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High tyrosine threonine kinase expression predicts a poor 
prognosis: a potential therapeutic target for endometrial 
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Background: As the most common female malignancy, the incidence and mortality of endometrial 
carcinoma (EC) continue to increase worldwide. The effects of traditional standard therapy are limited; 
thus, novel therapeutic strategies urgently need to be developed. We sought to provide prospective targeting 
insights into EC therapeutics by comprehensively examining and confirming the biological molecular 
characterization of EC genes. 
Methods: The molecular characterization of EC genes was integrated and analyzed using data from 
The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Project (GTEx) databases. The 
differentially expressed genes (DEGs) were identified, and the abnormal expression of some core cell-cycle 
proteins in the EC specimens was determined by examining and integrating the TCGA and GTEx data. The 
enriched signaling pathways involved in tumor progression were also examined. 
Results: Immunohistochemical staining data from the Human Protein Atlas database showed that the 
differential expression levels of the cyclin dependent kinase inhibitor 2A (CDKN2A) and tyrosine threonine 
kinase (TTK) molecules, and the high messenger ribonucleic acid (RNA) levels of CDKN2A and TTK were 
associated with a poor prognosis in EC patients. High TTK expression was also significantly correlated with 
the tumor progression associated signaling pathways, such as the cell-cycle, nucleolus, and RNA processing 
pathways. The inhibition of TTK expression by a TTK inhibitor (NTRC0066-0) significantly suppressed 
the proliferation of the EC cells and synergistically increased the sensitivity of the EN and AN3-CA EC cell 
lines. 
Conclusions: The findings suggest that the TTK inhibitor could be used in EC therapy. This study 
highlighted the potential predictive role of TTK molecules and showed that TTK molecules might serve as 
prospective targets for EC therapy.

Keywords: Endometrial carcinoma (EC); cell cycle; cyclin dependent kinase inhibitor 2A (CDKN2A); tyrosine 

threonine kinase (TTK); TTK inhibitor
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Introduction

Endometrial carcinoma (EC), originating from the inner 
lining of the uterus, is the 6th most common female 
malignancy worldwide (1-3). Surgery is normally the 
first choice of treatment for women with early stage EC; 
however, adjuvant chemotherapy also plays an indispensable 
role in the treatment of early high-risk EC or high-grade 
EC. A study has reported on the promising efficacy of 
molecular-targeted therapies for human malignancies (4). 
For example, bevacizumab, the anti–vascular endothelial 
growth factor therapy agent, was approved for cancer 
therapy and has been shown to be effective in treating 
patients with advanced-stage metastatic ovarian cancer 
(5,6). Olaparib has been shown to have efficacy as a poly 
adenosine diphosphate ribose polymerase inhibitor in 
treating patients with relapsed ovarian cancer (7). The 
incidence and mortality rates of EC continue to increase 
globally (8,9). Thus, more effective approaches for 
the prediction and treatment of this disease need to be 
developed urgently.

As a highly regulated process involved in cell growth, 
the cell cycle has always been considered a driving force of 
tumorigenesis (10). The loss of control of the cell cycle is a 
hallmark of human tumors. Recently, research revealed that 
cell cycle–related proteins are involved in tumor development 
and not only regulate tumor cells but also modulate the 
tumor microenvironment (11-13). Consequently, great effort 
has been made to identify potential targets from cell cycle 
proteins for cancer therapies (14).

Tyrosine threonine kinase (TTK) protein kinase, 
which is the core modulator of the spindle assembly  
checkpoint (15), has emerged as one of the most important 
potential targets for treating cancers, including triple 
negative breast cancer (14,16), and the intrahepatic spread 
of liver cancer (17). Additionally, cyclin dependent kinase 
inhibitor 2A (CDKN2A) has been shown to be upregulated 
in multiple cancers, and it has been suggested that it be 
used as a biomarker for tumor immune infiltrates (18). 
Mutations of CDKN2A increase the sensitivity of cancer 
cells (in breast cancer, lung cancer, and melanoma) to TTK 
inhibition (18). However, currently, the targeting of cell 
cycle proteins for cancer therapy is in its infancy, and more 
efforts need to be made for its clinical application.

Previous analysis of publicly data found the overexpression 
of TTK molecule in EC and TTK was suggested to be 
used as prognostic marker for EC (19). In this study, we 
sought to identify potential targets for EC therapeutics 
through combing the publicly data and experimental results. 
Publicly available data from The Cancer Genome Atlas 
(TCGA), Genotype-Tissue Expression Project (GTEx), 
and Human Protein Atlas (HPA) databases were integrated 
and examined. We observed the abnormal activation of 
cell cycle-involved signaling pathways, and identified the 
dysregulated expression of CDKN2A and TTK and their 
modulating effects on the cell cycle. Further, we found that 
the downregulation of TTK significantly suppressed the 
growth of EC cells, and TTK knockdown synergistically 
increased the sensitivity of EC cells to the TTK inhibitor, 
which suggests that TTK inhibitors might have a potential 
use in clinical EC therapy. We present the following article 
in accordance with the MDAR reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-5783/rc).

Highlight box

Key findings
• Inhibition of TTK expression by a TTK inhibitor (NTRC0066-

0) significantly suppressed the proliferation of the EC cells and 
synergistically increased the sensitivity of the EN and AN3-CA EC 
cell lines.

What is known and what is new? 
• Previous analysis of publicly data found the overexpression of TTK 

molecule in EC and TTK was suggested to be used as prognostic 
marker for EC.

• In this study, downregulation of TTK significantly suppressed the 
growth of EC cells, and TTK knockdown synergistically increased 
the sensitivity of EC cells to the TTK inhibitor, which suggests 
that TTK inhibitors might have a potential use in clinical EC 
therapy.

What is the implication, and what should change now?
• The detailed mechanism including the inhibiting mechanism of 

TTK on EC cell should be further investigated in the future. The 
role of TTK inhibitor in combined treatment should be explores 
deeply.
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Methods

Cell culture

The EC cell lines, including the EN [EC cells, DSMZ (Deutsche 
Sammlung von Mikroorganismen und Zellkulturen) No. 
ACC 564] and AN3-CA (EC cells, ATCC No. HTB-111™) 
cell lines, were purchased, and both cell lines were cultured at  
37 ℃ in 5% carbon dioxide. The medium used for the cells 
was RPMI-1640 (sigma, R8758) supplemented with 20% fetal 
bovine serum (Gibco, 10091-148). The cells were grown in the 
log phase (1×105–1×106 cells/mL).

siRNA

Both the EN and AN3-CA cells were transfected with 
MISSION® esiRNA (SIGMA, EHU026581) using 
lipofectamine 2000 (ThermoFisher SCIENTIFIC, 
11668019) in accordance with the manufacturer’s protocol. 
The cells were seeded into 6-well plates (1.5×105 cells /well). 
The SilencerTM Select Negative Control#1 siRNA (Thermo 
Fisher SCIENTIFIC, 4390843) was used as the control.

Western blot

Western blot assays were performed as described  
previously (15). The following primary antibodies were 
used: Anti-TTK/Mps1 antibody (ab24226) and Anti-beta 
Actin (ab6276). The following secondary antibodies were 
used: Goat Anti-Mouse IgG H&L (ab6708) and Goat Anti-
Rabbit IgG H&L (HRP) (ab6721).

IC50 assays

Both the EN cells and AN3-CA cells, which were 
transfected with siNC (negative control) and siTTK 
respectively, were seeded into 24-well plates at a density of 
5×104 cells/well in triplicate. The cells were then treated with 
the TTK inhibitor (MedChemExpress, NTRC0066-0) at 
the indicated concentrations (0.1, 1, 10, 100, and 1,000 nM).  
The number of cells was counted and calculated after  
3 days using a counting plate under the microscope. The 
experiment was repeated 3 times.

Cell proliferation assays

The EN cells and AN3-CA cells were transfected with 
siNC and siTTK, respectively, and were seeded onto  
24-well plates at a density of 5×104 cells/well in triplicate. 

The number of cells was counted everyday using a counting 
plate under the microscope. The experiment was repeated  
3 times.

Public databases

The Cancer Genome Atlas (TCGA) data was downloaded 
from the TCGA Data Portal. And publicly available data from 
TCGA, Genotype-Tissue Expression Project (GTEx), and 
Human Protein Atlas (HPA) databases were comprehensively 
dissected. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical analysis

R studio 4.0.3 (R Foundation, Vienna, Austria) was used 
for the statistical analysis in this study. The gene set 
enrichment analysis (GSEA), and the Gene Ontology 
(GO), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses of the TCGA data were carried out 
with the R package “ClusterProfiler” (20). The protein-
protein interaction (PPI) network was analyzed using the 
Search Tool for Recurring Instances of Neighboring Genes 
(STRING) database (the medium confidence value is 0.400). 
The statistical significance was identified by a one-way 
analysis of variance or student’s t-test in this study. P values 
<0.05 were considered statistically significant (*, P<0.05; **, 
P<0.01; ***, P<0.005).

Results

The differentially expressed genes (DEGs) and related 
signaling pathways in EC

To explore the potential target genes for EC therapeutics, 
gene expression profiles of uterine corpus endometrial 
carcinoma (UCEC) were integrated and analyzed based on 
the Gene Expression Profiling Interactive Analysis (GEPIA) 
database and the Genotype-Tissue Expression Project 
(N=91; T=174) (GTEx) data. The detailed workflow of 
the study is shown in Figure 1A. The DEGs, including the 
upregulated genes [2,038] and downregulated genes [5,093], 
were identified and visualized in a volcano plot [P<0.05 and 
fold change (FC) >2 or FC <0.5] (Figure 1B). To further 
understand the role of these DEGs in human diseases, both 
the upregulated and downregulated genes were mapped 
onto the relevant chromosomes by a GEPIA. Notably, 
the distribution of the mapping genes revealed that the 
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upregulated and downregulated genes were largely clustered 
on the same chromosomes, including chromosomes 19, 17, 
and 11 (Figure 1C,1D). These findings encouraged us to 
further explore the related potential molecules and signaling 
pathways of these DEGs in EC development.

To understand the functional features of the DEGs, 
pathway enrichment analyses of the 2,038 upregulated 
genes were conducted using the GO and KEGG databases. 
The GO enrichment analysis revealed that the upregulated 
genes in the EC specimens were involved in a number of 
signaling pathways, such as the cell division, cell cycle, and 
cell proliferation pathways (Figure 2A). The KEGG analysis 
showed that the relevant pathways included the cell cycle, 
metabolic, and protein 53 singling pathways (Figure 2B). 
Further, using the STRING database, we generated an 
integrated network (with a confidence score of 0.4) with the 
prioritized genes from the DEGs. The enrichment for the 
PPI network (P<1.0e-16) was observed among the combined 
gene set (Figure 2C). Additionally, the GSEA showed that the 
cell cycle–associated signaling pathways were significantly 

activated in EC patients, including the Hallmark_E2F_
Targets (NES =2.3), Hallmark_G2M_Checkpoint (NES 
=2.0), Hallmark_Glycolysis (NES =1.6), and Hallmark_
MTORC1_ Signaling (NES =1.8) (Figure 2D). These results 
suggested that these cell cycle–involved signaling pathways 
and their potential modulating components could serve as 
potential targets for EC therapy.

To further examine the role of the DEGs and explore 
their related signaling pathways, we then conducted 
UCEC gene expression profiling based on TCGA data 
sets (N=35, T=552). The upregulated genes [2,544] and 
downregulated genes [3,129] in the tumor specimens 
were modulated significantly compared to the normal 
control specimens (P<0.05 and FC >2 or FC <0.5;  
Figure S1A). Pathway enrichment analyses of the GO 
and KEGG databases confirmed that the cell cycle–
involved signaling pathways, such as the cell cycle, 
and cellular senescence deoxyribonucleic acid (DNA) 
replication pathways, were enriched by these upregulated 
genes (Figure 3A,3B). The PPI network based on the top 
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Figure 1 The EC data sets were organized and DEGs were explored based on data from the TCGA and GTEx databases. (A) The scheme 
provides an overview of the analysis strategy for identifying novel molecular targets for EC therapy. (B) All the DEGs (7,131 genes; 
P<0.05; FC >2) between the tumor (n=174) and normal samples (n=91) originated from TCGA and GTEx database are presented in the 
heatmap. (C,D) The chromosomal distribution of the upregulated and downregulated genes was visualized with the “GEPIA” platform. 
EC, endometrial carcinoma; DEG, differentially expressed gene; TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression 
Project; FC, fold change.
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[509] upregulated genes revealed the significant PPIs  
(Figure S1B). Consistent with our earlier findings, the 
KEGG analysis results showed that the most enriched 
signaling pathways were the cell cycle, DNA replication, and 
carbon metabolism pathways (Figure S1C). Additionally, 
the GSEA analysis also suggested that the cell cycle-related 
signaling pathways were significantly activated in the EC 
specimens, including in the regulation of cell division, 
and the regulation of the meiotic cell cycle (Figure 3C).  
These results suggested that cell cycle–related molecules 
might play a critical role in EC development.

Expression of CDKN2A and TTK was upregulated in EC 
patients

To identify potential targets for EC therapy, the upregulated 
2,038 genes in the EC specimens and the 786 genes 
associated with a poor prognosis in EC patients from the 
“GEPIA” data sets were further analyzed according to the 
scheme in Figure 4A. Notably, 125 genes were found to 
involve cell cycle regulators, transcription factors, protein 
kinase, metabolism enzymes, non-coding ribonucleic acids 
(RNAs), and epigenetic modifiers. Furthermore, both 
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Figure 2 Cell cycle–related signaling pathways activated in EC. (A,B) GO biological process and KEGG enrichment analyses of the 
upregulated genes were performed and visualized based on TCGA data sets by a GEPIA (N=91, T=174); log-rank test; P<0.05. (C) The PPI 
network of the upregulated genes was generated based on the STRING database, the medium confidence was 0.400 and the local clustering 
coefficient was 0.792, P<1.0e-16. (D) The GSEA analysis revealed that the enriched genes in EC were closely associated with a number 
of signaling pathways, such as “E2F_Targets” (NES =2.3), “G2M_Checkpoint” (NES =2.0), “Glycolysis” (NES =1.6), and “MTORC1_
signaling” (NES =1.8). EC, endometrial carcinoma; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, 
The Cancer Genome Atlas; GEPIA, Gene Expression Profiling Interactive Analysis; PPI, protein-protein interaction; STRING, search 
tool for recurring instances of neighbouring genes; GSEA, gene set enrichment analysis; NES, normalized enrichment score; FDR, false 
discovery rate .

https://cdn.amegroups.cn/static/public/ATM-22-5783-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5783-Supplementary.pdf


Cui et al. Role of TTK in EC therapyPage 6 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1352 | https://dx.doi.org/10.21037/atm-22-5783

CDKN2A and TTK were significantly upregulated in the 
EC specimens based on the GEPIA database (Figure 4B,4C). 
Additionally, the expression of CDKN2A and TTK was 

significantly associated with the poor overall survival of 
EC patients, which strongly suggests that they could play a 
potential prognostic role in EC progression (Figure 4D,4E). 
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The expression of CDKN2A was significantly correlated with 
TTK expression (Figure 4F), and both CDKN2A and TTK 
molecules were involved in the cell cycle signaling pathway 
(Figure 5). 

Notably, the GSEA analysis showed that TTK expression 
was enriched in the processes associated with the cell cycle, 
such as nucleolus and RNA processing (Figure 6A,6B). 
The GO and KEGG analyses also revealed a correlation 
between TTK expression and tumor progression–associated 
signaling pathways, including chromosome segregation, 
nuclear division, mitotic nuclear division, and cell cycle 
(Figure S2A,S2B). Thus, we hypothesized that the TTK 

molecules might be pivotal in the prognosis of EC patients 
and in the development of targeted therapies for EC.

TTK knockdown increased the sensitivity of the TTK 
inhibitor in the EC cells

Previous studies have shown the suppressing effect of TTK 
inhibitors in various human malignancies (14,18), but similar 
results have rarely been described in EC. Our analysis of 
the TCGA data sets (N=35, T =552) showed that TTK 
was highly expressed in the EC samples (Figure 6C) and its 
expression was associated with the poor overall survival of 

Figure 4 CDKN2A and TTK expression was upregulated in EC tissue. (A) Flowchart showing the identification process of the potential 
target molecules. The 125 significant genes, involving cell cycle regulators, transcription factors, protein kinase, metabolism enzymes, 
non-coding RNAs and epigenetic modifiers, were identified by intersecting the 2,038 genes increased in endometrial carcinoma and 
786 genes associated with a poor prognosis. (B,C) Expression levels of CDKN2A (C) and TTK (D) were confirmed using data from the 
GEPIA database (N=91, T=174). CDKN2A, P<8.54e-31; TTK, P<9.81e-46. (E,F) The relationship between patients’ overall survival and 
messenger RNA expression of CDKN2A (D) and TTK (E) was analyzed using data from the GEPIA database. (F) The correlation between 
CDKN2A expression and TTK expression was analyzed using TCGA data sets (n=552). CDKN2A, cyclin dependent kinase inhibitor 2A; 
TTK, tyrosine threonine kinase; EC, endometrial carcinoma; GEPIA, Gene Expression Profiling Interactive Analysis; TCGA, The Cancer 
Genome Atlas; HPA, Human Protein Atlas.
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EC patients (Figure 6D). To further investigate the role of 
TTK in EC development, we disrupted its expression using 
small-interfering RNA (siRNA) in the EN and AN3-CA EC 
cell lines. The TTK knockdown results were confirmed by 
Western blot analysis (Figure 6E,6F).

Following siRNA disruption, proliferation assays 
were performed to determine the effect of TTK on the 
proliferation of the EC cells. The results confirmed that 
TTK knockdown significantly inhibited the growth of the 
EN and AN3-CA cells (Figure 6G,6H). As TTK is the key 
regulator of the spindle assembly checkpoint in the cell 
cycle, we conjectured that the knockdown of TTK would 

affect the sensitivity of EC cells to the TTK inhibitor. IC50 
(half maximal inhibitory concentration) assays were then 
conducted and the results showed that TTK disruption 
significantly decreased the 50% inhibitory concentration 
of the TTK inhibitor (NTRC0066-0) in both the EN and 
AN3-CA cells (Figure 6I,6J). Thus, our findings showed the 
therapeutic targeting role of TTK molecules in EC therapy.

Discussion

Recently, many studies have detailed the genomic 
characterization (1,3) and the clinical grades (21) of EC, 
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Figure 5 The cell cycle path view, which was analyzed by the KEGG analysis based on high TTK expression in EC patients. KEGG, 
Kyoto Encyclopedia of Genes and Genomes; TTK, tyrosine threonine kinase; EC, endometrial carcinoma. This is the data on KEGG 
graph rendered by Pathview (hsa04110) with the permission from KEGG. URL: https://www.kegg.jp/kegg-bin/show_pathway? 
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but the prognosis of EC patients is still very poor, and the 
mortality rate of patients with recurrent or advanced disease 
continues to increase worldwide. Currently, surgery is the 
primary therapeutic choice for patients with early stage 
EC; however, effective therapeutic strategies for advanced 
or recurrent EC need to be improved (4). Molecular-
targeted therapy, which has shown promising efficacy in 
some malignances (22,23), needs to be further explored in 
EC patients. Knowledge of the gene expression landscape 
and the molecular basis for EC development is required 
if novel molecular-targeted therapies are to be developed. 
Our research provides valuable data for the exploration of 
new molecular associations among proteins with potential 
mechanistic significance.

In this study, the integrated molecular characterization 
of EC genes was examined based on data from the GEPIA 
database (comprising 173 EC and 91 control samples). The 
results provided insights into the significant DEGs and 
signaling pathways which might have potential diagnostic 
and therapeutic instructions. Our analysis identified the 
activation of several cell cycle–involved signaling pathways, 
such as the cell cycle, cellular senescence, and DNA 
replication pathways, which innately regulate the process 
of cell growth, the duplication of genetic material, and 
cell division. These results were then confirmed using 
data (comprising 552 EC and 35 control samples) from 
TCGA database; however, these data contained less control 
samples. Notably, our analyzing results indicated that the 
signaling pathways mononuclear cell proliferation and 
neutrophil extracellular trap formation were enriched in EC 
tissue, suggested tumor immune microenvironment might 
be involved in the EC development, and further details will 
be investigated in the next step. 

The use of many molecular inhibitors to target cell cycle 
proteins has resulted in progress in cancer treatments, 
such as CDK4/6 inhibitors (24-28). However, the actual 
application of the inhibitors of cell cycle proteins in clinics 
is still in its infancy (10), especially in the treatment of 
EC patients. The factors that influence treatment of EC 
patients are their responsiveness and resistance to cell 
cycle inhibitors. The comprehensive functions of cell cycle 
proteins should be delineated in the context of cancer 
therapy. Thus, in relation to therapeutic strategies for 
cancer treatment, the cell cycle-related field is worthy of 
further research.

Further, our functional analysis identified TTK protein 
kinase, which has emerged as a promising target for cancer 
therapies, including triple negative breast cancer therapy 

(14,16,29,30). As a key regulator of the spindle assembly 
checkpoint, TTK plays an important role in maintaining 
genomic integrity (31). The TTK inhibitor CFI-402,257 
has been shown to suppress the growth of cancer cells and 
tumor cells in humans and mice (14,32-34). However, it 
has been reported that the genetic disruption involved 
in mitotic progression leads to resistance to the TTK 
inhibitor CFI-402257 (16). Thus, the mechanism mediating 
the sensitivity and resistance of TTK inhibitors should 
be further investigated before their clinical development. 
Previous study has also found that TTK was associated with 
an aneuploidy-tolerant state in malignancy (30). So, TTK 
might promote EC development via facilitating cell-cycle 
related mitosis. Our data revealed that TTK knockdown 
significantly inhibited the proliferation of EC cells, but the 
detailed regulating mechanism including the effect of TTK 
on DNA damage, apoptosis, migration and so on, need to 
be further investigated in the future. 

CDKN2A was found to be upregulated in the EC patients 
in this study. The products of the CDKN2A locus are p14ARF 
and p16INK4A, which have a tumor suppressive function in 
melanoma (35,36). The somatic mutation of CDKN2A is 
considered a major driver of pancreatic ductal and melanoma 
tumorigenesis (37). Recently, CDKN2A was observed to be 
overexpressed in multiple cancers and it has been suggested 
that CDKN2A could be used as a biomarker for immune 
infiltration (38). CDKN2A mutations have been reported 
to be significantly associated with the sensitivity of triple 
negative breast cancer cells to TTK and the CLK inhibitor 
CC-671 (18). The probable prognostic and modulating role 
of CDKN2A should be taken into account in EC treatments 
with TTK inhibitors.

An enrichment analysis of the publicly available data 
sets and an evaluation of EC cell lines were carried out to 
explore the biologically relevant pathways and molecules 
for EC therapy. Evidence supporting a molecular-targeted 
strategy for EC therapy is limited, but recent progress in 
molecular-targeted strategies has been made in many other 
malignances. The disappointing results of previous clinical 
trials might be attributed to the administration methods 
of the targeted therapies (39), including monotherapies. 
On a related note, our study found that TTK suppression 
increased the sensitivity of EC cells to the TTK inhibitor 
(NTRC0066-0), which provides strong support for the use 
of TTK inhibitors in EC therapy. 

The upregulation of the CDKN2A molecule was found 
to be associated with a poor prognosis in EC patients, and 
CDKN2A and TTK might serve as common biomarkers in 
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the prognosis of EC patients. Notably, both the CDKN2A 
and TTK molecules were involved in the cell cycle–
signaling pathway, but only high expression of the TTK 
molecule was found in the tumor progression–associated 
signaling pathways, containing chromosome segregation, 
nuclear division, mitotic nuclear division, cell cycle and so 
on. Besides, previous studies have found that inhibition of 
TTK molecule will increase the radiosensitivity of breast 
cancer and liver cancer (40,41). TTK inhibition might 
enhance the sensitivity of EC to radiotherapy. Totally, 
our study identified a potential prognostic biomarker 
and targeted molecule for EC treatment, which might be 
beneficial in exploring new therapeutic strategies. 

Conclusions

Our data identified the high expressing level of TTK 
molecule in EC tissue based on the public databases. 
Furthermore, inhibition of TTK significantly suppress the 
proliferation of the EC cells and obviously increased the 
sensitivity of the EN and AN3-CA EC cell lines to TTK 
inhibitor (NTRC0066-0). Our findings indicated that the 
TTK inhibitor could be used in EC therapy. In sum, this 
study highlighted the potential predictive role of TTK 
molecules and showed that TTK molecules might serve as 
prospective targets for EC therapy.
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