4.93E-07 0.0007
1 30758367 30758575 3 Open Sea LAPTM5 TSS1500 2.18E-07 4.53E-07 0.0007
1 162366828 162367088 4 N. Shore NOS1AP Body 4.63E-07 7.36E-07 0.0012
12 123268081 123268370 7 N. Shore CDK2AP1 5’UTR, TSS200, 1stExon, Body 7.01E-07 1.05E-06 0.0016
21 33948292 33948364 3 Open Sea LINC00649 TSS1500, Body 4.01E-07 6.85E-07 0.0038
1 247518279 247518480 5 Island GCSAML TSS200, 1stExon, 5’UTR 6.53E-06 9.28E-06 0.0220

Chr ¼ chromosome; DMR ¼ differentially methylated region; EDC ¼ Epidemiology of Diabetes Complications; FDR ¼ false discovery rat.
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associated with increased gene expression.36 Thus, the
direction of the association we observed (i.e., greater
methylation of cg27512687 in the KIF16B gene body is
associated with lower risk of PDR) is consistent with the
Figure 3. Reactome Functional Interaction network of loci with significant Cp
retinopathy incidence in the Epidemiology of Diabetes Complications cohort. Ca
only to construct the network). Categories of significantly enriched (false disc
line ¼ involved in same reaction as inputs or are components of a shared com
interaction.
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hypothesis that cg27512687 DNAm may increase KIF16B
expression, facilitating increased TfR transport and greater
iron removal from the retina, subsequently reducing PDR
risk. Indeed, there are prior experimental data
Gs or differentially methylated regions associated with 28-year proliferative
ndidate loci are indicated in black font (red font indicates linker genes used
overy rate < 0.05) Reactome pathways for each module are noted. Solid
plex, / ¼ activator or catalyst, –| ¼ inhibitor, dashed line ¼ predicted
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demonstrating transferrin protects against retinal
degeneration.37 The relationship between cg27512687 and
PDR in our study was independent of HbA1c; therefore,
DNAm of KIF16B may protect against PDR regardless of
glycemic exposure in T1D. Furthermore, our observation
that DNAm at cg27512687 was more strongly protective
against PDR in those with lower SBP suggests that
protection could be offset by the deleterious effects of
HTN. Because the concordance between DNAm in
peripheral blood and retinal tissue is unclear,38 our study
examining peripheral blood DNAm cannot demonstrate a
causal role for cg27512687 DNAm PDR. However, our
findings suggest further study of epigenetic regulation of
KIF16B in retinal tissue is warranted.

In regional analyses, we identified several PDR-
associated DMRs, some of which are annotated to genes
that have prior animal and cell data supporting biologically
plausible roles in retinopathy. They include FUT4, which
encodes a protein that catalyzes synthesis of CD15, a cell
surface marker expressed on photoreceptor precursors,30

thus raising the possibility that epigenetic regulation of
prenatal photoreceptor development may affect future risk
of PDR. We also observed associations with DNAm of
the FKBP1A region, a gene that regulates autophagy via
the mTOR signaling pathway. FKBP1A expression has
been shown to be reduced in the retinal pigment
epithelium of PDR cases vs. healthy controls,31 supporting
the hypothesis that mTOR-dependent autophagy is a key
mechanism underlying retinal degeneration.39 Finally, we
observed associations with DNAm of RIN2, which is
involved in angiogenesis and plays a critical role in VEGF
signaling.32 Altogether, our observations suggest
epigenetic regulation of specific genes involved in
photoreceptor development, autophagy, and angiogenesis
may contribute to PDR pathogenesis in T1D, supporting
further study of the identified loci.

Our study has many strengths, including the use of data
from a well-characterized T1D cohort with long-term
follow-up that is epidemiologically representative of the
childhood-onset T1D population of Allegheny County,
Pennsylvania.40 Importantly, the prospective study design
avoids the possibility of reverse causation, which was key
limitation of the prior cross-sectional EWAS for PDR in
T1D. A further strength is the availability of clinical risk
factor data which allowed examination of intermediate
phenotypes between DNAm and PDR. Another strength
was the use of a cis-meQTL, which was validated in an
external diabetes cohort, as the IV in the MR analysis,
increasing the biological plausibility of our findings that
cg27512687 may play a causal role in PDR development.

Limitations include the use of whole blood for methyl-
ation measurement and lack of tissue-specific data. How-
ever, DNAm in whole blood is commonly examined in
epidemiologic studies such as ours, due to ease of specimen
collection and because it facilitates detection of multiple
physiologic pathways that lead to complex phenotypes like
PDR. The sample size of our study is relatively small, so the
results should be validated as more DNAm data become
available in T1D cohorts. Because of a lack of available
large GWAS for PDR in T1D, we performed a 1-sample
MR which carries limitations of potential overfitting and
bias if the IV-exposure association is weak; thus, the MR
should be replicated in larger studies using a 2-sample
approach to validate our findings. Finally, 98% of the
EDC cohort is of white/European ancestry, because of the
demographics of Allegheny County, Pennsylvania, USA,
(< 15% black/African American) and historically lower
incidence of T1D among black individuals,41 so our results
may not apply to more diverse populations.
Conclusions

Our prospective EWAS provides novel evidence that
epigenetic regulation of KIF16B is associated with long-
term risk of PDR in T1D, independent of established clin-
ical risk factors, possibly via regulation of TfR transport. In
addition, the results of our regional analyses support a role
for epigenetic regulation of specific genes involved in
development (FUT4), autophagy (FKBP1A), and angio-
genesis (RIN2) in PDR pathogenesis. Further study of the
identified loci may provide insight into novel targets for
interventions to prevent or delay PDR in T1D.
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