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Next generation sequencing platforms and high-throughput genotyping assays have remarkably expedited the pace of development
of genomic tools and resources for several crops. Complementing the technological developments, conceptual shifts have also
been witnessed in designing experimental populations. Availability of second generation mapping populations encompassing
multiple alleles, multiple traits, and extensive recombination events is radically changing the phenomenon of classical QTL
mapping. Additionally, the rising molecular breeding approaches like marker assisted recurrent selection (MARS) that are able
to harness several QTLs are of particular importance in obtaining a “designed” genotype carrying the most desirable combinations
of favourable alleles. Furthermore, rapid generation of genome-wide marker data coupled with easy access to precise and accurate
phenotypic screens enable large-scale exploitation of LD not only to discover novel QTLs via whole genome association scans but
also to practise genomic estimated breeding value (GEBV)-based selection of genotypes. Given refinements being experienced
in analytical methods and software tools, the multiparent populations will be the resource of choice to undertake genome wide
association studies (GWAS), multiparentMARS, and genomic selection (GS).With this, it is envisioned that these high-throughput
and high-power molecular breeding methods would greatly assist in exploiting the enormous potential underlying breeding by
design approach to facilitate accelerated crop improvement.

1. Introduction

Plant breeding aims at tailoring the genetic architecture of
a genotype in an artistic and scientific way, and its success
is largely attributable to the extent of genetic variation
present in the germplasm. The final outcome of all these
breeding practices is an improved and publically accepted
cultivar. Earlier methods based on direct or visual selection
of phenotypes have contributed significantly in improving
those commercially relevant traits which are governed by a
limited number of major gene(s) or large effects quantitative
trait loci (QTLs). Nevertheless, the traits controlled by a large
number of smaller effects and epistatic QTLs and displaying
significant genotype × environment (G × E) interactions
could not be addressed appropriately through phenotypic
selection (PS) based breeding methods [1, 2]. Within this
context, accurate indirect selections based on genomic or
molecular tools that have become prevalent over the last
few decades have strengthened the traditional breeding to

a great extent. In recent years, tremendous advancements
have been made in the area of plant genomics leading to
the dramatic increase in the number of genomic tools and
technologies for almost every crop species [2]. For example,
a wide array of marker systems has become available since
the introduction of restriction fragment length polymor-
phism (RFLP) as the first genetic marker by Grodzicker and
colleagues [3]. Importantly, this progress has been driven
by next generation sequencing- (NGS-) based technologies
and high-throughput (HTP) marker genotyping systems
that have truly revolutionized the plant genomics [4]. In
recent years, different kinds of rapid and cost-effective NGS-
based sequencing technologies such as 454 FLX/Roche and
Solexa/Illumina have been successfully employed for de
novo whole genome shotgun (WGS) sequencing of reference
genotype andwhole genome resequencing (WGRS) of several
cultivars, land races, and wild relatives [5, 6].

The remarkable progress has provided access to the
plethora of genome-wide genetic markers especially single
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nucleotide polymorphism (SNP) markers which are par-
ticularly important from the aspects of throughput and
automation [7, 8]. Additionally, recently available semi-/fully
automated HTP genotyping systems have allowed accurate
and rapid scoring of several hundreds to thousands of
genetic markers. These include large-scale SNP genotyp-
ing systems like Illumina GoldenGate (GG)/infinium and
moderate-scale assays such as MassARRAY, Taqman SNPlex,
iPLEX, VeraCode, and KASPar assays [7]. Furthermore, due
to recently introduced sequencing-cum-genotyping meth-
ods like restriction site associated-DNA (RAD) sequencing,
genotyping-by-sequencing (GBS), and WGRS, a major shift
has been revealed in the methods used for discovery and
mapping of DNAmarkers [8, 9]. Notably, thousands of DNA
markers could be discovered and mapped in a one-step pro-
cess using these NGS-based methods [4, 9], thereby facilitat-
ing construction of high and ultrahigh density recombination
maps not only for the major crop species with reference
genome sequence but also for the crops where no reference
genome is available [10].

In conjunction with the technological advancements, the
concept of biparental linkage mapping is also changing to
multiparent based mapping like multiparent advanced gen-
eration intercrosses (MAGIC) and nested association map-
ping (NAM) to enable reaping maximum benefits from the
recently available HTP genotyping/sequencing and pheno-
typing platforms. The highly saturated recombination maps,
thus developed for these populations would reveal the impor-
tant genomic regions underlying economically important
traits. Aside from traditional QTL mapping, these complex
mapping resources create new possibilities for applying
genome wide association studies (GWAS), and more impor-
tantly, joint linkage-LD analysis for a much comprehensible
genetic investigation of complex traits [11, 12].

Remarkable changes have also been and are being wit-
nessed in downstream deployments of the genetic mark-
ers/QTLs in crop improvement programmes. The conven-
tional marker assisted selection (MAS) and themarker assist-
ed backcrossing (MABC) programmes facilitate introgres-
sion of limited number of gene(s)/QTL(s). Though substan-
tial genetic gains were achieved using MAS/MABC, issues
related to minor QTLs could not be addressed compellingly
through MAS/MABC approach [2]. Alternatively, marker
assisted recurrent selection (MARS) scheme was proposed
with the aim of accumulation of a number of QTLs into a
single genotype. Taken together MABC and MARS schemes,
however, target an individual marker or set of markers
showing significant associationwithQTLs. Hence, still a con-
siderable proportion of genetic variation remains unexplored
[13]. To deal with this concern, a modification of MAS was
proposed permitting selection of desirable genotypes on the
basis of genome-wide marker information [14]. The method
is referred as whole genome selection (WGS), genome wide
selection (GWS), or genomic selection (GS) [15]. Keeping
all these developments in view, this article provides a com-
prehensive review on these emerging molecular breeding
approaches including their current status, impediments, and
perspectives.

2. Biparental Genetic Populations: Trending
towards Higher Mapping Resolution

Traditional mapping or family mapping focuses on generat-
ing experimental populations which are easy to establish and
allow analysis of the genotyping and phenotyping data in a
relatively simple manner. Mostly, these mapping populations
are purposefully built, targeting a particular trait of inter-
est. These populations are generated through crossing two
genetically diverse parents and raising their F

1
accompanied

by selfing or backcrossing with the recurrent parent (RP)
to achieve a segregating generation with a defined genetic
constitution [11]. Following Collard et al. [16] mapping
populations can be classified into two different categories,
that is, ephemeral and immortal, and this classification is
primarily derived from their genetic constitution, capacity to
regenerate, and time required for establishment. Ephemeral
or transient mapping populations harbour considerable pro-
portion of heterozygous individuals within it, therebymaking
regeneration (with the same genetic constitution) practically
impossible.The F

2
and backcross (BC) populations represent

such rapidly available genetic resources with almost half of
the mapping individuals in the heterozygous state. However,
the ease of generation and informative nature retain themajor
advantages associated with these mapping populations.

By contrast, immortal populations are comprised of
nearly homozygous individuals and thus represent “stable”
resources which can be replicated over the years [16]. These
include double haploids (DHs), recombinant inbred lines
(RILs), near isogenic lines (NILs), advanced intermating
lines (AILs), and so forth. Importantly, these populations are
not affected by dominant/codominant nature of the marker
system employed for genotyping. Concerning generation of
these resources, DHs are developed with the help of embryo
rescue techniques while RILs are developed through single
seed descent (SSD) method. Generally, DHs represent a
set of homozygous lines induced from F

1
plants. However,

based on simulation models a modified concept of “F
2
-

derivedDH”was proposed inmaize to incorporate additional
recombination events together with providing opportunities
for practicing selections in segregating F

2
generation [17].

Most investigations on genetic analysis of agriculturally
important traits have been performed using biparental exper-
imental populations. Accordingly, several softwares were
developed for linkage and QTL analyses based on biparental
populations (Table 1) [18–52]. Therefore, these populations
have been the key resource for generating low- to high-
density genetic maps and provided plenty of QTLs via
gene tagging or QTL mapping [53]. Interestingly, biparental
population still remains an ideal tool for detection of QTLs,
and strictly, for the discovery of the rare alleles [54]. The
major drawback with such populations, however, is the
resolution of the identified QTL that is usually very poor
[11, 55]. In other words, it assigns any QTL to larger intervals
(broad chromosomal regions) [13, 51] thus making these
QTLs unsuitable for future applications includingmap-based
cloning or positional cloning. To redress this issue, enlarging
the population size has been proposed as a viable option
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Table 1: List of softwares used for various analyses in molecular breeding.

Name of software URL Reference
Linkage map construction

MAPMAKER/EXP http://www2.hawaii.edu/∼durrell/Software/B14F5F09-6238-43DA-B95F-958D4FB709AD.html [18]
JoinMap http://www.kyazma.nl/index.php/mc.JoinMap [19]
RECORD http://www.wageningenur.nl/en/show/RECORD.htm [20]
AntMap http://lbm.ab.a.u-tokyo.ac.jp/∼iwata/antmap/ [21]
MSTMAP http://alumni.cs.ucr.edu/∼yonghui/mstmap.html [22]
MergeMap http://138.23.178.42/mgmap/ [23]
MultiPoint http://www.multiqtl.com/ [24]

Family based QTL discovery
MAPL http://lbm.ab.a.u-tokyo.ac.jp/∼ukai/ [25]
MapQTL http://www.kyazma.nl/index.php/mc.MapQTL [26]
PLABQTL http://wheat.pw.usda.gov/jag/papers96/paper196/utz.html [27]
QGene http://www.qgene.org/qgene/index.php [28]
BQTL http://famprevmed.ucsd.edu/faculty/cberry/bqtl/ [29]
Map Manager QTX (QTX) http://www.mapmanager.org/ [30]
Windows QTL
Cartographer http://statgen.ncsu.edu/qtlcart/WQTLCart.htm [31]

MCQTL http://carlit.toulouse.inra.fr/MCQTL/ [32]
GMM http://www.kazusa.or.jp/GMM/ [33]
ICIM http://wiki.cimmyt.org/confluence/display/MBP/Application+2.2.5+Tool+7.10+QTL+IciMapping [34]
QTLNetwork http://ibi.zju.edu.cn/software/qtlnetwork/ [35]
R/qtl http://www.rqtl.org/ [36]
MultiQTL http://www.multiqtl.com/ —

LD analysis (Population structure/Marker-trait association)
STRUCTURE http://pritch.bsd.uchicago.edu/software/structure2 2.html [37]
EIGENSTRAT http://www.mybiosoftware.com/population-genetics/1309 [38]
GeneRecon http://www.daimi.au.dk/∼mailund/GeneRecon/ [39]
GENOMIZER http://www.ikmb.uni-kiel.de/genomizer/ [40]
BMapBuilder http://bios.ugr.es/BMapBuilder/ [41]
CaTS http://www.sph.umich.edu/csg/abecasis/CaTS/ [42]
MIDAS http://www.genes.org.uk/software/midas [43]
TASSEL http://sourceforge.net/projects/tassel/ [44]
InStruct http://cbsuapps.tc.cornell.edu/InStruct.aspx [45]
PLINK http://pngu.mgh.harvard.edu/∼purcell/plink/ [46]
GenAMap http://cogito-b.ml.cmu.edu/genamap/ [47]
GWAPP http://gwas.gmi.oeaw.ac.at/#!home [48]
ALDER http://groups.csail.mit.edu/cb/alder/ [49]

MAGIC analysis
R-version of HAPPY http://www.well.ox.ac.uk/happy/happyR.shtml [50]
mpMap http://www.mybiosoftware.com/population-genetics/6437 [51]

Genomic selection
R-Package for GS http://www.r-project.org [52]

to enhance mapping resolution [16], but practically it is not
possible to opt for several populations.

Alternatively, increasing the chances for recombination
events has been considered as more realistic and efficient
means over increasing the size of mapping population [56].

With this view, an elaborated RIL approach was proposed as
advanced intercross (AI) scheme permitting randommatings
among mapping individuals in F

3
, F
4
, and successive genera-

tions [11, 55, 56]. Relative to F
2
, RIL, and BC, high resolving

power of AILs was evident from the fact that AIL is capable of
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mapping QTLs with the same precision that could otherwise
be attainable through a three/four times larger F

2
population

[56, 57]. Therefore, AIL strategy empowers the traditional
QTL analysis by incorporating extra rounds of intermating
or genome reshuffling within reasonable population size.

Besides, systematically built NILs, introgression lines
(ILs), and chromosome segment substitution lines (CSSLs)
enable fine mapping of QTLs; however, creation of such
experimental populations is fairly cumbersome, and the ent-
ire procedure requires plenty of time. Traditionally, NILs
are generated through repeated backcrossing with RP fol-
lowed by selfing of the genotypes to genetically stabilize the
improved versions. As an alternative, Tuinstra et al. [58]
identified heterogeneous inbred family (HIF) as a relatively
easymethod to establishNILs.HIFs are generated by crossing
two contrasting inbreds in a way similar to RIL development.
Nevertheless, here segregation of the marker defined seg-
mentswithin family ismonitored critically after F

5
generation

so that theNILs discriminating for the segment under consid-
eration could be recovered. Using HIF approach, QTL-NILs
differing for seed-weight were developed in Sorghum from
F
5:8

families [58]. Initially, RAPD markers were identified
for the two seed weight related QTLs and subsequently
within family segregation of these markers/QTLs was mon-
itored using RAPDs. Similarly, HIFs have been developed
in Arabidopsis from the cross “Bay-0 × Shahdara” aiming at
detecting QTLs for root growth [59].

Since within a species, several mapping populations are
developed at a time from multiple crosses targeting different
traits. Therefore, a simple alternative to enhancing map reso-
lution ismerging the segregation data frommultiplemapping
populations to synthesize a much comprehensive genetic
map known as “composite” or “consensus” maps. [23, 24].
The composite or consensus genetic maps harbour hundreds
to thousands of loci offering greater genome coverage. For
instance, the ultradense consensus genetic maps have been
constructed for sunflower (Helianthus annuus L.) and cotton
(Gossypium sp.), comprising 10,080 loci (and 1,310 cM) and
8,254 loci (with 4,070 cM), respectively [60, 61]. To make the
consensus geneticmapmore informative, theQTLs identified
from the component populations are also placed onto the
consensus map, thereby increasing the chances for obtaining
tightly linked and more informative DNA markers for QTL
cloning or MAS and so forth.

More recently, with the gaining prevalence of NGS-
based methods it has now become possible to perform
high-resolution mapping with the moderate population size.
For instance, WGRS facilitated development of ultra-high-
density recombination maps for two rice RIL populations,
namely “9311 × Nipponbare” and “Zhenshan 97 × Minghui
63” comprising 150 and 238 individuals, respectively [62, 63].
Similarly, highly saturated genetic maps were constructed for
DH populations in wheat (Synthetic W9784 × Opata M85;
147 lines) and barley (Oregon Wolfe Barley (OWB); 82 lines)
using GBS assays [10].

Furthermore, a novel mappingmethod has been invented
for rice for rapid identification of markers tightly associated
with the phenotype of interest.The strategy combines benefits
of NGS and bulked segregant analysis (BSA) techniques.

In this approach, a mutant phenotype is induced using
EMS mutagenesis, and the induced mutant (in homozygous
state) is then crossed to the wild type to generate a hybrid
constitution (F

1
). The F

1
is then selfed to give rise to F

2

population showing a marked segregation for the mutant
phenotype. Following this, DNA from mutant individuals
in F
2
populations are bulked, and the WGRS (up to 10 ×

coverage) for the bulkedDNA is performed using appropriate
NGS platforms. Finally, causative SNPs are detected through
alignment of the generated sequence reads with the reference
genome sequence [64]. Other similar approaches facilitat-
ing rapid gene discovery using NGS-based BSA include
SHOREmap [65] and next generation mapping (NGM) [66].

3. GWAS: Emerging Approach to
Scan Genome for QTL Discovery

Association analysis (AA) or LD analysis relies on exploring
LD that is, the non-random association of alleles between
different loci within genome [67, 68]. In addition to his-
torical and evolutionary recombination events that have
taken place during establishment of association panel, this
non-random association of alleles is attributable to several
other evolutionary forces such as mutation, domestication
bottlenecks, genetic drift, and migration [68]. Unlike family-
based QTL mapping that requires an appropriate segregating
population and a genetic map, association or LD mapping
harnesses genetic diversity existing among the naturally
occurring diverse genotypes, thus circumventing the need for
an experimental population [54, 55, 67–69]. In this manner,
AA saves the time required to generate amapping population
together with enabling the use of the historical phenotypic
data that has been recorded on diverse genotypes over the
years [69].Moreover, linkagemapping providesQTLs that are
mostly population specific, whereas AA tests multiple alleles
for their association with the trait, therefore making the later
more realistic for QTL discovery. A list of softwares used for
LD mapping or AA has been provided in Table 1.

The extent of LD decay across the genome primarily
decides the number of DNA marker required to extract
meaningful inferences. In general, cross-pollinating species
exhibit lower levels of LD or higher levels of LD decay than
the self-pollinating species [54]; therefore, comparatively
higher number of DNA markers would be required in
case of cross-pollinating species to unravel the molecular
mechanism of any complex trait. However, variations in the
levels of LD decay have also been reported within species
and from locus to locus within a particular genome [67].
For example, in case of maize (a cross-pollinated species),
LD decays rapidly over 1 kb in landraces and 2 kb in diverse
inbred lines while, in case of commercial elite inbred lines, it
extends up to 100 kb. In contrast, LD extends up to 250 kb in
Arabidopsis (a self-pollinating species) [70].

AA can further be classified into two categories: a
candidate gene approach that targets genotyping of specific
genomic region. Contrary to it, another approach known
as GWAS requires genome-wide markers and scans the
entire genome for detection of QTL signals [54, 55]. During
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the initial phase, when genotyping and sequencing were
prohibitively-costlier, candidate gene approach, requiring less
number of markers was considered more suitable. Neverthe-
less, with the rapidly declining genotyping/sequencing cost
and availability of high-density geneticmaps/haplotypemaps
(HapMaps), GWAS has rapidly emerged as an appropriate
tool for the identification of genetic variants associated with
important traits. For example, recently a total of 950 world-
wide rice cultivars were chosen to apply GWAS to discover
the important loci underlying flowering time (heading date)
and grain-related traits, and, consequently, 32 novel loci
were detected [71]. Similarly, whole genome scans were also
employed in several other crops like maize [72], wheat [73],
Arabidopsis [74], barley [75], sorghum [76], and so forth.
GWAS is a powerful means for delivering precisely mapped
QTLs and offers an obvious way to cross-validate the QTL
results obtained from family-based QTL mapping. Another
attractive feature of LD analysis is that it enables the genetic
analysis of multiple alleles and multiple traits at a time which
is otherwise restricted to two alleles and limited traits in case
of biparental trait mapping [68, 69].

Contrary to linkage mapping, AA is relatively inefficient
in capturing the rare variants [50, 54, 55, 68]. Furthermore,
the major operational bottleneck in AA is the difficulties
arising due to the population stratification or, precisely, the
population structure that often leads to the establishment of
spurious linkages even between the unlinked loci, that is,
false positives [11, 55, 69, 77]. However, rate of generation of
false positives depends on the phenotypes as well. For
example, flowering-time related phenotypes exhibit more
spurious associations because of the distinctive geograph-
ical distribution of these phenotypes [59]. The detection
of false positives may inflate as high as 40% in case of
GWAS [55]. Though, several methods have been developed
to control false positives such as transmission disequilibrium
test (TDT), principal component analysis (PCA), genomic
control (GC), structured association (SA), and unified mixed
model approach (Q + K) [68, 70], these methods are vul-
nerable to lose some of the true/potential QTLs (termed as
false negatives) [77]. Concerning the extent of false negatives,
reports have been published indicating that sometimes the
frequency of false negatives may be alarmingly high, that
is, up to 25% [55] or even 40% [59]. Within this context,
the multiparent derived experimental populations like NAM
and MAGIC with greater allelic richness and no population
structure are considered to be promising tools for GWA
studies [68, 77].

4. Next-Generation Genetic Populations:
High-Power Mapping Resources for
Community Research

Precise mapping of QTLs is directly related to the frequency
of recombination, which in turn depends on frequency of
intermating between the founder genotypes as well as among
themapping individuals [54–57].With this consideration, the
idea of developing heterogeneous stock (HS) was conceived
in mice [78]. In HS approach, multiple parents are allowed to

intermate in a pairwise fashion for several generations.There-
fore, HS model was successful in narrowing down a broad
QTL region to the level of few genes. However, the major
problem experienced with HS population is a requirement
for repeated genotyping owing to its highly heterozygous
and heterogeneous nature [50]. Taken into consideration the
above issue of genomic mosaics, a novel software package
“HAPPY” was developed to perform multipoint QTL map-
ping using HS [78].

Further, to make provisions for replicated measurements,
a modified version of HS scheme was developed as collabo-
rative cross (CC) mating system under the umbrella of the
complex trait consortium (CTC) [79]. Collaborative cross
is an integrated mapping approach which was specifically
intended to deliver a global resource for dissecting the genetic
architecture of complex traits. CC consisted of RI strains
generated through crossing of genetically diverse founders
capturing considerable amount of known genetic variation.
Due to RI constituents, CC is likely to be a reproducible
genetic resource specifically suited for investigating molec-
ular networks, epistatic interactions, and trait correlations
that collectively define the complex biological system [79].
The intrinsic resolution power of CC-RI strains has already
been documented [80, 81]. Similarly, with the objective of
generating high-resolution mapping resources, the concept
of multiple founders was also adopted in plants in the form
of MAGIC and NAM [11, 82]. A brief comparison among
different types of biparental and multiparental populations
has been demonstrated in Table 2.

MAGIC populations are being developed in various crop
species, and exciting results have already been published from
MAGIC populations in Arabidopsis, wheat, and rice. The
first comprehensive MAGIC panel in plants was reported for
Arabidopsis in which a total of 19 founder accessions were
used to develop over thousand MAGIC lines (MLs) [83]. Of
these, a set of 527 MLs was chosen to perform a high-power
and high-resolution QTL mapping for developmental traits
such as days to bolt, days to flower, and growth rate [50].
Another Arabidopsis MAGIC population, popularly known
as Arabidopsismultiparent RIL (AMPRIL), was derived from
eight accessions which were crossed to produce a total of four
two-way hybrids, and the resultant hybrids were then mated
in a diallel fashion [84].

In a similar manner, a MAGIC population consisting of
1,579 progenies was developed for wheat at CSIRO, Australia.
Four Australian wheat genotypes (Yitpi, Baxter, Chara, and
Westonia) acted as founder parents to build a 4-way MAGIC
panel. Furthermore, this MAGIC population was used to
yield a high-density genetic map for wheat representing the
first MAGIC map in any plant species. The MAGIC map
spanned a total of 3,894 cM with 1,162 marker loci [51].

MAGIC approach has been implemented in rice at a
much larger scale. A total of four multiparent populations
namely indica-MAGIC,MAGIC-plus, japonica-MAGIC, and
Global-MAGIC were developed to offer additional insights
on tolerance to submergence and bacterial blight [85]. The
indica-MAGIC comprises of eight indica parents, while
japonica-MAGIC contains eight founder genotypes from
japonica rice. Furthermore, MAGIC-plus is an extended
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indica-MAGIC encompassing two extra rounds of intermat-
ing whereas Global-MAGIC represents an excellent attempt
to capture the diversity in both indica as well as in japonica
rice. All the sixteen genotypes used for creation of indica- and
japonica-MAGIC were chosen as parents for Global-MAGIC
population [85].

Like MAGIC, NAM represents another powerful public
resource, comprising various RI populations sharing genome
of one of the parental genotypes. For example, the NAM
design in maize was developed by crossing 25 diverse geno-
types to a common parent B 73 (a popular inbred line of
maize) to create a total of 25 different RI families connected
with each other through shared ancestry [86]. Technically,
this purposely designed mating scheme in NAM led to the
development of ∼5000 RI lines capturing large proportions
of the genetic diversity existing in maize [82].

Further, to make NAM design cost effective and more
striking, a different strategy was applied for genotyping of
RI individuals. It is important to note that, in maize NAM,
emphasis was given towards the discovery of those alleles
which were specific to “B 73,” and, accordingly, these markers
were referred as common parent specific (CPS) markers [86].
Subsequently, both genotyping strategies, that is, typing all
SNPs or only CPS-SNPs, were compared, and an inference
was drawn that both methods yielded more or less similar
experimental results.

Notably, several GWAS and joint linkage-LD analysis
were performed using NAM in maize [87]. For example, an
investigation on genetic architecture of starch, protein, and oil
kernel composition in maize revealed several smaller effects
QTLs, of which half of the QTLs were reported in previous
studies [88]. In addition, NAM provided a detailed genetic
analysis of DGAT1-2 genomic region covering approximately
25Mb in the genome [88]. Similarly, another important
trait in maize, that is, leaf architecture, was subjected to
GWAS using NAM permitting identification of the under-
lying genes/QTLs [87]. Moreover, by extracting SNPs from
Maize HapMap, NAM-GWAS was undertaken in maize to
find out the genetic determinants conditioning resistance
against southern leaf blight disease [89].

Given immense success of NAM design in maize, similar
mating scheme was opted in Arabidopsis for genetic analysis
of flowering time in a set of thirteen RIL populations [59].
Of these thirteen RILs, twelve shared a common parent, that
is, “Columbia” (Col-0), a widely used wild accession. The
remaining RIL “Bay-0 × Sha” was also used for development
of HIFs and NILs to further validate the identified QTLs.The
entire experiment included a total of 4,366 individual RI lines.
The detailed information on the RIL populations is made
publically available at the Versailles Arabidopsis Stock Cen-
ter (http://publiclines.versailles.inra.fr/). Interestingly, these
populations provided over sixtyQTLs for flowering timewith
the PV ranging from 30 to 60%.

Another Arabidopsis NAM population constituted of
three biparental RIL families, namely “Ler × An-1”, “Ler ×
Kas-2” and “Ler × Kond” [12]. A new algorithm of joint
inclusive composite interval mapping (JICIM) was proposed
in this study. Interestingly, JICIM outperformed the tradi-
tional QTLmapping since all the QTLs which were present in

individual RIL populations were detected with stronger evi-
dences (at very high LODvalues). Notably, the ability ofNAM
population for detecting rare QTLs was also demonstrated
experimentally through conducting a comparative study
between JICIM and individual family-based QTL mapping
[12].

Recently, a modified version of NAM, backcross derived
NAM (BCNAM), has been initiated in sorghum for improv-
ing the quality and the yield in West Africa by IER,
CIRAD, and ICRISAT (http://www.generationcp.org/sor-
ghum-bcnam-project-2). The BCNAM design involves three
popular cultivars as RPs which would be crossed to ten
specific donor parents (SDP) and ten common donor parents
(CDP) to generate a set of backcross populations.

5. Genomics-Assisted Introgression
Breeding Using Exotic Germplasm

Modern-day varieties in any crop species are products of
several human-mediated processes, or more appropriately,
the domestication bottlenecks [90, 91]. Surprisingly, only a
small fraction of the entire gene pool is exploited during the
development of cultivars whichmay have higher productivity
and adaptability, but at the cost of valuable genetic diversity
[91]. The situation is more unfavourable for self pollinated
crops because it has been found that during the development
of modern-day cultivars considerably large proportion of
natural variation (nearly 95%) has remained untouched [92].

Wild relatives or landraces in various crop species rep-
resent large, natural, and underutilized pool of vast genetic
diversity which could better be explored for the identifica-
tion and introgression of favourable exotic alleles into the
elite breeding lines. Therefore, revealing the key genomic
regions associatedwith the domestication process. Taken into
consideration, a mapping strategy was designed by Tanksley
and Nelson [93], focussing on extraction of the genomic
information from wild and unadapted genotypes such as
wild ancestors and landraces. The scheme was referred as
advanced backcross QTL (AB-QTL). In addition to discovery
of superior exotic alleles, this approachhelps in expanding the
genetic base of the cultivated gene pool.

AB-QTL method has several advantages over traditional
linkage mapping. Generally, linkage mapping represents the
developmental phase in which marker-trait associations are
discovered. Practical implications of these marker-trait rela-
tionships, however, are realized during the next phase, that
is, trait introgression (Figure 1, Table 3). Conversely, AB-QTL
is an integrated mapping strategy in which both procedures,
namely “mapping” and “transfer,” are executed within the
same population, which is usually a backcross population
derived from a wide cross [92].

The entire procedure inherently avoids the possibilities
for building unpredictable interactions with the new genetic
background that otherwise poses hindrance in anticipated
expression of the introgressed trait. Here, QTLs are identified
in the advanced generations rendering QTLs with only addi-
tive effects and thus eliminating chances for establishment
of epistatic interactions [94]. For betterment, selection is

http://publiclines.versailles.inra.fr/
http://www.generationcp.org/sorghum-bcnam-project-2
http://www.generationcp.org/sorghum-bcnam-project-2
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Mapping populations

MAS/MABC 

Development of superior genotypes

Development phase 
(QTL identification)

Implementation phase 
(QTL introgression)

GS

Conventional

Linkage map construction and QTL mapping

F2 enrichment/MARS

Genetic
resources

Training 
population

F2 RIL AILDH HIFBC

NIL

BIL

IL/CSSL
GEBV 

estimates

Candidate population

Marker(s)/QTL(s) associated with phenotypes

Family-based QTL mapping (linkage analysis)
Joint linkage-LD QTL mapping
Population-based QTL mapping (LD analysis)

Diverse 
cultivars/
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Genome wide LD
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Figure 1: Schematic representation of genomics assisted crop improvement. ∗DH: Double haploid; BC: Backcross population; RIL:
Recombinant inbred line; AIL: Advanced intercross line; HIF: Heterogeneous inbred family; NIL: Near isogenic line; BIL: Backcross inbred
line; IL: Introgression line; CSSL: Chromosome segment substitution line; HS: Heterogeneous stocks; NAM: Nested association mapping;
MAGIC: Multiparent advanced generation intercross; MAS: Marker assisted selection; MABC:Marker assisted backcrossing; MARS: Marker
assisted recurrent selection; GWAS: Genome-wide association study; GS: Genomic selection.

practised against undomesticated traits like shattering thus
allowing progression of only favourable exotic alleles to the
advanced generations. Additionally, a valuable byproduct of
this method is rapid and systematic generation of QTL-NILs
[92].

Further, availability of high-density marker information
has guided precise tracking of exotic chromosomal segments
leading to the availability of exotic libraries [94]. Exotic
genetic libraries are comprised of a series of ILs/CSSLs
collectively covering entire genome of the donor parent [95].
Well-characterized ILs/CSSLs have been reported in several
crops like tomato [95], rice [96], barley [97], and so forth.
In tomato, an exotic library composed of 76 lines was
constructed using drought-tolerant wild species Solanum
pennellii as donor and elite inbred variety M 82 as RP.
Similarly in rice, 128 CSSLs were developed from the cross
between indica (9311) and japonica (Nipponbare) genotypes
[96]. Moreover, to assist in silico development of CSSL
lines, softwares like CSSL Finder have also been introduced
(https://www.integratedbreeding.net/supplementary-tool-
box/genetic-mapping-and-qtl/cssl-finder).

6. F2 Enrichment and MARS: Potential
Methods to Incorporate Multiple QTLs

Introgression of the QTLs into another genetic background is
the most important step in molecular crop improvement
because of its direct relevance to the development of imp-
roved cultivars. An inclusive genomics-based approach for
trait introgression has been illustrated in Figure 1. Among
several methods being used for trait introgression, back-
crossing is a well-established method routinely used for
introgression or defect elimination, but its progress as well as
accuracy is hampered by (i) slow decrease rate of undesirable
donor genome or linkage drag and (ii) time taken for the
maximum recovery of the RP genome. Theoretically, based
on the formula BC

𝑛
= (2
𝑛+1
−1)/2

𝑛+1, recovery of RP genome
after any 𝑛th backcross generation can be predicted; however,
some plants may possess more or less than the expected
percentage of RP genome [16]. Markers based foreground
selection especially recombinant selection is performed for
precise transfer of donor genome resulting in minimization
of linkage drag. In parallel, background selection or selection

https://www.integratedbreeding.net/supplementary-toolbox/genetic-mapping-and-qtl/cssl-finder
https://www.integratedbreeding.net/supplementary-toolbox/genetic-mapping-and-qtl/cssl-finder
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against the donor genome is practiced to maximize the RP
genome recovery in each backcross with the help of the
markers that are unlinked to the target locus [98]. Marker
assisted foreground and background selections offer much
faster elimination of the undesirable alleles that are associated
with the genomic fragment of interest [4]. Like traditional
backcrossing, the final outcome of MABC is an improved
version of existing popular cultivar. Given the ability to trans-
fer major QTL(s)/gene(s), MABC is particularly useful for
stacking of genes conferring strong and durable resistance [4,
53], but pyramiding is usually inefficient for quantitative traits
(QTs) controlled by several QTLs with variable phenotypic
effects [2].

In addition to linkage drag, another potential obstacle
in trait introgression is pleiotropy often causing correlated
response (indirect selection for nontargeted trait). Molecular
dissection of this complex phenomenon has revealed that
pleiotropy may result from intragenic linkages between
quantitative trait polymorphisms (QTPs) [99]. Like gene
dwarf 8 in maize which controls both flowering time and
plant height, but both these activity are regulated by two
different SHT2 and DELLA domains, respectively via two
separate QTPs [99]. As recombination within gene is not
desirable thus emphasis should be given for detection of
haplotypes combining favourable QTP alleles for both traits.
In this way understanding of pleiotropy at gene level would
help in avoiding unnecessary efforts given for recovery of
recombination events required to break undesirable linkages.

In terms of complexity of traits, MARS is more relevant
than MABC because the former is able to harness even those
QTLs experiencing minor effects on the phenotype. Concept
of MARS has been borrowed from conventional recurrent
selection, a scheme proposed by Hull [100]. Phenotypic
recurrent selection has been one of the potential methods
for population improvement involving repetitive cycles of
selfing, intercrossing, and selection [1]. Recurrent selection
scheme has contributed significantly in improving response
to selection in both self- and cross-pollinated crops such as
maize and soybean [101]. Nevertheless, extremely long cycles
and repeated phenotyping are the major barriers hampering
its extensive use in breeding programmes. As a refinement,
integration of DNA marker technology with the traditional
recurrent selection was advocated, and, consequently, mod-
ern theory ofMARS came into existence in which individuals
in F
2
or any other derived generation are initially selected

through analyzing the phenotype and marker data [102].
Whereas in the later generations, desirable genotypes are
selected using marker scores, that is, exclusively marker
data based selections. Marker scores for any individual are
calculated by a formula given by Bernardo [53]. Finally, the
selected individuals are allowed to recombine for the next two
to three generations.

Therefore, MARS favours speedy development of supe-
rior “mosaic” genotypes by extracting superior alleles from
both parents [103] through a procedure similar to the
F
2
enrichment. In F

2
enrichment, selection is practised

against negative homozygous alleles in F
2
population, thereby

increasing frequency of superior alleles in the form of homo-
zygotes/carrier heterozygotes in the advanced generations.

Concerning changes in allelic frequency after F
2
enrich-

ment, it has been found that, for ten QTLs, F
2
enrichment

changes the frequency of favourable allele from 0.50 to
0.67 [53]. F

2
enrichment involves only one generation of

marker based selection. Hence, frequency of superior allele
attainable through F

2
enrichment may not be sufficient to

meet expectations when the PV is accounted to numerous
QTLs [53].

Given the ability to capture multiple QTLs, MARS has
several advantages over PS, MABC, and F

2
enrichment.

Empirical and simulation results have indicated that response
to MARS is found to be superior to MABC and phenotypic
recurrent selections [103]. MARS led to 3% to 20% enhance-
ment in genetic gains than PS [104], whereas, in terms of
change of frequency, MARS increased the frequency of the
favourablemarker allele from 0.50 to ≥0.80 in a sweet corn F

2

population [53]. Unlike MABC, MARS does not essentially
need a preestablished QTL-phenotype relationship because
QTL mapping can be performed within MARS scheme itself
to recover the existingQTLs, ormore appropriately, an ad hoc
significance test can be conducted [104]. Nevertheless, it is
reported that the response to MARS increases with the prior
knowledge of the QTLs [104]. On the other hand, unknown
QTLs could be discovered and incorporated in MARS by
identification of the markers associated with the trait and the
effect of these markers on the trait.

MARS dramatically enhances the probability of recover-
ing the superior genotypes possessing combinations of the
favourable alleles [2]. For instance, Eathington et al. [105]
have reported that, for 20 different QTL regions, a change in
frequency of favourable allele from 0.50 to 0.96 significantly
enhances the probability of recovering an ideal genotype
from one in a trillion to one in five. In another notable
example, MARS enhanced the gains by twofold when
employed in maize breeding populations as compared to
PS [106]. MARS has been emphasized in private sectors
like Monsanto and Syngenta for the improvement of maize,
soybean, and sunflower [105]. However, encouraged by the
above successful instances, MARS is being extended to other
crops including rice, sorghum, chickpea, common bean, and
cowpea with the help of CGIAR and various NARS centres
(http://www.generationcp.org).

7. Genomic Selection (GS): A Genome-Wide
High-Throughput Approach to Predict
Performances

Traditionally, breeding value (BV) has always been an
important indicator routinely used for assessment of practical
worth of any given genotype [14]. BV of any individual is
defined as a value obtained from the average performances
of its progenies. Best linear unbiased predictions (BLUPs)
based on phenotypic data are routinely used to calculate
the estimated breeding values (EBVs), and selection is
practiced on the basis of these EBVs [15, 107]. With a similar
idea of using genome-wide marker data for prediction of
performance, Meuwissen et al. [15] proposed GS scheme
in animals that tests thousands of DNA markers to derive

http://www.generationcp.org


The Scientific World Journal 11

estimates of BVs for each genotype, known as genomic
estimated breeding values (GEBVs). As BVs are dependent
on the magnitude of additive effects, GEBV-based GSmodels
exploit additive effects operating within a population [52].

Conventional MAS/MABC approaches normally uti-
lize the major effect QTLs, and consequently substantial
degree of variation accounted to small-effects QTLs remains
unaddressed [14]. Secondly, the QTL mapping methods are
prone to losing genomic regions playing important roles in
manifestation of complex traits [13]. By contrast, GS targets
hundreds/thousands of DNA markers at a time that are in
strong LD with the genomic regions of interest. The idea
underlying the GS scheme is that, in comparison to a single
marker, haplotypes offer greater possibilities to be in LD with
a particular QTL [15]. In this way, GS operates at whole
genome level without searching for significant individual
marker-trait relationships. A precise comparison of various
molecular breeding schemes has been made in Table 3.

GS scheme uses “training population” as a base con-
stituent that actually serves as model since individuals from
training population are subjected to genome-wide genotyp-
ing and extensive phenotypic evaluation [15, 107]. Since it
provides estimates of the marker effects through utilizing
genome wide marker information, therefore, critical atten-
tion has to be paid while designing training population. On
the other hand the “candidate or breeding population” acts as
a platform for selecting individuals on the basis of the sum
of BVs across all the markers [14, 15]. In other words, no
additional phenotyping is required for candidate population.
GS lessens time duration and cost by eliminating the need
for repeated phenotyping, and QTL mapping. However, for
improving the practical usability of GS, inclusion of another
population (described as validation population) has also been
advocated [14, 52].

Concerning the composition of the training population,
different kinds of populations have been tested in various
simulation and empirical studies [108]. These populations
included biparental mapping populations like F

2
, RILs, DHs,

sets of diverse inbred lines and full sib families, and so
forth. Furthermore, populations derived from multiparental
mapping systems like NAM have also been considered as
potential test populations for deriving GEBV predictions.
However, the accuracy with whichGEBVs could be predicted
depends on several other factors like population size, number
of markers, and the relation between training and breeding
populations [52].

Furthermore, the choice of appropriate statistical model
for prediction of GEBV would likely be a crucial factor in
determining the success of GS. Various algorithms have been
optimized for GS prediction like ridge regression, Bayesian
based [BayesA, BayesB, weighted Bayesian shrinkage regres-
sion (wBSR), Bayesian least absolute shrinkage and selection
operator (LASSO)], random forests (RF), and support vector
machines (SVMs), and effectiveness of these methods have
already been compared in several studies [109–111]. Inter-
estingly, Iwata and Jannink [108] performed a simulation
study with more than 800 barley lines using approximately
1,000 SNPs and concluded that the average of several models
provided more accurate estimates than the individual model

particularly in context of low to moderately heritable traits.
Additionally, the extent of LD decay between themarkers and
the target genomic region also affects the accuracy ofGS [110].

Unlike regular breeding programmes, themajor objective
of phenotyping in GS is to predict GEBVs rather than selec-
tion of genotypes [14, 107]. Promising genotypes, however,
are selected later on the basis of GEBV estimates. Several
simulation and empirical studies have been published on GS
relating to accurate prediction of GEBV estimates and the
relative advantages to other marker based selection schemes
[112–114]. In maize DH line, it was observed that response to
GS was 18 to 43% higher thanMARS across different levels of
population sizes, numbers of QTLs, and levels of heritability.
Specifically, higher response was more evident in the case
where the trait was governed by QTLs with low heritability
[115]. Similarly, Wong and Bernardo [116] reported that GS
could result in the release of improved germplasm in oil palm
within six years in contrast to 19 years generally taken through
PS.More recently, a report onGS has been published on fruit-
quality traits in apple. Given the low heritability of traits,
gains in GS were found to be almost 100% higher than the
conventional BLUP based selection models [110].

By its nature, GS focuses on genetic improvement of
QTs rather than understanding their genetic basis [52, 115].
In addition to identify a large number of small-effects
QTLs scattered throughout the genome, this approach can
also be applied for the selection of potential parental lines
thus escaping rigorous phenotypic assessment in the target
environments [107]. Being in extrapolatory phase in plant
science, practical examples of GS are not adequate, but the
preliminary analyses look promising and emphasize that the
success of GS in plant science would largely depend on the
extent of accuracy in GEBV predictions.

8. Opening Rich Opportunities for Practising
Breeding by Design

Ideotypes or ideal plant types are known to plant breeder,
since 1968 when Donald [117] defined an ideotype as a
hypothetical biological model designed to perform in a
predictablemanner under defined environmental conditions.
Based on morphology and physiology, ideotypes have been
suggested in many crops including barley, wheat, rice, and
so forth. Although this concept could not provide likely
gains practically, it has always played a major role in framing
various crop breeding strategies [101]. In the post-genomics
era, the concept of ideotype has been taken to the next level
where designing of ideal genotypes could be performed in
silico and Peleman and van der Voort [118] described it as
breeding by design.

The concept of breeding by design includes (i) locating
genes/QTLs associated with important traits (ii) exploring
the allelic variation at these loci and the estimation of
phenotypic effects of these allelic variants (iii) choos-
ing desirable recombinants by targeting marker/haplotype-
defined genomic fragments [4, 118]. Recently, several soft-
wares and tools like ISMAB(information system for marker
assisted backcrossing) have also been developed to sup-
port in silico designing of a superior genotype through
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Table 4: List of some recently developed phenotyping platforms/software tools.

Name of platform/software
tool Link References

CLID http://ecotheory.biology.gatech.edu/ —
DIRT http://ecotheory.biology.gatech.edu/ —
GERMINATOR — [119]
GiA Roots http://giaroots.biology.gatech.edu/ [120, 123]
GlyPh — [124]
GROWSCREEN http://www.fz-juelich.de/ibg/ibg-2/EN/methods jppc/GROWSCREEN/ node.html [120, 125]
HTPheno http://htpheno.ipk-gatersleben.de/ [120, 126]
PHENODYN http://bioweb.supagro.inra.fr/phenodyn/ [127]
PhenoPhyt https://vphenodbs.rnet.missouri.edu/PhenoPhyte/index.php [128]
PHENOPSIS http://bioweb.supagro.inra.fr/phenopsis/ [120, 129]
Phenoscope http://www-ijpb.versailles.inra.fr/fr/plateformes/ppa/index.html [130]
Phytomorph http://phytomorph.wisc.edu/ [119, 131]
RootLM http://www.plant-image-analysis.org/software/rootlm [119, 132]
RootNav http://sourceforge.net/projects/rootnav/ [133]
RootTrak http://sourceforge.net/projects/rootrak/ [134]
RosetteTracker http://telin.ugent.be/∼jdvylder/RosetteTracker/ [135]
Shovelomics http://plantscience.psu.edu/research/labs/roots/methods/field/shovelomics/shovelomics [136]
SPICY http://www.bioss.ac.uk/people/yu/spicy/ [137]
TraitMill http://www.cropdesign.com/tech traitmill.php [120, 138]
Trayscan http://www.medealab.de/englisch/e biovision applications classify trays.html —
WIWAM http://wiwam.be/ [139]

combining desirable loci (https://www.integratedbreeding
.net/ib-tools/breeding-decision).

Availability of highly saturated genetic maps and popu-
lations like ILs has facilitated fine mapping of various QTLs
[97]. Further, growing emphasis on multi-parent mating
systems offer rich opportunities for precise mapping of the
QTLs [50, 51, 85].These lines harbouring diverse alleles at the
loci of interest can be phenotyped accurately to give an idea
about the phenotypic values of these alleles. In case of exotic
genetic libraries, epistatic interactions among various QTLs
could be estimated by combinations of these introgression
lines with different QTLs and different genetic backgrounds
[94].

Once genetic loci influencing the expression of the trait
have been mapped precisely, allelic variants at all these
loci can be mined along with their relative contribution to
complex traits, and highly resolved marker haplotypes could
be recovered for several agriculturally important traits [118].
With the help of accurate phenotyping measurements, one
can have better idea about the phenotypic effects of all the
allelic variants and subsequently, predictive improvement
[82] could be performed in a way that would ensure the high-
est probability for recovering the genotypes with desirable
haplotypes or allelic variants.

Moreover, precise phenotyping or phenomics is one of the
major bottlenecks in capitalizing the full potential of breeding
by design concept [118]. Therefore, tremendous attention

is being paid towards establishment of automation-driven,
cost-effective, and robust phenotyping systems [119, 120]. For
instance, recently available HTP platforms like LemnaTec
scanalyzer3D [121] and RootReader2D/3D [122]. Further,
some of the phenomics platforms/software tools that are
being used in precise phenotyping are listed in Table 4 [119–
139]. Easy access to such phenotyping facilities would defi-
nitely encourage researchers for making breeding by design
a routine practise in genomics based crop improvement
schemes.

9. Conclusion

Rapidly decreasing genotyping and sequencing costs are dra-
matically changing the scenario of genomics-assisted breed-
ing. For instance, a shift has been seen from biparental to
multiparental populations, and,with the help of variousNGS-
based sequencing platforms, a detailed genetic analysis of
these complex mapping resources would likely to be feasible.
Moreover, extensive recombination andmultiallelic nature of
these lines make them an excellent platform for practising
multiparent MARS and GS. More importantly, the develop-
ment of such public resources like MAGIC and NAM would
strengthen the community-based research approach [11].

Additionally, by virtue of eliminating need for any prior
QTL information, MARS and GS schemes would save time,
money, and energy that is required for finding significant

http://ecotheory.biology.gatech.edu/
http://ecotheory.biology.gatech.edu/
http://giaroots.biology.gatech.edu/
http://www.fz-juelich.de/ibg/ibg-2/EN/methods_jppc/GROWSCREEN/_node.html
http://htpheno.ipk-gatersleben.de/
http://bioweb.supagro.inra.fr/phenodyn/
https://vphenodbs.rnet.missouri.edu/PhenoPhyte/index.php
http://bioweb.supagro.inra.fr/phenopsis/
http://www-ijpb.versailles.inra.fr/fr/plateformes/ppa/index.html
http://phytomorph.wisc.edu/
http://www.plant-image-analysis.org/software/rootlm
http://sourceforge.net/projects/rootnav/
http://sourceforge.net/projects/rootrak/
http://telin.ugent.be/~jdvylder/RosetteTracker/
http://plantscience.psu.edu/research/labs/roots/methods/field/shovelomics/shovelomics
http://www.bioss.ac.uk/people/yu/spicy/
http://www.cropdesign.com/tech_traitmill.php
http://www.medealab.de/englisch/e_biovision_applications_classify_trays.html
http://wiwam.be/
https://www.integratedbreeding.net/ib-tools/breeding-decision
https://www.integratedbreeding.net/ib-tools/breeding-decision
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gene-trait relationships. Still, realization of immense poten-
tial of all these approaches would greatly rely on throughput,
precision, and cost effectiveness of phenotyping techniques.
Though, precise phenotyping has always been a potent limit-
ing factor in genetic analysis of QTs, efforts are underway to
meet the growing demands for accurate and HTP screening
against various biotic/abiotic stresses. It is envisaged that
parallel developments in the next-generation phenotyping
systems would help in making GS a practical reality in
case of plant species as well. Therefore, rising molecular
breedingmethods likeMARS or GS would enable harnessing
unexplored genetic variation to a greater extent, thereby
facilitating speedy development of superior cultivars.
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[101] A. Borém, E. P. Guimarães, L. C. Federizzi, and J. F. F.
Toledo, “FromMendel to genomics, plant breeding milestones:
a review,” Crop Breeding and Applied Biotechnology, vol. 2, no. 4,
pp. 649–658, 2002.

[102] J.-M. Ribaut, M. de Vicente, and X. Delannay, “Molecular
breeding in developing countries: challenges and perspectives,”
CurrentOpinion in Plant Biology, vol. 13, no. 2, pp. 213–218, 2010.

[103] J.-M. Ribaut and M. Ragot, “Marker-assisted selection to imp-
rove drought adaptation in maize: the backcross approach, per-
spectives, limitations, and alternatives,” Journal of Experimental
Botany, vol. 58, no. 2, pp. 351–360, 2007.

[104] R. Bernardo and A. Charcosset, “Usefulness of gene informa-
tion in marker-assisted recurrent selection: a simulation app-
raisal,” Crop Science, vol. 46, no. 2, pp. 614–621, 2006.

[105] S. R. Eathington, T.M. Crosbie, M. D. Edwards, R. S. Reiter, and
J. K. Bull, “Molecular markers in a commercial breeding
program,” Crop Science, vol. 47, supplement 3, pp. S154–S163,
2007.

[106] S. R. Eathington, “Practical applications of molecular tech-
nology in the development of commercial maize hybrids,” in
Proceedings of the 60th Annual Corn and Sorghum Seed Research
Conferences, American Seed Trade Association, Washington,
DC, USA, 2005.

[107] E. L. Heffner, M. E. Sorrells, and J.-L. Jannink, “Genomic selec-
tion for crop improvement,”Crop Science, vol. 49, no. 1, pp. 1–12,
2009.

[108] H. Iwata and J.-L. Jannink, “Accuracy of genomic selection
prediction in barley breeding programs: a simulation study
based on the real single nucleotide polymorphismdata of barley
breeding lines,” Crop Science, vol. 51, no. 5, pp. 1915–1927, 2011.

[109] E. L. Heffner, J.-L. Jannink, H. Iwata, E. Souza, and M. E.
Sorrells, “Genomic selection accuracy for grain quality traits in
biparental wheat populations,” Crop Science, vol. 51, no. 6, pp.
2597–2606, 2011.
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