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Background: Health care−associated infections (HAIs) are a global health burden because of their significant
impact on patient health and health care systems. Mechanistic simulation modeling that captures the
dynamics between patients, pathogens, and the environment is increasingly being used to improve under-
standing of epidemiological patterns of HAIs and to facilitate decisions on infection prevention and control
(IPC). The purpose of this review is to present a systematic review to establish (1) how simulation models
have been used to investigate HAIs and their mitigation and (2) how these models have evolved over time,
as well as identify (3) gaps in their adoption and (4) useful directions for their future development.
Methods: The review involved a systematic search and identification of studies using system dynamics,
discrete event simulation, and agent-based model to study HAIs.
Results: The complexity of simulation models developed for HAIs significantly increased but heavily concen-
trated on transmission dynamics of methicillin-resistant Staphylococcus aureus in the hospitals of high-
income countries. Neither HAIs in other health care settings, the influence of contact networks within a
health care facility, nor patient sharing and referring networks across health care settings were sufficiently
understood.
Conclusions: This systematic review provides a broader overview of existing simulation models in HAIs to
identify the gaps and to direct and facilitate further development of appropriate models in this emerging
field.
© 2019 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All

rights reserved.
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Health care−associated infections (HAIs) pose a serious risk for
patients and providers because they cause increased morbidity and
mortality, prolonged length of stay in health care facilities, increased
prevalence of multidrug- resistant organisms, and psychological and
financial burdens to patients, their families,and the health care sys-
tem. The risk of HAIs is universal and pervades every health care
facility, setting, and system globally. In Europe, the prevalence of
HAIs was estimated at 5.5%1 and about 2.6 million new patients hav-
ing HAIs have been identified annually.2 These infections accounted
for an estimated 33,000 attributable deaths and 900,000 disability-
adjusted life-years.3 In the United States, the estimated prevalence of
HAIs in hospitals was between 2.9% and 3.5% in 2015.4 The burden is
even higher in low- and middle-income countries (LMICs). A system-
atic review and meta-analysis reported that the pooled prevalence of
overall HAIs in Southeast Asia, where most countries are middle-
income, was 9.1%.5 The reported prevalence in Africa varies signifi-
cantly: in Ghana, prevalence ranged between 3.5% and 14.4% in acute
care hospitals, and in tertiary hospitals in South Africa and Ethiopia,
it was 7.67% and 19.4%, respectively.6-8 Data on the impact of HAIs at
the national level in LMICs, especially African countries, are scanty
and fragmented, generating difficulty in assessing the true scale of
the problems of HAIs. The actual figure is assumed to be higher owing
to the lack of a functioning HAI surveillance system in these
countries.9

Historically, randomized control trials (RCTs), cohort studies, and
case-control studies were commonly used methods to investigate the
epidemiology of diseases and the epidemiology of HAI in particular.10

Additionally, researchers performed cluster RCTs or quasi-experi-
mental studies to examine the effectiveness of various measures for
infection prevention and control (IPC).11 However, performing large
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cluster RCTs across various health facilities to achieve generalizability
and sufficient power to address important research questions is diffi-
cult. In addition, although quasi-experimental studies are more feasi-
ble and practical to conduct, the lack of randomization is a threat to
the internal validity and limits the generalizability of the results to
larger populations.11 Although simpler non-mechanistic modeling
approaches, such as statistical models and analytical models, have
also been used to evaluate IPC interventions, they cannot capture the
complexity and dynamics of HAI transmission and the health care
contexts in which the interventions are implemented. Therefore, a
more comparable, reliable, and easy-to-use planning tool is needed
to assess interventions and their impacts.12

Modeling is increasingly being used to improve the understanding
of epidemiological patterns of HAIs and to facilitate decisions on IPC
intervention. Mechanistic simulation modeling that captures the
dynamics between patients, pathogens, and the environment is par-
ticularly useful for studying complex systems such as the health
care system.13 A simulation model can be used to understand the
dynamics of HAIs and IPC and how various complexities influence
these dynamics or to predict outcomes of IPC interventions. The
latter can only be done credibly provided we understand the system.
Simulation modeling provides a risk-free environment in which ideas
on IPC strategies can be tested in a systematic manner without the
time, costs, and risks associated with experiments conducted in a
real-world setting. It is a valuable tool to guide the selection of the
most appropriate empirical research to pursue and to examine
the effects of IPC strategies, serving as a “virtual policy laboratory”
for decision support by researchers, policy makers, public health offi-
cials, hospital managers and administrators, and other health care
decision-makers.14

Like other modeling methodologies that try to predict outcomes,
simulation modeling does not necessarily provide precise results that
are completely reliable (eg, the exact number of infections or the pre-
cise course of an epidemic). Perfect prediction using simulation can
rarely be achieved because it is impossible to build a model that fully
replicates the real world, particularly when we describe a stochastic
system as complex as infection transmission, which is influenced by
human behavior, pathogen and host biological characteristics, and
the health facility structure among many factors. Nonetheless, simu-
lation modeling can help us to understand the relative effectiveness
of different interventions, identify the risk of HAIs for different popu-
lation groups, provide confidence intervals on the epidemic behav-
iors and, therefore, aid with decision making. IPC decision-makers
using simulation models for decision-support must consider model
assumptions and their relevance to the particular context in addition
to carefully weighing the predicted benefits of interventions against
the inconvenience, stigmatization, and costs they might engender.

A number of reviews have been conducted on mathematical
modeling of HAIs in the 21st century. In 2006, Grundmann et al 15

wrote the first literature review on HAI modeling, the study of which
focused on explaining the capacity of models to enhance epidemio-
logical understanding in hospitals. Their work was restricted to the
detailed description of a number of publications. Nelson and col-
leagues16 recently carried out a similarly in-depth and limited in-
breadth literature review on economic analysis applied to HAIs using
dynamic transmission models. In contrast, van Kleef and colleagues17

published a systematic review on the overall trends in the application
and development of mathematical models of HAIs over time. Last,
Opatowski et al18 illustrated the overall progress of mathematical
and simulation modeling of multidrug-resistant bacteria, spread in
both the community and hospital settings.

Since these reviews were conducted, a significant number of sim-
ulation models, including agent-based models (ABMs) and hybrid
models, exploring the dynamics of HAIs have been published. The
application of simulation modeling of HAIs has grown rapidly,
possibly owing to the recognition of this methodology’s advantages
and the increasing capabilities of computers. The current adoption
and application of HAIs simulation modeling need to be consolidated
and updated to facilitate the further development of appropriate
models, enabling the investigation and evaluation of the best practice
for IPC under different health care settings from clinical and eco-
nomic perspectives. Therefore, we conducted a systematic review to
establish (1) how simulation models have been utilized to investigate
HAIs and their mitigation, (2) how these models have evolved over
time, and to identify (3) gaps in their adoption and (4) useful direc-
tions for their future development.

REVIEWED SIMULATION MODELING TYPES

System dynamics (SD)−A top-down continuous simulation model-
ing method, which characterizes the structure of dynamic and com-
plex systems, using stocks, flows, feedback, and delays within such
systems to explore how the system structure determines the system
behavior.19 Stocks (or “levels”) are defined as aggregation or accumu-
lations of inflows and outflows over an interval of time. Flows (or
“rates”) change a stock over time by adding to (inflows) or subtract-
ing from that stock (outflows). SD models are well-known for their
ability to depict non-linear relationships, which derive from the exis-
tence of feedback processes that exist in which actors within a sys-
tem will later be affected by their actions.19 In this review, we also
consider compartmental models from the mathematical epidemiol-
ogy and ecology literature that describe the disease transmission
dynamics and link them to aspects of health care facilities and provi-
sion of services that effect outcome. These models similarly take a
top-down approach that often assumes continuous time, and they
are implemented using differential equations.20

Discrete event simulation (DES)−A process-based simulation
method used for modeling the operation of a system as a discrete
sequence of activities and events in time, characterizing and analyz-
ing queuing processes and networks of queues, and solving problems
of resource use.21 Events, entities, attributes, and resources are the
key components in DES. Entities are passive individual objects that
possess attributes. These attributes are unique characteristics or fea-
tures, such as age and health status. Resources, such as those defined
in DES, require time to provide a service to an entity, making other
entities wait and form a queue. Entities consume resources while
they experience events. However, the consumption of those resour-
ces does not depend on individual-level entity behavior. As entities
use up resources they are indirectly competing with other entities in
the queue.22 DES allows for capturing the effect of variability, sto-
chasticity, and randomness of multiple elements within a system,
but it does not explicitly model feedbacks or interactions between
entities.23

Agent-based model (ABM)−A bottom-up simulation method for
modeling dynamic and adaptive systems with autonomous entities
called agents and their environment.24,25 The agents are described by
their properties, actions, decision rules, and possibly goals, and inter-
act with each another and the environment. They live in the environ-
ment, and they sense it. They decide what action to employ at a
certain time on the basis of their own state, their own defined deci-
sion rules and the environment state (including other agents with
which they interact). Agents can have explicit targets to minimize or
maximize, and they can also learn and adapt based on experience.
Agent-agent and agent-environment interactions result in the update
of the internal state of the agents or a decision on their next actions.
Similarly, the state of the environment can update. As agents and the
environment interact and evolve or potentially co-evolve, micro- and
macro-level patterns emerge. We also view similar microsimulation
and individual-based models from the mathematical epidemiology
and ecology literature as ABMs in this review, although in these
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models the entities are often only reflexive and do not make autono-
mous decisions.

Hybrid simulation models−A simulation modeling method that
combines the methodological strengths of at least 2 different simula-
tion modeling methods.26 We describe a number of designs for
hybridizing simulation models based on the work by Morgan et al.23

� Sequential design−A design for combining 2 or more simulation
modeling methods that can capture different parts/behaviors of
the same system or at different levels of detail. The simulation
models that are hybridized interact with one another in a way
that information or data are passed from one model to the next
model.

� Enrichment design−A design for combining 2 or more simulation
modeling methods to form a single model in which one method
remains the core method that defines the system and other
enhancing methods are transferred into and embedded within the
primary method.

� Integration design−A design for combining 2 or more simulation
modeling methods to form a single model, which presents one
coherent and concise view of the system, and captures interactive
influences within the system.

� Interaction design−A design for combining 2 or more simulation
modeling methods in which individual models can operate inde-
pendently but work together to capture interactive influences
within the system.

� Parallel design−A design for combining 2 or more simulation
modeling methods that provide 2 potential representations of the
same system, offering complementary insights of the system.

Table 1 provides an overview of the assumptions, inputs, outputs,
and data dependency for each simulation modeling methodology.
Other studies compare different aspects of these simulation method-
ologies more generally than in HAI but in greater detail, including
Parunak et al, Phelan, Schieritz and Milling, Borshchev and Filippov,
Rahmandad and Sterman, Siebers et al, and Scheidegger et al.25,27-32

METHODS

Information sources and search strategy

Pubmed, EMBASE, Cochrane library, ABI/INFORM Collection via
ProQuest, Business Source Complete, and Scopus were searched from
Table 1
Overview of the assumptions, inputs, outputs, and data dependency of SD, DES, and ABM

Feature SD DES

Assumptions Entities within each stock are mixed homo-
geneously; simulation is deterministic.

Entities are passi
another or lear
ment, but they
tion is stochast

Inputs Stock and feedback and accumulation structures;
initial levels of stock/sub-populations aggre-
gated by particular characteristics; rates, which
characterize the inflows and outflows of a
stock.

Structure of queu
and resources
equipment), an
between entity
per arrival; ser

Outputs Deterministic time series of population/stock
levels and flows and insight into behavior of
the system.

Stochastic time s
tional perform
lengths, utiliza
of events; track

Data dependency Objective data at aggregate levels supplemented
by judgmental, subjective data, and informa-
tional links

Depending on sim
ties at the indiv

ABM, agent-based model; DES, discreet event simulation; SD, system dynamics.
the date of inception through February 19, 2019. Results were
restricted to peer-reviewed publications that were written in English.
Search terms for HAIs were combined with search terms for simula-
tion models as follows:

� Infection OR infections

AND

� Health care associated OR hospital acquired OR nosocomial OR HAI*
OR HCAI*

AND

� System dynamic* OR compartmental OR agent based OR microsimu-
lation* OR discrete event* OR simulation*

All databases were searched identically. The detailed search strat-
egy for each database is located in Appendix A. Reference lists of
the previous literature reviews15-18 were also searched for relevant
citations.

Eligibility criteria

We included studies that had fulfilled all of the following criteria:
1) simulation modeling of the dynamics of HAI transmission, clinical
and economic evaluation of preventions for HAIs, and/or the dynam-
ics of antimicrobial resistance; 2) simulation models, including SD,
DES, and/or ABM; 3) a primary focus on HAI transmission in health
care settings, including hospitals, long-term care facilities (LTCFs)
(eg, nursing homes and care homes), and/or medical centers.

Exclusion criteria

We excluded studies that did not involve either (1) human-to-
human transmission or (2) human-environment-human transmis-
sion or that did involve (3) animal transmission of HAI or (4) pharma-
cokinetics and/or pharmacodynamics of antimicrobial drugs and/or
molecular biological perspectives within the host (eg, molecular
mechanisms of antibiotic resistance within the host, efficacy and/or
side effects of antibiotics, and mode of action of drugs); or (5) within
host immunity or strain competition only; or (6) community trans-
mission of pathogens spread in the health care environment as well,
ABM

ve and do not interact with one
n from or adapt to the environ-
can be heterogeneous; simula-
ic.

Entities can be heterogeneous and autonomous
decision-makers, who can learn and adapt to
their environment; entities can interact with
each other; simulation is typically stochastic.

ing network; types of entities
(eg, HCWs, hospital beds and
d their characteristics; time
arrivals, and number of entities
vice time or delays.

Agent types and definitions in terms of their
characteristics, possible actions and rules of
behavior; initial number of agents; environ-
ment characteristics and rules; definition of
agent-agent (eg, network), agent-self, and
agent-environment interactions.

eries of, and insight into, opera-
ance outputs such as queue
tion of resources, and frequency
ing of individual entities.

Stochastic (typically) time-series of population
and sub-population outputs such as number of
entities in a specific state, frequency of actions,
and frequency of events as well as state of the
environment; insights into the system emer-
gence behavior; tracking individual entities.

ulation aims, these methods can be highly data-dependent because they model enti-
idual level and try to describe variations in their characteristics and other inputs.
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in which the focus of the articles was community spread (eg, SARS
epidemics); or (7) literature reviews that did not contain new pri-
mary studies. In addition, we did not include editorials or letters to
editors.

Data collection process

Data were extracted for the included studies, categorized, and
summarized in tabular format (Appendix Table A1).

Data items

We extracted key data to answer the objectives of this review.
First, this contained the basic information of the studies (study title,
authors, and year of publication). Second, because the main purpose
of the review was to explore the existing use of simulation modeling
for understanding HAI transmission and improving IPC in various
health care settings from clinical and economical perspectives, we
looked for the following codes: country of research, setting, type of
simulation model, research theme, aim of the simulation model,
pathogen, and inclusion of economic analysis. Additionally, because
we were interested in how models of HAI transmission in health care
settings were simulated to evaluate the effectiveness of IPC strate-
gies, data on the type of intervention and the type of interactions (ie,
patient-health care worker (HCW), HCW-HCW, patient-patient,
patient-visitor, environment reservoir for transmission, interaction
between health facilities and interaction between health facility
and community) were also extracted. Additionally, to explore how
different types of simulation models and hybrid models have been
used, we looked into technical perspectives of these models,
which included whether sensitivity analysis, simulation software,
Fig 1. PRISMA flo
calibration, validation and verification, transferability, and generaliz-
ability were performed and how they were performed.

RESULTS

Study selection

Figure 1 shows the process of identification, screening, and selec-
tion using the PRISMA flowchart.33 There were 606 records identified
from electronic database searches and 25 records from other sources.
After removing duplicates and reviewing the title and abstract of the
remainder, full-text articles were retrieved for the retained 109
records to assess their eligibility. A total of 54 records were removed
because they did not meet the inclusion criteria. An additional 13
studies were identified via reference screening of the existing sys-
tematic reviews.15-18 Overall, 68 publications were included and
reviewed in detail.10,14,34-46,49,50,52-56,58-83,85-89,101-115

Causative organisms modeled

Almost one-half of the included studies investigated the dynamics
of methicillin-resistant Staphylococcus aureus (MRSA) in a health care
setting (47%, 38 studies), followed by vancomycin-resistant Entero-
cocci (VRE) and Clostridium difficile (CD), with significantly fewer
studies (12%, 10 studies and 7%, 6 studies, respectively). Other patho-
gens have rarely been the subject of interest for studies in this field.

Country of research

One-quarter of the publications did not specify a particular coun-
try; however, of the studies that did specify a particular country, only
w diagram.
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2 (3%) studied the health care setting in a middle-income country
(South Africa and Thailand) and 3 (4%) reviewed an upper middle-
income country (China). Most of the publications (68%, 46 studies)
concentrated on HICs, of which nearly one-half were US publications
(21 studies).

Types of simulation model

SD models accounted for 38% of the simulation models (26 stud-
ies). The first SD model of HAIs was developed in 1997,34 whereas
ABM and DES models of HAIs were only introduced in 2005 and
2006, respectively (ie, nearly 10 years later).35,36 Although ABM and
DES models of HAIs were introduced nearly concurrently, ABMs were
used much more frequently to model HAIs than DES, and they
accounted for more than one-third of the reviewed models (38%, 26
studies).

Model hybridization

Hybrid model use has increased since they were introduced in
2007.37 Thirteen percent of the included studies (9 studies) adopted
hybrid models, which combined 2 types of simulation modeling.37-45

Based on a toolkit of designs for hybridizing 2 types of simulation
modeling proposed by Morgan and colleagues,23 we identified that 6
studies mixed ABM and SD models using either the enrichment,38

interaction,39 or integration40,44,45 approach. Two studies adopted a
sequential design to combine SD and DES,42,43 and one study used
a SD model and a stochastic continuous time Markov chain model in
a parallel design.41

Sequential design
Van den Dool et al43 used a sequential design in which SD and DES

was combined to capture different parts of the same system. This
approach provided emergent insights as understanding of the system
was enhanced. In their study, a SD model was first built to simulate
an influenza pandemic in the community. DES was then adopted to
simulate the transmission dynamics of nosocomial influenza in a
LTCF. As the prevalence of influenza virus in the community influen-
ces the rate at which patients, health care workers (HCWs) and visi-
tors introduce the virus when they enter the LTCF, the prevalence
and the incidence of infections generated by the SD model were
passed to the DES model. This hybridization improved understanding
of transmission dynamics of nosocomial influenza in a LTCF by taking
into consideration the impact of infection prevalence in the commu-
nity on that LTCF. Wendelboe et al. reconstructed this hybrid model
and validated it using the collected surveillance data for the period of
2006-2007 obtained from an active system of 76 LTCFs in New Mex-
ico (the United States).42

Enrichment design
In 2011, Barnes et al38 adopted an enrichment design to combine

an ABM and a SD model to form a unified model. The study investi-
gated how the interconnectivity and transfer of patients between
various health care facilities influences the prevalence of HAIs at each
facility. The SD model was simulated to determine the proportions of
3 patient states of infection (ie, susceptible patients, and persistently
and transiently asymptomatic carriers), which formed a unique state
for each health care facility. An individual facility was then modeled
as an agent in a network of many health care facilities in the ABM.
The role of the SD component was to generate the distinct character-
istics of each agent, and it was embedded within the ABM method.
Meanwhile, the emphasis was placed on the ABM component of
hybrid model because it was responsible for addressing the objec-
tives of the study as stated previously.
Integration design
In 2013, Sadsad et al40 designed a hybrid model by mixing SD and

ABM into a single model in an integration design to look into MRSA
transmission dynamics in a hospital at multiple-levels. The SD
method was employed to simulate the flow of patient and HCW
between different hospital wards and rooms represented as stocks.
ABM was adopted to model transmission between patient agents
mediated by HCW agents. During the modeling process, neither
systems simulation methods were dominant, however, they were
inseparable.

Caudill et al44,45 also integrated a SD model and an ABM to form a
single, unified hybrid model, which captured the intra-host dynamics
of antibiotic-resistant bacteria and the inter-host dynamics of HAI
spread among patients and HCWs. The ABM component facilitated
the simulation of interactions between patients and HCWs. Individual
patients and HCWs were represented as agents characterized by dis-
tinct properties and behaviors. The SD component simulated the
changes in the internal pathogen population of each agent, called
bacteria population vector over time, which form one of the elements
driving the transmission probabilities during events of agent-interac-
tions. This bacteria population vector of each agent defined the colo-
nization or infection status of that agent. The status of the agents
affected the transmission of bacteria between agents. Whenever
interactions between 2 agents occurred or patient agents received
the application or dosage of a specific antibiotic, the SD component
was invoked to simulate the dynamics in the bacteria population vec-
tor within each agent and update its infection and/or colonization
status. The ABM and SD component of the hybrid model were treated
on an equal footing.
Interaction design
Kardas-Sloma et al39 used a previously developed ABM (ie, Noso-

Sim46) to simulate the spread of MRSA among patients and HCWs in
a hypothetical intensive care unit (ICU). This model was coupled with
a SD model, which simulated the transmission of MRSA in the com-
munity through hospital admissions and discharges. The hybrid
model captured the interactive influences between hospital setting
and community setting while the transmission within each setting
was grounded in each method. The ABM and SD model adopted could
operate independently or they could work together to enhance the
understanding of the impact of overall reduction in antibiotic use
upon MRSA selection in both settings.
Parallel design
Wang et al41 developed 2 separate HAI models using SD and a sto-

chastic continuous time Markov chain, which offered 2 possible rep-
resentations of the transmission dynamics of MRSA in a hospital. The
hybrid model helped obtain complementary insights of the single
system and revealed plausible explanations of the system’s behav-
iors. This was achieved by the introduction of the SD model for the
transmission of MRSA in a hospital followed by a stochastic epidemic
model to check the important features, which had not been well illus-
trated in the other model. No interaction between the 2 models was
observed.

The study of D’Agata et al37 applied the same approach to model
the transmission dynamics of antibiotic resistant bacteria in a hospi-
tal setting from different levels of details. An ABM was used to model
heterogeneous patient and HCW behaviors within a typical hospital
setting and simulate infection spread. A corresponding SD model
represented the system at an aggregate level that provided the inter-
pretation for the behaviors of the ABM over a large number of
simulations.37

Sequential, enrichment, interaction, and integration designs of
model hybridization have been useful for capturing different aspects/
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behaviors of the same system whereas a parallel design offers 2 pos-
sible presentations of the same system.
Sensitivity analysis

On completion of building a simulation model, it is important to
evaluate how sensitive and/or robust the model is to various sets of
initial conditions that we are using (ie, examination of the influence
of varying parameter inputs on model results) because of the uncer-
tainty of input parameter values and distributions for simulation
model of HAIs.47 This process is called sensitivity analysis. Less than
one-half of the studies included sensitivity analysis (47%, 32 studies).
Of the studies that conducted a sensitivity analysis using one type of
sensitivity analysis, univariate sensitivity analysis was the most com-
mon method (24%, 16 studies). Probabilistic sensitivity analysis (PSA)
was the second most common method but to a significantly less
extent (12%, 8 studies). PSA is generally regarded as a more rigorous
Fig 2. (A) Use of different types of sensitivity analysis over time. (B) Inclusion of calibration, v
tions.
method to explain uncertainty in the joint distribution of parame-
ters,17 and is recommended in health economic evaluation guid-
ance.48 In addition, 2 recent studies employed the combination of
univariate and multivariate/probabilistic sensitivity analysis to inves-
tigate model sensitivity.49,50 The number of studies conducting sensi-
tivity analysis and the use of more sophisticated approaches have
been increasing in recent years (Fig. 2A).
Validation and/or confidence building and verification

The usefulness of a model and its results are particularly impor-
tant to many stakeholders who use the results for decision-making
or who are influenced by decision-making based on the models.51

Therefore, the ultimate goal of validation and/or confidence building
and verification of a simulation model is to ensure the correspon-
dence between reality and the implemented model to the degree,
which satisfies the intended application or purpose of the model.47
alidation and verification process in simulation models of health care−associated infec-
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Extensive model validation had not been common practice in HAI
simulation modeling; however, the percentage of publications
including model validation increased until 2010 and has remained
relatively constant (Fig. 2B). More than one-third of the included pub-
lications did not state any sort of validation (24 studies). Almost one-
half of the simulation models that contained stochastic element (30
studies) were validated by using the single approach of internal
validity, in which several simulations were performed to assess their
stochastic variability. The lack of consistency in a model’s results may
cause the appropriateness of the investigated system or the strategy
and/or policy to be questionable.51 Historical data validation, which
uses a part of the collected data other than the data used for model
building to test if the model behaves as the real system does,51 was
found to be used as the single method of validation in 4 other studies
(6%). Other validation methods were rarely used. Recent simulation
models combined multiple validation methods to achieve a more
thorough validation approach.37,39,42,49,50,52-56 With respect to the
different simulation methods, approximately one-half of SD and
hybrid simulation models depicted a validation approach, whereas a
higher proportion was observed for the ABM and DES models (ie, 73%
and 86%, respectively). More than one-half of the hybrid simulation
models that included a validation method used combinations of vali-
dation approaches. This number occupied one-third of all of the mod-
els using mixed approaches to validation. Only 1 out of a total of 68
studies described how verification was conducted, using good docu-
mentation of the model building process, and randomly checking
whether the simulated behaviors of selected agents of each type
matched the intended behaviors of the conceptual model.49

Model parameters and model calibration and/or model fitting

Parameters used for the simulation models came from published
studies, assumptions, and/or real-world data obtained from clinical
databases, observations, surveys, or were estimated directly from the
data. Calibration has traditionally been considered as a method to
adjust unavailable or unobserved parameters, such as infection trans-
mission rates, to achieve a good fit with the data.57 Although the pro-
portion of models that included some form of calibration is small
(31%, 21 studies), this figure increased between 1997 and 2007 and
has remained stable (Fig. 4). The models in this review used a number
of calibration approaches: maximum likelihood estimation58,59; the
least- square criterion60,61; Monte Carlo,39 Markov chain,49 and com-
binations of these methods.35,40,50,52,62-64 In particular, McBryde
et al64 used a combination of Bayesian estimation, the Markov chain,
and the Monte Carlo for model fitting. Similarly, Sadsad and col-
leagues40 combined a scatter search algorithm and a least squares cri-
terion for model calibration. Other studies compared model
predictions with observed epidemiological data,35,50,52,62,63 whereas
the remaining studies did not specify the model fitting approach.

Setting and interaction between settings

The simulation models of HAIs primarily depicted a single ward
setting.34,65,66 Most of the models included in this review simulated
transmission of HAIs in an ICU setting (25%, 17 studies) or a simplified
hospital setting (32%, 22 studies) of which most lacked any further
ward structure (12/22 studies, 55%). General wards were modeled in
5 studies (7%) of which 3 specified a particular type of ward (ie, an
out-patient long-term hemodialysis,66 a dialysis unit,67 and a vascu-
lar unit54). One recent study incorporated various types of hospital
wards with a distinct nature into one model, including hospital wards
designated as either general care, observation, and step-down, or the
hospital wards were characterized as surgical and medical.50 Addi-
tionally, a small number of studies (5 studies, 7%) modeled the trans-
mission dynamics of HAIs in LTCFs for pathogens, such as
influenza,42,43,68 MRSA,69 and viral nosocomial gastroenteritis.62

Pediatric health facilities were considered in 3 studies.52,70,71

Most of the publications took neither the transfer patterns
between health care facilities nor the transmission dynamics within
health care settings into consideration although most ward or hospi-
tal-based simulation models included did not view the hospital as a
closed system (eg, inclusion of hospital admission and discharge rates
from and into community). Recently published studies incorporated
the interaction between ICUs and general wards, or between general
wards within a hospital.35,40,49,72,73 Donker et al74 was the first study
to look at the impact of different referral patterns among various cat-
egories of hospitals on MRSA infection rates. One year later, 2 addi-
tional studies examined the interaction between the settings for
MRSA.38,75 Further, Lee and colleagues76,77 explored the transmission
of MRSA within a setting in which multiple hospitals, LTCFs, and the
community interacted with one another.
Modes of interaction

Most of the studies asserted that the interaction between patients
mediated via HCWs is the primary cause of HAI transmission in
health care settings (75%, 51 studies). The remaining 17 studies (25%)
did not specify any types of human-human or human-environment-
human interaction that had been considered in their models. In con-
trast, a significantly smaller proportion of models in the review simu-
lated other types of interactions within health care settings. In
particular, both direct contact between patients or indirect contact
via a contaminated environment were modeled in 24% and 22% of
the included studies, respectively (16 and 15 studies), followed by
direct contact between HCWs (16%, 11 studies) and visitor-patient
contact (only 13%, 9 studies). Additionally, the inclusion of contact
between the family caregiver and the HCWwas a distinct characteris-
tic of the models set up in the neonatal ICU.52,70 This type of interac-
tion is of importance and likely to happen within pediatric health
care settings in which parents are often (if not always) involved in
child care activities.
Software

Just over one-half of the studies in this review specified the soft-
ware on which the simulation model had been built (53%, 36 studies).
Table 1 shows that C++, MATLAB, AnyLogic, and NetLogo were the
most popular. Although ABM was introduced much later than SD and
DES, there was a growth in the number of the types of software avail-
able for ABM users. MATLAB, NetLogo, Anylogic, and Repast were
used to hybridize different kinds of simulation models, mainly for
mixing SD and ABM.
Types of health care workers modeled

Only one-quarter of the publications clarified the different kinds
of HCW modeled. They mainly included doctors and nurses who are
primarily responsible for the delivery of care in a health care facility,
and therefore having the most frequent contact with patients
(24%, 17 studies). Only a small proportion of the models simulated
transmission caused by HCWs other than doctors and nurses (8%, 6
studies), which included peripatetic HCWs,46,53 rogue HCWs,10 respi-
ratory therapists, occupational therapists, speech therapists, physical
therapists,78 admission personnel, auxiliary personnel and cleaning
staff,79 and volunteers.80 Additionally, Jemenez and colleagues78 pub-
lished a study in 2013 that created one of the most comprehensive
social networks among patients and different types of HCWs in a sim-
ulated hospital, in which individuals had their own activity schedule.
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Interventions for HAIs being modeled for effectiveness evaluation

The main theme of simulation modeling studies in HAIs has been
to evaluate the effectiveness of various IPC strategies (87%, 59 stud-
ies). The intervention strategies being investigated in the studies
included in this review were: hand hygiene (39%, 23 studies), patient
isolation (27%, 15 studies), screening and antibiotic stewardship (22%
for each type of intervention, 13 studies), decolonization (19%, 11
studies), and HCW cohorting (17%, 10 studies). Some studies assessed
the effectiveness of integrating 2 different IPC strategies, including
the effect of combining hand hygiene and decolonization for MRSA,81

isolation and screening for MRSA,35 and screening and contact isola-
tion.14 A study published in 2015 used simulation modeling to con-
duct a more intensive assessment of the impact of mixing 4 different
interventions.49 Similarly, another publication released 1 year later
assessed the benefits of a “bundle” IPC strategy.82 Researchers have
not extensively explored IPC measures, such as vaccination, patient
cohorting, barrier precaution, environmental disinfection, and refer-
ral patterns.

Economic evaluation

A minority of the included publications included an economic
evaluation of HAIs (10 studies, 15%). In 2009, a model first adopted
DES to conduct a cost-effective analysis based on actual data from 2
hospitals in the United States.59 This study strongly suggested the
association between length of stay and HAIs, which had been ignored
in previous publications.83,84 Recently published studies paid more
attention to the economic aspect of HAIs. They have estimated cost-
effectiveness for different IPC strategies and investments, mainly for
MRSA59,71-73,85,86 followed by CD.82,87 Economic analyses were car-
ried out for a single intervention (ie, hand hygiene,59,71 isolation,59

vaccination,70,87 patient room design56), combination of 259,73 or 3
interventions,85,86 and a bundled strategy.82 It can be clearly seen
that most studies focused on the cost-effectiveness evaluation of
hand hygiene, screening and isolation. Table 2 shows a summarized
description of the included studies’ economic analysis for HAIs.

Transferability and generalizability

Because of economical, logistical and theoretical benefits, it is
important for model users to understand how to enhance model
Table 2
Description of the studies that included economic analysis

First author Year of publication Pathogens Model types Setting

Hagtvedt59 2009 MRSA, VRE DES ICU

Hubben72 2011 MRSA DES Entire hospital
Greer70 2011 Pertussis ABM NICU
Robotham85 2011 MRSA ABM ICU

Gurieva73 2013 MRSA DES ICUs and general
Nelson82 2016 Clostridium difficile ABM Entire hospital

Robotham86 2016 MRSA ABM Entire hospital

Shin56 2017 MERS SD Entire hospital
Stephenson87 2017 C difficile SD Entire hospital
Luangasanatip71 2018 MRSA SD ICUs

ABM, agent-based model; DES, discreet event simulation; ICUs, intensive care units; MRSA,
NICU, neonatal intensive care unit; SD, system dynamics; VRE, vancomycin-resistant Enteroc
transferability and generalizability during model development. How-
ever, as models imperfectly represent real systems and are contextu-
ally constrained during their development, care needs to be taken
when transferring and generalizing an existing model to avoid unin-
tentional misapplication. Most of studies included in this review did
not discuss the transferability and generalizability of the developed
simulation models (78%, 53 studies). Of the studies that state these
aspects, they briefly discussed the possibility of transferring their
simulation models to assess HAI transmission dynamics for different
pathogens,34,36,40 in different health care settings,34,40,59 and to eval-
uate the effectiveness of different sets of interventions.36,59 However,
a methodology for model transferring or generalizing, rather than
modification of parameter values, model setup and assumptions, was
not clearly explained.

Benefits of using simulation modeling

Only 5 studies state the benefits of using simulation modeling in
health care (7%). The reasoning outlined in the studies to rationalize
the use of this method included time, cost, and practical and ethical
considerations of experimental or observational research methods,
such as randomized controlled trials.34,45 Another reason was the
complexity of transmission dynamics, spread and resistance of HAIs,
which involve numerous interdependent and dynamic interactions
and cannot be completely captured by epidemiological studies.64,88,89

The advantages of ABM over other simulation modeling methods
were also discussed in 4 articles, mainly emphasizing its capability to
simulate the heterogeneity of patients and behaviors of HCWs in
health care settings and their contact networks.36,45,46,67 These stud-
ies indicated that ABM was the most appropriate for modeling an ICU
in which the population size is small and patient turnover is high.
Neither a clearer explanation of the pros and cons of each simulation
modeling nor when to combine them and what the benefits of doing
so were found in the reviewed studies.

DISCUSSION

How have simulation models been used to enhance the understanding of
HAIs and IPC?

MRSA was the predominant pathogen modeled, followed by VRE
and CD to a significantly lesser degree. As MRSA accounts for high
Type of economic analysis Interventions

Cost-effective analysis Hand hygiene, isolation and combination of
measures

Cost-effective analysis Selected vs universal screening
Cost-effective analysis No vaccination vs vaccination
Cost-effective analysis Screening, isolation, decolonization and combi-

nation of measures
wards Cost-effective analysis Screening, isolation and combination of measures

Cost-effective analysis Bundled measure, including testing, isolation,
hand hygiene, contact precautions, soap and
water for hand hygiene, and environmental
cleaning

Cost-effective analysis Options for MRSA screening for admitted patients
(no screening, checklist-activated screening,
and high-risk specialty-based screening), isola-
tion, decolonization, and combination of
measures

Cost-effective analysis Patient room design
Cost-effective analysis Vaccination strategies
Cost-utility analysis Hand hygiene

methicillin-resistant Staphylococcus aureus; MERS, Middle East respiratory syndrome;
occi.
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rates of morbidity and mortality, and can lead to metastatic or com-
plicated infections such as sepsis or infective endocarditis, it remains
a global health issue.90 Similarly, VRE has been a significant cause
of HAIs, likely affecting the most vulnerable patient groups and
accounting for significant mortality rates with prolonged LoS and
therefore increased health care costs.91 Both of these pathogens have
become the subjects of national IPC policies and the targets of
national surveillance systems in a variety of HICs.91-93 Therefore, it is
understandable why MRSA and VRE have been the pathogens of
interest in many simulation models for HAIs.

The problems of HAIs in LMICs in which the burden is significantly
higher than HICs are rarely addressed in the literature and particu-
larly in simulation modeling studies. The prevalence of HAIs in LMICs
is at least double the prevalence in Europe.9 Additionally, the inci-
dence of HAIs acquired in ICUs in LMICs triples the incidence in the
United States.94 However, our review found that only a minority of
simulation models for HAIs in LMICs were developed.

ICUs have remained the subject setting of several simulation mod-
els because they are one of the most dynamic and complex areas in a
hospital. Simulation models for HAIs have also become more complex
in terms of the settings being modeled. Earlier studies generally mod-
eled a single ward (usually an ICU) or a simplified hospital lacking of
any further ward structure whereas more recent studies were likely
to incorporate different types of wards (ICUs and general wards), as
well as consider the transmission across health facilities (eg, mainly
between hospitals), and the community. Future studies could investi-
gate interactions with LTCFs, other types of health care facilities, and
the community to provide a more realistic estimate of HAI incidence
and prevalence, and the effectiveness of IPC policies. Pediatric set-
tings were rarely considered although pediatric patients have higher
rates of viral lower respiratory tract infections and bloodstream
infections than adults, especially those younger than 2 years of age
and those demanding care in neonatal ICUs and pediatric ICUs.95

As the most popular transmission routes of infections in health
care settings are via the transiently colonized hands of HCWs and/or
contaminated medical equipment and the environment, modeling
interactions between patient and HCW has dominated this field of
research, followed by the environmental reservoir for transmission
although to a much lesser extent. Simulation modeling studies have
hardly considered direct HCW-to-HCW contact or interactions
between visitors/caregivers and patients. Visitors and/or family care-
givers can play a very important role in infection transmission in a
health facility, especially in settings such as pediatric or geriatric
health facilities where patients often need extra care. In many cul-
tures including Asian countries and LMICs, having visitors and care-
givers on a regular basis is common practice and sometimes
encouraged owing to a considerable shortage of staff and a need to
reduce medical costs to patients.56 Because visitors and caregivers
are also more mobile than patients, they are both highly susceptible
to contracting infections and potentially able to transmit pathogens
to various locations inside and outside as the hospital.78
When to use which simulation modeling methodology

The application of 3 types of simulation models to investigate
HAIs has greatly changed over time. SD is suitable for investigating
the long-term behavior of the system containing large patient popu-
lations, which are considered to be homogenous and therefore aggre-
gated into compartments.96 Thus, it is useful for macro-level
modeling to reflect long-term consequences and discover long-term
solutions that may provide effective aids in policy decision making at
a high level. Although SD has long been used to analyze HAI dissemi-
nation in hospitals and IPC policies, it could not address the spatial
detail and microstructure of a health care facility, the complexity and
heterogeneity of contact networks within a health care setting and
the stochasticity of interactions within such networks.79

By contrast, ABM has been found to be significantly helpful in
overcoming the limitations of SD, which may explain the increasing
use to model HAIs in recent years. It is easier and thus preferable for
modeling the heterogeneity of a small population like an ICU rather
than a large population setting.97 Health care settings in general and
ICUs, in particular, are spatially intricate environments where com-
plex interactions between specific sets of individuals are a key driver
of transmission. Not every primary physician, consultant, and nurse
see every patient, leading to a highly heterogeneous social and con-
tact network.36 Diagnostic uncertainty (ie, whether an individual is
infected is not always known) also complicates the transmission of
HAIs. This accentuates the importance of impacts of stochastic inter-
actions and chance events upon the transmission and spread of HAIs.
ABM can also help understand the influence of different patient refer-
ring and transferring patterns among health care facilities within a
network owing to variations in their geographical locations, policies,
services provided and variations in individuals’ decision. A limitation
of ABM is the requirement of reliable and detailed data for model
building and validation, which are not always readily available.61

Higher levels of behavioral detail produced by ABM causes greater
computational intensity, and difficulty in performing model parame-
terization and extensive uncertainty analyses, which are essential for
reliable predictions. As ABM and hybrid models become increasingly
popular, the adoption of more sophisticated methods and mixed
methods for sensitivity analysis, calibration and validation were
more frequently observed in more recently published studies.

Similar to ABM, DES allows incorporation of detailed patient
attributes and is well-suited for modeling the procedure of activities
that patients need to progress through.98 However, unlike ABM, DES
does not consider social contacts and interaction among individuals,
and therefore, transmission of infections needs to be simulated indi-
rectly in a DES model.99 DES cannot model individual-level behaviors
such as learning, adapting and autonomous decision-making as ABM
does. Nor can it capture feedbacks in a system as SD does. Therefore,
it is less satisfactory for simulating transmission of pathogens, possi-
bly accounting for the less frequent application of this simulation
modeling method in HAIs in comparison with the use of SD and ABM.

The adoption of hybrid simulation models has become increas-
ingly common. Because all 3 simulation modeling methods have dif-
ferent benefits, limitations, strengths, and weaknesses, mixing
methods potentially overcome some of the drawbacks faced by using
a single approach and/or provide more plausible explanations of a
problem, which a single method on its own could not handle. For
example, SD is useful in providing a holistic view of the feedback
dynamics of HAI transmission in a complex health care system but
cannot take account of the heterogeneity of individual patients and
HCWs, and the stochasticity resulting from their behaviors and inter-
actions, which are the distinct features of ABM. As health care sys-
tems are highly complex, dynamic and interconnected, HAIs and
other problems in the context of health care gained from different
simulation modeling methods may benefit from the complementary
view gained from using multiple simulation modeling methods
together. However, a clear framework and philosophical foundation
for hybridization have not yet been established in any of the
reviewed publications.

Few studies included in this review explicitly explain why they
choose one methodology over the others to answer their research
questions. Therefore, the rationale underlying the use of different
simulation methodologies in HAIs is still not clear. The choice of sim-
ulation methodology should be problem-driven and depend on the
research objectives and the availability of data. Future modeling stud-
ies should be encouraged to include explicit explanation for the
selection of a specific simulation methodology. This would provide
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insights for researchers and modelers in this field with respect to the
different uses for each simulation methodology. Further, a full frame-
work for choosing a simulation methodology should be broached in
future research.
IMPLICATION

This review provides an overview of the development and appli-
cation of systems simulation modeling in HAIs from which gaps of
research in this field can be identified. First, the transmission patterns
of HAIs in LMICs require further studies because they are likely to be
dramatically different from those in HICs owing to many factors such
as poor infrastructure, insufficient environmental hygiene conditions,
different staff cohorting, shortage of HCWs, the knowledge and com-
pliance of HCWs to IPC measures, overcrowded health care facilities,
absence of comprehensive IPC guidelines and policies, lack of proce-
dure, and different antibiotic prescribing and referral patterns. Sec-
ond, pediatric hospitals and other types of health care setting-like
LTCFs, as well as interactions between settings were not extensively
investigated. Furthermore, understanding of patient sharing and
referring networks among health care facilities driven by operational
and financial alliances needs to be improved. Third, the number of
studies adopting hybrid simulation models are still limited, possibly
because of the unavailability of clear guidelines and frameworks for
hybrid model development. Because it is argued that most, if not all,
real-world problems tackled with simulation modeling cannot be
solved by SD, DES or ABM alone but require a combination of 2 or all
of them, a hybrid model resulting from this combination expectedly
offers different perspectives of a problem and generate more insights,
which will provide better understanding and greater support for
decision-making.100 The use of simulation modeling for economic
analysis of different IPC measures and strategies has increased but is
still relatively scarce. The application of this methodology to evaluate
the cost-effectiveness of various IPC strategies is promising in a sense
that it can appropriately guide and prioritize the allocation of limited
resources and funds. Additionally, an understanding of other kinds of
interactions in the health care setting apart from interactions
between doctors and/or nurses and patients is insufficient. Last, the
evaluation of clinical and cost effectiveness was only conducted for a
number of commonly used interventions like hand hygiene, isolation,
and screening, further investigation on other IPC measures and a
combination of different strategies is imperative to determine best
practice in various health care settings. Models can also be developed
to simulate coordination and collaboration among health facilities to
assess the impact of a regional IPC program.
CONCLUSIONS

The review aims to consolidate and update the development and
application of systems simulation modeling in studying HAIs. It can
help guide further development of simulation models, especially
hybrid models, to target gaps in knowledge in this field of research.
The results of this review indicate that the complexity of simulation
models for HAIs, in terms of the level of details of health care settings
and interactions being modeled and methodological designs, signifi-
cantly increased over time; however, the context predominately
remained focused on the transmission dynamics of MRSA in hospitals
in HICs, rather than in other types of health care settings, such as
LTCFs or in LMICs. Additionally, the overview of existing simulation
models in HAIs can facilitate and direct researchers to useful areas for
further research such as transmission of HAIs in health care settings
other than hospitals and across different types of settings. Further
development and application of hybrid simulation models could help
to secure further insights into HAIs.
SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found
in the online version at https://doi.org/10.1016/j.ajic.2019.11.005.
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