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Abstract. Several invasive mosquitoes have become established in Canada, including important pathogen vectors
such as Aedes albopictus, Ae. japonicus, and Culex pipiens. Some species have been present for decades, while others
are recent arrivals. Several species present new health concerns and may result in autochthonous seasonal outbreaks of
pathogens, particularly in southern Canada, that were previously restricted to imported cases. This review provides an
overview of current knowledge of the biological, medical, and veterinary perspectives of these invasive species and high-
lights the need for increased monitoring efforts and information sharing.

INTRODUCTION

Mosquitoes (Diptera: Culicidae) are the world’s deadliest
animals,1 vectoring myriad pathogens that result in untold pain
and misery. Seventy nine native mosquito species are known
from Canada,2–4 though several more are suspected to occur
based on their distributions in the United States,4 and five
invasive species are currently known.2,4,5 In this review, we
define invasive mosquitoes as those that have been acciden-
tally or deliberately introduced into areas beyond their native
range and whose presence negatively impact the environ-
ment, the economy, or the society including human and ani-
mal health.6 Invasive mosquitoes threaten human and animal
health as they can vector pathogens not previously known
from Canada, or act as more efficient vectors of native patho-
gens. While the permanent establishment of many exotic
mosquito-borne pathogens discussed here is unlikely in Can-
ada, this may not always be the case due to novel mutations
or climate change. Furthermore, localized seasonal outbreaks
resulting from travel-related or other imported cases have
occurred elsewhere.7 With increasing globalization and the
landscape of emerging pathogens constantly changing, and
as demonstrated by literature for other areas,8 an entomologi-
cal, medical, and veterinary knowledge of the invasive mosqui-
toes of Canada is more important than ever.

IMPORTANT MOSQUITO-BORNE PATHOGENS
CURRENTLY OR FORMERLY ENDEMIC TO CANADA

Snowshoe hare virus (SSHV; Family: Bunyaviridae, genus:
Bunyavirus) undergoes an enzootic transmission cycle in
wild mammals with mosquitoes with non-Culex mosquitoes
acting as the primary vectors.9 It is not clear what species
are the principal hosts of SSHV, although small mammals
are thought to be important in SSHV maintenance and
amplification.9 Snowshoe hare virus is found across Can-
ada10 as well as Alaska11 and parts of northern Eurasia.12

This virus has been reported to cause clinical encephalitis in
humans,13 predominantly in children,9 and horses.14

Dog heartworm, Dirofilaria immitis, is a parasitic filarial
worm that is an obligate parasite of mosquitoes and can-
ids,15 although rare cases in other animals, such as humans,

also occur.16 Endemic foci of D. immitis occur in many parts
of Canada, particularly southern regions.17,18 A variety of
mosquito species in the genera Aedes, Culex, and Anophe-
les vector D. immitis.19

West Nile virus (WNV; Family: Flaviviridae, genus: Flavivi-
rus) undergoes an enzootic transmission cycle in avian hosts
with mosquitoes in the genus Culex acting as primary vec-
tors,20,21 though other mosquitoes with wide host ranges can
carry WNV as well.22 The primary vectors of WNV in Canada
are Culex pipiens and Cx. restuans in Eastern Canada, and
Cx. tarsalis in Western Canada.20–25 Culex spp. are often
ornithophilic, with some species feeding on humans as well.
Ornithophilic biting behavior in the spring, by early emerging
Culex spp. (such as Cx. restuans in Ontario) may vector enzo-
otic transmission within local or migratory bird populations.26

During late summer vector species such as Cx. tarsalis or Cx.
pipiens may increase their biting of humans27 leading to the
transmission of WNV from birds to humans. West Nile virus
first arrived in North America in 1999,28 and was first
detected in Canada during 2001 in Ontario.29 By 2009, it had
spread all the way west to British Columbia.25 West Nile virus
can cause disease in several animals, including mortality in
horses and birds.30,31

St. Louis encephalitis virus (SLEV; Family: Flaviviridae,
genus: Flavivirus) undergoes an enzootic transmission cycle
among birds and is vectored mainly by mosquitoes of the
genus Culex.32 It may undergo vertical transmission and per-
sist in mosquitoes through winter.32,33 During the 1970s, Can-
ada experienced epidemics of SLEV, with the virus reported in
Saskatchewan, Manitoba, Ontario, and Quebec,10 although in
the United States it has been reported from coast-to-coast
but predominantly in the southern States.32 St. Louis encepha-
litis virus can cause disease in horses as well.34

Jamestown Canyon virus (JCV; Family: Peribunyaviridae,
genus: Orthobunyavirus) is transmitted primarily among wild
ungulates by non-Culexmosquitoes.9 One study in the eastern
United States found more than 20 field-collected mosquito
species tested positive for JCV, with Anopheles punctipennis,
Coquillettidia perturbans, and several Aedes spp. incriminated
as likely vectors.35 Jamestown Canyon virus is widespread in
temperate North America and, while human infections and dis-
ease are rare, they are likely underrecognized.36

Cache Valley virus (CVV; Family: Peribunyaviridae, genus:
Orthobunyavirus) is transmitted primarily among ungulates
by non-Culex mosquitoes.9 In the Canadian prairies, CVV
has been isolated from Aedes vexans, Culiseta incidens, and
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Culex tarsalis.37 In rare instances, CVV can cause disease in
humans,38 and congenital malformations in sheep and
goats.39,40

The human malaria parasite, Plasmodium vivax, is trans-
mitted by mosquitoes of the genus Anophleles. Plasmodium
vivax was formerly endemic to parts of Eastern Canada,41

and the southern interior of British Columbia.42 Contempo-
rary imported cases continue to result in local malaria
outbreaks.43

Eastern equine encephalitis virus (EEEV; Family: Togaviri-
dae, genus: Alphavirus) undergoes an enzootic transmission
cycle among passerine birds and mosquito vectors.32 East-
ern equine encephalitis virus is vectored between birds by
the mosquito Culiseta melanura,44 which does not bite
humans.45 Transmission of EEEV to humans and other
mammals occurs through mosquitoes that feed on passerine
birds and mammals, including Coquillettidia perturbans, Cs.
morsitans, Culex spp., and some mosquitoes of the genus
Aedes.32,46 In Canada, EEEV is found in Ontario and Quebec
and can cause mortality in humans and horses.44 Domestic
poultry has been reported in some cases to suffer a
decrease in egg production as a result of infection with
EEEV,47 and even mortality.47

Western equine encephalitis virus (WEEV; Family: Togaviri-
dae, genus: Alphavirus) is transmitted between birds and
mammals by a variety of mosquitoes, although the western
encephalitis mosquito, Cx. tarsalis, is thought to be the most
important vector.32 Western equine encephalitis virus can
cause mortality in humans and horses,32 and it may affect
domestic poultry as well including decreased egg laying.48

In Canada, WEEV is found from British Columbia to the
Great Lakes.10

SELECT EXOTIC PATHOGENS RELEVANT TO
THIS REVIEW

Dengue virus (DENV; Family: Flaviviridae, genus: Flavivi-
rus) is an arbovirus ubiquitous in the tropics that is vectored
by some mosquitoes in the genus Aedes,49 primarily
between humans but also nonhuman primates.50 There are
several serotypes of dengue individuals who experience a
subsequent infection with a different serotype are at
increased risk of developing severe dengue.51

Japanese encephalitis (JEV; Family: Flaviviridae, genus:
Flavivirus) undergoes enzootic transmission between birds
and pigs and has recently spread from southeast Asia into
Australia.52 This virus is the leading cause of encephalitis in
eastern and southern Asia and is primarily vectored by mos-
quitoes of the genus Culex, although some Aedes spp. also
act as vectors.52–54

Usutu virus (USUV; Family: Flaviviridae, genus: Flavivirus)
is primarily vectored by Culex mosquitoes, and some mem-
bers of the genus Aedes. Usutu virus was previously only
known from Africa, but it has recently spread to Europe.55

Usutu virus primarily circulates in humans and birds, where it
can cause encephalitis in humans56 and has caused severe
mortality in bird populations that have not developed
immunity.55

Yellow fever virus (YFV; Family: Flaviviridae, genus: Flavivi-
rus) is transmitted among humans and other primates
primarily by some Aedes, Sabethes, and Haemogogus mos-
quitoes.57 There is a vaccine for YFV; however, it has

historically been considered a very dangerous pathogen.57

Yellow fever virus is primarily tropical in distribution; however,
sporadic outbreaks have occurred as far north as New York
City and Philadelphia,57 and there is risk of travel-related
cases initiating autochthonous transmission cycles.58

Zika virus (ZIKV; Family: Flaviviridae, genus: Flavivirus)
is transmitted between nonhuman primates and humans,
primarily by many mosquitoes of the genus Aedes, although
there are other transmission routes.59 Travellers returning
from areas with endemic ZIKV may be at risk of initiating
autochthonous transmission if competent vectors are
present.59

Chikungunya (CHIKV; Family: Togaviridae, genus: Alphavi-
rus) is primarily vectored by some Aedes mosquitoes.60

Nonhuman primates serve as potential reservoir or amplify-
ing hosts,60 although vertical transmission in mosquitoes
has also been reported.61

La Crosse virus (LACV; Family: Peribunyaviridae, genus:
Orthobunyavirus) is the primary cause of viral encephalitis in
children in the United States.9 The primary LACV vectors,
Aedes triseriatus and Ae. albopictus, have a limited distribu-
tion within Canada.4,5

Rift Valley fever (RVFV; Family: Phenuiviridae, genus: Phle-
bovirus) is known from Africa and Arabia where it causes
morbidity and mortality in humans and ruminants and is vec-
tored by several pathways, including mosquitoes of a variety
of genera.62

INVASIVE MOSQUITOES KNOWN FROM CANADA

Aedes aegypti distribution. The yellow fever mosquito,
Aedes (Stegomyia) aegypti (L.), originated in sub-Saharan
Africa where its sylvatic form can still be found today.63 As it
adapted to a synanthropic lifestyle, this species managed to
spread to tropical and subtropical areas around the globe
via human-assisted dispersal, particularly in association with
ship traffic connected with the slave trade.64 One of the
most globally widespread species in tropical and subtropical
environments, Ae. aegypti has been present in North Amer-
ica for centuries but is intolerant of temperate winters.65

While Ae. aegypti has historically been limited to areas with
mean January temperatures above 10�C,65 there are spo-
radic northern populations that exist in areas where mean
January temperatures get as low as about 2�C.66 Habitat
models for Ae. aegypti do not predict suitable year-round cli-
mate conditions for this species in Canada now or in the
near future.67,68

In 2016 and 2017, low numbers of Ae. aegypti were
reported from Southern Ontario, representing the first
records of this species in Canada5 (Figure 1). A record from
southern Quebec in the summer of 2017 also exists.69,70

Although these records are believed to represent transient
incursions,5 Ae. aegypti is thought to have managed to per-
sist through the winter in other cooler locales as larvae in
warm subterranean microenvironments.66

Life history. Historically, a sylvatic tree-hole breeder that
fed on animals, almost all populations of Ae. aegypti now
preferentially blood-feed on humans,63,71–73 are adapted to
human-altered habitats, and breed in a wide variety of artifi-
cial containers such as tires, gutters, vases, and buckets74

as well as indoor and underground aquatic habitats.75 Eggs
are deposited near the water surface, hatch when the water
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level rises, and are resistant to desiccation.72,76,77 They are
aggressive biters that can feed on multiple hosts during a
single gonotrophic cycle, increasing the risk of pathogen
transmission.78 Adult female Ae. aegypti are primarily diur-
nal79,80 and readily enter human habitations to seek a blood
meal or rest72; however, they are weak fliers and don’t often
fly more than a few hundred meters from breeding sites
unless inadvertently transported by humans.81

Taxonomy and identification. Aedes aegypti is a small
black mosquito with stripes of white scales on the tarso-
meres and a lyre-shaped pattern of white scales on the
scutum74,82 (Figure 2). It looks similar to Ae. sierrensis,
Ae. albopictus, Ae. japonicus, and Orthopodomyia spp.;
however, the presence of white scales on both the base and
apex of tarsomeres of Ae. sierrensis, prominent longitudinal
middorsal white stripe of Ae. albopictus, the bronze-scaled
lyre-shaped pattern on the scutum of Ae. japonicus, and the

lack of distinct stripes of white scales on the fore tarsi of
Orthopodomyia spp. can be used to separate these species
from Ae. aegypti.
Public health and veterinary importance. Aedes aegypti

is thus far only believed to present in Canada on a seasonal
basis during the summer months.5 However, Ae. aegypti is a
principal vector of several important arboviruses including
DENV,72 YFV,72 ZIKV,83 and CHIKV.84 The CHIKV and ZIKV
are among the most frequent travel-acquired pathogens in
Canada,9,85,86 and the presence of Ae. aegypti in Canada,
even on an ephemeral basis, raises concerns for autochtho-
nous seasonal transmission of imported arboviruses.
Aedes albopictus distribution. The Asian tiger mosquito,

Aedes (Stegomyia) albopictus (Skuse), is native to southeast
Asia but has expanded is range to include an almost global
occupation of tropical to temperate habitat.67 Its interconti-
nental dispersal is thought to be largely due to its use of used
tires as breeding habitat,87,88 and within continents it is likely
to spread via human-assisted means such as car travel.89

Aedes albopictus was first detected breeding in the United
States in 198590 and it has now spread throughout much of
the continental United States.67,68 This species was docu-
mented in Southern Ontario in 20022 and was found to be
established in 2019.5 Aedes albopictus is currently only known
in Canada from extreme Southern Ontario (Figure 3), but it has
been intercepted in used tires in Seattle,91 not far from the
British Columbia border and climate models predict it could
establish in several other parts of southern Canada including
Quebec, the Prairies, and the southern Maritimes.68 Due to the
propensity of Ae. albopictus to spread via human-assisted dis-
persal and the concentration of the Canadian population in
areas that contain suitable climate, or climate that is predicted
to become suitable, for Ae. albopictus, this species may
spread further within Canada. However, this spread may be
slow, sporadic, or limited due to the climatic conditions that
are currently marginal for its survival.

FIGURE 2. Collection records of Aedes aegypti in Canada.5,70 Note that these records are of ephemeral introductions that are not believed to
represent established populations. This figure appears in color at www.ajtmh.org.

FIGURE 1. Female Aedes aegypti, photo by Adam Blake. This figure
appears in color at www.ajtmh.org.
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Life history. Aedes albopictus is an opportunistic daytime
blood-feeder on a wide range of animals74,92 that is found in a
variety of environments. Aedes albopictus is very flexible in its
use of breeding habitat, using a wide variety of artificial contain-
ers and even natural habitats like tree holes.74 The larvae of Ae.
albopictus are often able to outcompete the larvae of other spe-
cies that share breeding habitats with them.93,94 At the northern
limit of its range in the United States, Ae. albopictus is more
abundant in areas with higher mean winter temperatures and
March precipitation.95 Diapausing Ae. albopictus eggs that are
cold-acclimated can survive at210�C for up to 24 hours,96 sur-
viving winters that reach lows of 210�C with apparent ease.97

How Ae. albopictus overwinters at the northern limits of its
range are unknown, although it has been speculated that this
mosquito may have adapted its life history strategy to overwin-
ter as adults in human-made artificial habitats that provide

warm microhabitat.5 The survival of eggs or larvae in similar
human-made habitats is another possibility, as is a physiologi-
cal adaptation. Research in this area would be useful in under-
standing the invasion ecology of this important species.
Taxonomy and identification. Aedes albopictus is a dark

mosquito with bands of white scales on its tarsomeres, an
entirely white-scaled 5th hind tarsomere, and a distinct lon-
gitudinal stripe of white middorsal scales on its scutum74

(Figure 4). Aedes japonicus and Ae. aegypti can be mistaken
for Ae. albopictus due to similar patterns of silvery-white and
black scales on the legs, but these species have patterns of
scales on the scutum that differ from the middorsal white
stripe of Ae. albopictus.
Public health and veterinary importance. Aedes albo-

pictus is a very serious public health concern in much of the
world due to its vector competency for exotic arboviruses
like ZIKV,98 CHIKV,99 DENV,100 and YFV,101,102 as well as
endemic arboviruses like WNV,22 EEEV,103,104 or emerging
North American arboviral threats that may spread from the
United States to Canada, such as LACV.9 Chikungunya and
ZIKV are the common travel-acquired pathogens in Can-
ada,85,86,105 and the establishment of Ae. albopictus may
allow for imported cases to result in short-lived autochtho-
nous arbovirus outbreaks, a pattern that occurs in other tem-
perate locations106–108 and has occurred in Canada with
other pathogens.43 Aedes albopictus is also a potential vec-
tor of dog heartworm.19

Aedes japonicus distribution. The Asian bush mosquito,
Aedes (Hulecoeteomyia) japonicus (Theobald), is endemic to
southeast Asia,109 but has expanded its global range drasti-
cally over the last several decades. There are four subspecies
of Ae. japonicus (Ae. j. japonicus, Ae. j. shintiensis, Ae. j. yaeya-
mensis, and Ae. j. amamiensis)109 of which Ae. j. japonicus is
the only one currently known from North America.110 Since its
introduction to North America in 1998111 Ae. j. japonicus has
spread over much of the continent and is projected to

FIGURE 3. Female Aedes albopictus, photo by Ary Faraji. This fig-
ure appears in color at www.ajtmh.org.

FIGURE 4. Collection records of Aedes albopictus in Canada.5 Only the population in Windsor, ON, is reported to be established. Other records
are of ephemeral introductions that are not believed to represent established populations. This figure appears in color at www.ajtmh.org.
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continue spreading.112 In Canada, it is now known from British
Columbia113 including Vancouver Island,114 Ontario,115,116

Quebec,117,118 Newfoundland,119 New Brunswick,120 and
Nova Scotia (J. Ogden, pers. comm) (Figure 5).
Genetic evidence indicates that Ae. j. japonicus arrived in

eastern North America via at least two separate introduc-
tions from Europe,121 and similar studies suggest that popu-
lations in western North America are derived from these
populations.122 Evidence from the United States suggests
that human-assisted dispersal is the main mode of Ae. j.
japonicus expansion within North America.123

Suitable habitat exists for Ae. j. japonicus on Prince
Edward Island112 and it may only be a matter of time until
this species arrives there. Climate change may also lead to
suitable habitat for Ae. japonicus in Western Ontario and
parts of the Prairies over the coming decades.112 Due to its
propensity to spread,124 its mode of spread, the existence of
unoccupied suitable habitat, and projections for an increase

in suitable habitat over the coming decades, Ae. j. japonicus
is likely to continue to spread within Canada.
Life history. Aedes j. japonicus breeds in tree holes, rock

pools, and human containers such as used tires, bird baths,
and discarded buckets,110 often containing decaying organic
matter, and its distribution is correlated with forested or bushy
areas.125 Adults are diurnal and crepuscular in their biting
activity and take blood from mammals, including humans, and
also from birds.110 Aedes japonicus is tolerant of cold temper-
atures, emerging earlier and active later in the season than
other species that occupy similar ecological niches.109,126

Aedes j. japonicus can overwinter in the egg stage or the larval
stage depending on climate and can produce multiple genera-
tions per year.110 Warm summer temperatures may prevent
Ae. j. japonicus colonization in some areas.127 Laboratory
studies have shown that eggs cannot survive extended expo-
sure to temperatures lower than 29�C and that larvae cannot
develop at temperatures greater than 31�C.
While there is evidence for competition between Ae. j.

japonicus and other mosquitoes altering the assemblage of
mosquito species in some areas,127 results from southern
Ontario found no change in the species assemblage of
mosquitoes with the arrival of Ae. j. japonicus,116 perhaps
indicating such effects only occur under specific ecological
contexts or at certain scales.
Taxonomy and identification. A dark mosquito with bands

of pale scales on the tarsomeres and a lyre-shaped pattern of
bronze scales on the scutum (Figure 6). Adults of Ae. j. japoni-
cus can be distinguished from other Canadian species by the
lack of a basal band of pale scales on hind tarsomere 4,
dark-scaled abdominal tergites, and a pedicel that usually has
more pale scales than dark scales.2,109 A closely related spe-
cies, Ae. koreicus, has established in Europe,128 outside of its
native range in Asia, and maybe an invasive species of concern
to Canada. Aedes togoi can be mistaken for Ae. japonicus due
to similar patterns of scales on the legs and scutum, but the

FIGURE 5. Female Aedes japonicus, photo by Sean McCann. This
figure appears in color at www.ajtmh.org.

FIGURE 6. Collection records of Aedes japonicus in Canada.114–120,219,220 This species is established and widespread in southern Canada out-
side of drier areas. This figure appears in color at www.ajtmh.org.
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bands of pale scales on the tarsomeres of Ae. japonicus are
present only at the base of each tarsomere.
Public health and veterinary importance. Aedes japonicus

is an aggressive biter that has been implicated as a vector of
JEV in its native range,54 and may be a competent vector of
WNV,22 EEEV,104 SLEV,129 RVFV,130 DENV and CHIKV,131 and
CVV.132 This species is believed to be a significant vector of
LACV in parts of the United States,133,134 and it has a high WNV
transmission potential in the laboratory135 though field-caught
specimens in Ontario rarely test positive for WNV.24

Aedes togoi. This review includes the coastal rock pool
mosquito, Aedes (Tanakaius) togoi (Theobald), but it should be
noted that there is uncertainty about whether Ae. togoi is native
to North America or is an established invasive species.136–139

Life history. Aedes togoi breeds in coastal rock pools just
above the high tide line that range from freshwater to hyper-
saline.140 In Asia, it has also been reported to breed in

artificial containers109 but this behavior is absent in North
America.140,141 Aedes togoi overwinters in the larval stage,
the egg stage, or a combination of both depending on
the climate,142,143 with populations in North Vancouver over-
wintering as a combination of both.144 North American
populations do not generally fly more than 20 m from the
shoreline.141 Female Ae. togoi will blood-feed on humans,109

but in North America they are often found in locations that
are difficult to access and have no human settlements
nearby, indicating that their primary source of blood meals
are likely other species.140 Due to the reluctance of Ae. togoi
adults to leave shoreline habitat,141 a propensity of Ae. togoi
larvae to submerge at the slightest provocation and remain
hidden in detritus at the bottom of pools for extended periods
of time,140 and the nature of its habitat leading to difficulties
in access, the detection of Ae. togoi can prove difficult.
Distribution. Aedes togoi is distributed along the coast of

east Asia from Malaysia to the Russian Far East in environ-
ments that range from subtropics to subarctic.109 It is also
found in Pacific Canada along the coast of southern
British Columbia (Figure 7), and down into Washington,
though the northern extent of its range in North America is
unknown.112,137,138 Aedes togoi was first detected in North
America from Victoria, British Columbia, in 1970,139,145

though atypical records from coastal rock pools as early as
1919 may indicate Ae. togoi was observed much earlier but
mistaken for other species.138,146 Genetic evidence indicates
that populations of Ae. togoi in British Columbia belong to a
haplotype not found in known populations from Japan,
China, or southeast Asia,136 implying that they may have
originated from populations in Primorsky Krai, Russia, or
unknown populations elsewhere in the North Pacific.
Taxonomy and identification. Another dark mosquito

with banded legs, Ae. togoi has lines of gold scales on the
scutum (Figure 8) and is one of the few mosquitoes

FIGURE 7. Female Aedes togoi, photo by Dan Peach. This figure
appears in color at www.ajtmh.org.

FIGURE 8. Collection records of Aedes togoi in Canada.112,139 This species is distributed along the south coast of British Columbia. The lack of
records of Ae. togoi from the north coast of British Columbia may represent an information deficiency rather than true absence. This figure appears
in color at www.ajtmh.org.
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commonly found in its extreme coastal habitat. Aedes japo-
nicus can be mistaken for Ae. togoi due to similar patterns of
scales on the legs and scutum, but the bands of pale scales
on the tarsomeres of Ae. togoi are present at the base and
apex of each tarsomere, whereas those of Ae. japonicus are
present only at the base of each tarsomere.2,82

Public health and veterinary importance. In Asia, Ae.
togoi is a vector of the filarial parasite Brugia malayi,109,147,148

JEV,53,149,150 and potentially the parasites Wuchereria ban-
crofti and Dirofilaria immitis.109 However, except in some
specific locations, it seems to be secondary in importance to
other vector species.
Culex pipiens life history. The northern house mosquito,

Culex pipiens, can breed in almost any type of standing
water, particularly containers such a birdbaths, gutters, or
buckets, as well as nutrient-rich, stagnant, or polluted water
such as ditches or even sewage ponds.4,151,152 Eggs are
deposited as a floating raft on the water’s surface, and larvae
can develop into adults in 1–2 weeks.4,151 Adult Cx. pipiens
are somewhat variable in their hours of peak biting activity
but are generally crepuscular to nocturnal.153 This species is
primarily ornithophilic, though they do occasionally bite
mammals, including humans.20

Culex pipiens numbers build up over the summer, reach-
ing their peak in late July and early August before tapering
off into the fall.116 They feed on nectar from a variety of flow-
ers154 and can pollinate some members of the Astera-
ceae.155 Overwintering occurs as sugar-fed, inseminated
nonblood-fed females, which enter warm locations such as
human buildings or urban storm water drains in the fall to
shelter until they emerge in the spring to feed.156,157

Distribution. Culex pipiens is a widespread invasive spe-
cies that has spread throughout the Holarctic as well as into
Australia, parts of South America, and South Africa.4,151 In
Canada, this species is known from Nova Scotia, New
Brunswick, Prince Edward Island, Southern Quebec, South-
ern Ontario, and British Columbia4,82,114,158,159 (Figure 9). It
has been reported from prairie provinces but these records
are not supported by specimens or subsequent collec-
tions.4,160 Present in North America for centuries, Cx. pipiens
perhaps arrived in eastern North America as early as the late
fifteenth century.161 However, this species is believed to
have spread to Newfoundland only in the early twenty-first

century159 and is thought to have been introduced into Brit-
ish Columbia in the early twentieth century, as it was not
found in 1904162 and in 1926. Culex pipiens was found only
at one location in British Columbia.163 Perhaps, as a result of
its use of heated human structures for overwintering, this
species is established as far north as Prince George, British
Columbia,164 making it the invasive mosquito with the most
northernly known distribution in North America. This species
had also been reported at Sitka and Yakutat, Alaska, as Cx.
consobrinus in the summer of 1899,165 though subsequent
Alaskan records have not been reported.82

Over the coming decades, environmental conditions are
predicted to become suitable for Cx. pipiens in parts of
Alberta, Saskatchewan, and Manitoba, as well as Western
Ontario.160 Due to its ability to use human structures to escape
winter conditions, as well as predictions that future climate
conditions will be more favorable to this species in many parts
of Canada,160 this species is likely to spread further within
Canada.
Taxonomy and identification. A small brown mosquito

without distinct markings (Figure 10), adult female Cx. pipiens
can be difficult to reliably distinguish from similar species
such as Cx. restuans without molecular tools. However, if
specimens are in pristine condition, the presence of patches
of pale scales on the scutum can distinguish Cx. restuans
from Cx. pipiens.2,4,82 The amphibian biting Cx. territans,
another species that appears similar, possesses bands of
pale scales on the apices of dorsal abdominal segments,
whereas these bands are basal in Cx. pipiens.2,4,82,137 A sis-
ter species of Cx. pipiens, the southern house mosquito,
Cx. quinquefasciatus, must be separated from Cx. pipiens by
molecular techniques or examination of male genitalia; how-
ever, Cx. quinquefasciatus is not known from Canada.82

Public health and veterinary importance. Though not an
aggressive biter,166 Cx. pipiens is an important vector of
WNV and is considered as the primary bridge vector of WNV
between birds and humans in northeastern North Amer-
ica.20,21,23,24 It is also a vector of SLEV,167,168 USUV,169

avian malaria,170–172 and dog heartworm.173 Similar to human
malaria, avian malaria can have massive ecological impacts on
the organisms it affects. Declines in populations of the house
sparrow, Passer domesticus, in many areas of Europe are
thought to be due to Plasmodium relictum174 and the introduc-
tion of this parasite into the Hawaiian Islands has devastated
endemic bird species, with some experiencing disease mortal-
ity of 90% and at least one extinction connected to P. relic-
tum.175–178 The ecology of avian malaria transmission and its
impacts need more investigation by vector ecologists, par-
ticularly in the northern area of its range and along bird-
migration routes.
Future considerations. Invasive species to watch for.

Aedes atropalpus is native to Eastern North America where it
was originally limited to breeding in rock pools.4 Since the
late 1970s, it has begun using discarded tires as breeding
habitat179 and has become invasive in parts of the American
Midwest179 as well as Europe.180,181 By breeding in discarded
tires is possible that Ae. atropalpus could invade parts of Can-
ada it has not historically inhabited.
Aedes koreicus is closely related to Ae. japonicus and is

abundant in urban settings.182 The native range of Ae. korei-
cus is in eastern Asia, including China, Korea, and eastern
Russia,109 but it has become established in Europe where it

FIGURE 9. Female Culex pipiens, photo by Adam Blake. This figure
appears in color at www.ajtmh.org.
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is believed to have arrived in used tires.128,183 As a container-
breeding species well-adapted to temperate climates, human-
dominated environments, and a history of spreading to new
areas, Ae. koreicusmay have the potential to invade and estab-
lish in Canada.
Culex tritaeniorhynchus is native to Asia and parts of

Africa109 and is the primary vector of JEV virus in many parts
of Asia.109 This species has been found on ships as far as
several hundred kilometers out to sea184 and, while it primar-
ily breeds in other habitats, its larvae have occasionally been
found in containers.185 Culex tritaeniorhynchus could arrive
as ship-borne adults or as larvae in containers shipped from
its native habitat.

DISCUSSION

With an increasingly interconnected world, the establish-
ment of invasive alien species is on the rise worldwide.186 At
least half of the invasive mosquitoes known from Canada have
arrived within the last 20 years, and all but one since the mid-
dle of the twentieth century. Mosquito and pathogen monitor-
ing and control in Canada must adapt to these challenges by
utilizing modern solutions and undertaking context-specific
research.
As genomic resources for mosquitoes continue to improve,

the ability to identify species via molecular means will become
increasingly important in surveillance and control efforts.
Widely deployed molecular identification (e.g., through “DNA
barcoding”187) is a critical component of vector surveillance,
as it can resolve cryptic or sibling species as well as reduce
the need for highly trained observers. Furthermore, molecular
identification can be performed on partial or damaged sam-
ples from multiple life stages,188 obviating the need for pristine
specimens for morphological identification. Pathogen surveil-
lance programs have traditionally relied upon morphological

identification techniques, which have resulted in the success-
ful detection of several previously unknown native mosqui-
toes3,189 and novel invasives.5,113 However, DNA barcoding
methods were recently used in a province-wide survey of
mosquitoes in Quebec118 and we propose that similar meth-
ods should be routinely and widely implemented (in tandem
with morphological identification techniques) as part of mos-
quito surveillance efforts across Canada. In addition to species
identification, sequencing analysis can help to identify the
likely source of invasive mosquitoes,63,64,190,191 which will aid
in targeting surveillance and trapping to detect and prevent
further incursion (e.g., at ports or airports). Finally, sequencing
intact mosquito specimens can identify arbovirus infection sta-
tus and bloodmeal host identity73,192–198 providing critical
information to aid in control efforts. We propose that the gen-
eration of high-quality reference genomes should be prioritized
for mosquitoes native and invasive to Canada. Contiguous
and complete genome assemblies can now be readily con-
structed from as little as a single mosquito due to improve-
ments in long-read sequencing technologies and library
preparation protocols.199–201 The availability of comprehen-
sive and complete genomic resources will help to better
understand the biology of these species and to guide the
development of molecular assays for determining insecticide
resistance status.202–205 Further, coupled with whole-genome
sequencing of additional specimens, a complete genome
assembly is a foundation identifying the genomic basis of ovi-
position behavior, blood-meal host preference, and other phe-
notypes that may influence the ability of specific populations
to take hold and adapt to new niches.206 However, it is impor-
tant to stress that molecular techniques do not obviate the
importance of morphological techniques in vector surveillance
and at broader scales,207,208 and that future best practices will
involve a reciprocal and integrative interaction between these
methodologies.209

FIGURE 10. Distribution of Culex pipiens in Canada including the recognized distribution limits of Cx. pipiens in Canada as of 200582 (hash
marks), with recent additional collection records.158,159,164,219 The record from near Chisasibi, QC, may not represent an established population
and requires further investigation. This figure appears in color at www.ajtmh.org.
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Broad collaboration and data-sharing are imperative to
monitor, prevent, and prepare for the spread of invasive
mosquitoes and the pathogens they vector.210–212 Require-
ments for open data policies combined with a greater resolu-
tion of data, such as species-level identifications, for such
institutions that monitor for mosquitoes and pathogens, and
their contractors, are one mechanism by which to address
these needs. Detailed data collection and open data policies
regarding species and pathogen presence will also inform
modeling efforts and risk assessments, policy decisions,
and healthcare initiatives. To facilitate these efforts, and
build upon pathogen monitoring activities such as those
carried out by provincial CDC, the Public Health Agency of
Canada, Public Health Ontario, and others, we propose the
formation of a Canada-wide network for sharing information
on the distribution of mosquito vectors and the pathogens
they spread, similar to the VectorNet (https://vectornet.ecdc.
europa.eu/) and VBORNET (www.vbornet.eu) initiatives
established by the European Center for Disease Prevention
and Control and European Food Safety Authority. Addition-
ally, monitoring for invasive mosquitoes arriving at seaports,
airports, and other areas at which high volumes of interna-
tional traffic arrive, as has been done in other nations213–216

and in some limited parts of Canada such as southern
Ontario,5,26 should be considered to enhance Canada’s bio-
security due to the ease at which some invasive mosquitoes
spread within a country once established.91,110,217,218

Furthermore, Canada provides a unique opportunity to study
invasive mosquitoes and their pathogens under an environ-
ment that is changing in both climate and levels of human
modification. Many of these mosquitoes and pathogens are at
the northern limits of their range in Canada and are likely
experiencing immense selection pressures on behavioral and
physiological mechanisms to survive cold winters. With chang-
ing climatic conditions and increasing global connectivity, there
are also unique opportunities to study how invasive mosqui-
toes and exotic pathogens arrive and spread in new areas, as
well as the effect of urbanization and temperature limitations
on mosquito and pathogen community composition, mosquito
behavior, and pathogen transmission dynamics.
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