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High light intensity plays a major 
role in emergence of population 
level variation in Arabidopsis 
thaliana along an altitudinal 
gradient
Antariksh Tyagi1, Amrita Yadav1, Abhinandan Mani Tripathi1,2 & Sribash Roy1,2

Environmental conditions play an important role in the emergence of genetic variations in natural 
populations. We identified genome-wide patterns of nucleotide variations in the coding regions of 
natural Arabidopsis thaliana populations. These populations originated from 700 m to 3400 m a.m.s.l. 
in the Western Himalaya. Using a pooled RNA-Seq approach, we identified the local and global level 
population-specific SNPs. The biological functions of the SNP-containing genes were primarily related 
to the high light intensity prevalent at high-altitude regions. The novel SNPs identified in these genes 
might have arisen de novo in these populations. In another approach, the FSTs of SNP-containing 
genes were correlated with the corresponding climatic factors. ‘Radiation in the growing season’ was 
the only environmental factor found to be strongly correlated with the gene-level FSTs. In both the 
approaches, the high light intensity was identified as the primary abiotic stress associated with the 
variations in these populations. The differential gene expression analysis between field and controlled 
condition grown plants also showed high light intensity as the primary abiotic stress, particularly for the 
high altitude populations. Our results provide a genome-wide perspective of nucleotide variations in 
populations along altitudinal gradient and their putative role in emergence of these variations.

The study of genetic variations that impart selective advantages to an organism in its natural habitat is one of 
the principal goals of ecological genomics. It aims at integrating the genomic changes with the environmental 
conditions to which an organism is exposed1. This environment-driven selection is one of the most important 
factors behind population differentiation which functions by imposing variable selection pressure among the 
populations of climatically different regions. Patterns of local adaptation are expected to emerge when selection is 
spatially variable and strong enough as compared to other acting evolutionary forces such as genetic drift, muta-
tion and migration2. The natural genetic variations between the populations of a species are important resources 
for adaptation to their respective natural environment and to cope with the changing climatic conditions3. Over a 
period of time these variations, in a geographically isolated population, may even lead to speciation4,5.

Identification of the SNP loci under selection allows understanding the process of the emergence of 
among-population variations. The correlations between FSTs and environmental variables is recently being 
applied to identify signatures of natural selection3,4. The advantage of this approach is that it leads to a more 
straightforward evidence of selection in response to the local climate. Additionally, it also yields fewer false posi-
tives6 as compared to other approaches such as the outlier approach7.

The genetic variations in a population can be classified as shared and population specific (or private) SNPs8. 
The population-specific variants are considered to be recent in their origin as compared to that are shared 
with other populations9 and thus, may have originated de novo after colonization of a location. Although the  
de novo mutations are known to be largely deleterious, but if advantageous they can sweep through the popu-
lation4. Recently, NGS of pooled individuals from a population is being applied for the discovery of SNPs and 
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to determine their allele frequency in populations3,10. This method provides a cost effective alternative to the 
sequencing of a large number of individuals from a population11. Although this method is being primarily applied 
with whole genome pools, recently, transcriptome pools have also been used for such studies and found to be 
reliable in case of designs with a large number of individuals in the pool10. Moreover, from an evolutionary point 
of view coding sequences are the key genomic regions to look for the signatures of selection, as they directly influ-
ence the protein function12. However, selection may also act on SNPs in non-coding regions such as promoters, 
enhancers or small RNAs where they affect gene expression.

In addition to genetic variations, plants respond and adapt to environmental conditions through plastic 
changes in their phenotype. Differential gene expression of abiotic stress related genes may help the plants to 
adapt to the external environment13. Modulation of gene expression has a central role in the persistence of an 
organism under short- and long-term environmental changes14. Conversely, an observation of differential gene 
expression of abiotic stress related genes can indicate a corresponding difference in environmental conditions of 
treatment groups.

Arabidopsis thaliana is an established model in the field of plant molecular genetics15. Moreover, the species 
has also been used for local adaptation studies16,17. A. thaliana populations originating from different altitudes 
are particularly suitable for studying selection pressures imposed by climatic variables due to the rapid changes 
in environmental conditions over short geographical distances18. Changes in altitude cause variations in atmos-
pheric temperature, pressure and solar light intensity7,19. These natural abiotic stresses are also known to cause 
several phenotypic changes in the highland populations18,20.

The A. thaliana populations of Indian West Himalaya inhabit a unique mountainous habitat which ranges 
from subtropical to temperate climate zones. These populations follow a summer-annual life history20. Previously, 
these populations were morphologically20 and genetically21 characterized by our group. In the present study, 
we performed pooled RNA-sequence (RNA-Seq) of four natural populations from four different altitudes  
(700 m a.m.s.l. to 3400 m a.m.s.l.). Specifically, we asked, what are the SNPs specific to these populations at local 
and global level? What are the population-specific SNP-containing genes among the populations? What are the 
SNP-containing genes strongly associated with climatic variables? Are the functions of these genes related to the 
high-altitude stresses? Additionally, we performed differential gene expression analysis to identify the differences 
in the transcriptional response of populations between field and controlled conditions. These differences are 
expected to indicate the abiotic stresses experienced by the populations in the field conditions. Using the two 
different approaches we attempt to identify the genetic mechanisms accounting for among-population patterns 
of variations which might have emerged in these populations due to selection under different environmental 
conditions.

Results
Quality and mapping of RNA-Seq reads. Four A. thaliana populations were collected from different 
altitudinal regions of the West Himalaya (Fig. 1 and Supplementary Table S1). The number of paired-end reads, 
generated from the cDNA libraries of these populations varied from 21.5 m (San, FD) to 34.3 m (Deh, FD). The 
results of read quality and mapping are shown in Supplementary Table S2.

Calling of SNPs and their patterns in population. The SNP coverage (against reference genome) 
of the FD and CC grown plants and that of their combined dataset is shown in Supplementary Figure S1. A 
total of 340258 SNPs were identified in the four populations. 11.21% of these were of synonymous, and 7.38% 
were non-synonymous amino acid variants. The various patterns of SNPs were consistent in each population 
(Supplementary Table S3). There was a significant decrease in the SNP density in populations with the increase 
in altitude (Pearson’s r =  0.82, p <  0.001). The Transition/Transversion ratio (1.37) was consistent among all the 
four populations.

In all the populations a large proportion (83%) of the amino acid changes were of the non-deleterious type 
and only 14.7–15.7% were of the deleterious type. The rest of the amino acid changes did not fall in either of the 
categories (Fig. 2). In the non-deleterious category, the percentage of known changes varied from 83.6% (Mun) 
to 95% in (Chi). Whereas, in the deleterious category, the known changes varied from 59.8% (Mun) to 83.5% 
(Chi) (Fig. 2). It was notable that in all the populations, the percentage of the known changes was higher in the 
non-deleterious category as compared to that of the deleterious category.

A large proportion of SNP alleles were found to be fixed (allele frequency =  1) in all the four populations 
(55.9%, 65.1%, 49.1% and 77.3% in Deh, Mun, San and Chi, respectively) (Supplementary Fig. S2a). The percent-
age frequency distribution pattern of the allele frequencies was highly consistent among the populations when 
only the shared changes among the four populations were considered (Supplementary Fig. S2b). The percent fix-
ation in the shared SNPs was higher (80%–86.8%) in all the populations as compared to all SNPs. The percentage 
frequency distribution of the gene level SNP density was found to be highly consistent among the four popula-
tions. The highest density was observed in the 400–500 BP bin followed by a gradual decrease (Supplementary 
Fig. S3). The average allele frequency of all SNP positions ranged from 0.74 (San) to 0.89 (Chi), and that of 
local-level population-specific SNPs ranged from 0.49 (Deh) to 0.67 (Mun). The allele frequency of global-level 
population-specific SNPs was also lower than that of all SNPs in all the four populations (Supplementary Fig. S4).

Functional annotation of local-level population-specific SNP-containing genes. There were 
8188, 8237, 8245 and 6271 genes containing non-deleterious but non-synonymous SNPs in Deh, Mun, San and 
Chi populations, respectively. Amongst these, 5016 genes were common in all the four populations. There was 
no difference in the enriched GO-terms (biological processes) among the four populations (Supplementary data 
D1). Deh, Mun, San and Chi had 300, 558, 219 and 212 local-level population-specific SNP-containing genes 
respectively (Fig. 3). The GO-term enrichment analysis with local-level population-specific SNP-containing genes 
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resulted in a variety of GO-terms (biological process) enriched in the four populations (Fig. 3 and Supplementary 
Dataset D2). The Mun and Chi populations showed a significant enrichment of genes related to stress responses. 
In Mun 85 genes (15.2%) were abiotic stress responsive, out of which 50 (58.8%) were light/radiation responsive 
(Supplementary Table S4). In Chi ‘pigment metabolic process’ (14 genes) (Supplementary Table S5) and ‘gluco-
sinolate metabolic process’ (9 genes) were found to be significantly enriched GO-terms that could be related to 
the known abiotic stresses prevailing at high altitudes. Deh showed no GO-term enrichment and San showed no 
stress responsive GO-term. In San ‘catabolic process’ was the only significantly enriched GO-term, which included 
two genes related to protection against high light intensity stress viz. FAR-RED ELONGATED HYPOCOTYLS 3 
(FHY3) and ULTRAVIOLET HYPERSENSITIVE 1 (UVH1). The local-level population-specific SNP-containing 
genes of the combined dataset of San and Chi did not show any significant enrichment in abiotic stress related 
categories.

Functional annotation of global-level population-specific SNP-containing genes. There were 
137, 252, 110 and 70 global-level population-specific SNP-containing genes in Deh, Mun, San and Chi respec-
tively. The GO-term enrichment analysis of these genes showed a similar profile of GO-terms as that of local-level 
population-specific SNP-containing genes (Supplementary Dataset D2). In all the populations, almost half of 
the genes under the enriched GO-terms were contributed by global-level population-specific SNP-containing 
genes. Moreover, there was a complete loss in the significance of the enriched GO-terms from the local-level 

Figure 1. Geographical locations of the sample collection sites. (a) Elevation map of India and adjoining 
region (b) Elevation map of West Himalaya showing the sample collection sites (Yellow discs). Figures in 
parentheses indicate altitude in m a.m.s.l. (meters above mean sea level). See Supplementary Table S1 for the 
details of geographical co-ordinates, habitat and growing season of the four populations. The open access map 
was obtained from DIVA-GIS (http://www.diva-gis.org/Data).

http://www.diva-gis.org/Data
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population-specific genes when analyzed without the genes under the enriched GO-terms in global-level 
population-specific genes. For example, removal of the seven global-level population-specific SNP-containing 
genes under the ‘pigment metabolic process’ GO-term from the 212 genes of local-level SNP-containing genes 
resulted in no significantly enriched biological process in Chi.

FST Comparisons between populations. The above-stated SNPs were identified against the reference 
genome of A. thaliana. However, to correlate the genomic variations with the climatic variables, the SNPs are 
required to be called between the populations. Therefore, expressed genome-wide SNPs were called against all 
pairs of populations and their pairwise gene level FSTs were determined.

A total of 29373, 35929 and 36306 SNPs were found in the pairwise comparisons between populations of 
FD, CC and combined dataset respectively. These SNPs were represented in 13352, 14200 and 9796 genes in 
the respective datasets. Out of the SNP-containing genes, 7145, 8712 and 8195 were found to have at least one 

Figure 2. Percentage of non-deleterious and deleterious SNPs (including known and novel) in the 
four populations. NA indicates the SNPs which did not fall in either of the two categories. Count of SNPs; 
Deh =  40484, Mun =  40742, San =  40860, Chi =  28610.

Figure 3. Local-level population-specific SNP-containing genes. Venn diagram showing the count of the 
local-level population-specific SNP-containing genes in the four populations. The top GO-terms enriched 
in the four populations are shown. 5016 SNP-containing genes were common among the four populations. 
See Supplementary data D1 and D2 for the complete GO-term enrichment results and list of genes under the 
enriched GO-terms.
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significant (− log10 P-value ≥  1.301) pairwise FST comparison in the Fischer’s exact test in the respective datasets. 
We called these genes as ‘highly variable SNP-containing genes’ and were used to correlate with climate data in 
the partial Mantel test. Out of these highly variable SNP-containing genes in all the tree data sets, ~10% had no 
known function in the TAIR10 annotations. The remaining genes showed significant enrichment of ‘response to 
stimulus’ (~32% genes) and ‘response to abiotic stimulus’ (~15% genes) in all the three datasets.

There was a strong correlation between the allele frequencies of the individual FD pools and their CC coun-
terparts with an average FST of; 0.028 ±  0.0003 SE (Deh), 0.039 ±  0.0004 SE (Mun), 0.035 ±  0.0003 SE (San) and 
0.029 ±  0.0005 SE (Chi). The percentage frequency distribution of the FST values showed that a majority of FST 
values lied in the lower range (<0.02) in all the three datasets (Fig. 4). However, in the case of Deh-Chi, Mun-San 
and Mun-Chi comparisons, a large percentage of FST values were greater than 0.98. These results indicated that 
Deh and Chi were the most genetically distinct whereas the San and Chi were the closest among the four popula-
tions. The phylogenetic analysis of the four populations also showed that San and Chi were the closest, and Deh 
and Chi were the most distal populations (Fig. 5).

Environmental association of SNP-containing genes. Initially, 26 bio-climatic factors were consid-
ered for environmental association analysis with highly differentiated SNP-containing genes. However, only five 
amongst them were found to be uncorrelated (r < 0.8) viz. temperature seasonality (TS), temperature annual 
range (TAR), radiation seasonality (RS), mean precipitation in the growing season (MPGS) and mean radiation 
in the growing season (MRGS). Further, the bio-climatic variable RS was excluded from analysis as its variation 
was very small among the four locations (0.19 to 0.22). Results of PCoA analysis of these variables indicated that 
amongst the four populations, Chitkul and Sangla had the smallest whereas, Chitkul and Dehradun had the larg-
est difference in bio-climatic factors (Fig. 6 and Supplementary Fig. S5).

The 95% quantile of correlation (threshold ‘r’) determined by simulation analysis varied for the four 
bio-climatic variables (Table 1). Overall 380, 700 and 629 genes passed the adopted stringency criteria of having 
the minimum threshold and a significant P-value in FD, CC and combined datasets. Out of these 54, 120 and 108 
genes had a GO-term classification of ‘response to abiotic stress’ in the respective datasets. When the GO-term 
enrichment analysis was performed for these genes, only the bio-climatic factor ‘mean radiation in growing sea-
son’ (MRGS) showed an enrichment in its closely related GO-category i.e. ‘response to radiation’ with 11, 5 and 
7 genes in FD, CC and combined datasets respectively (Table 2 and Supplementary data D3, D4, D5). Thus, these 
genes were identified as having clear association with the local environment.

Patterns of global gene expression in Arabidopsis thaliana populations and validation of dif-
ferentially expressed genes (DEGs). The above analyses indicated that the SNP-containing genes were 
primarily related to light intensity. To further ascertain if light intensity was the major abiotic stress in these 
locations, we performed differential gene expression (DGE) analysis among these populations. The number 
of down-regulated unigenes ranged from 37 (Chi-CC vs. Chi-FD) to 105 (Deh-CC vs. Deh-FD) and that of 

Figure 4. Percentage frequency distribution of pairwise FSTs among the four populations in (a) Field (FD) (b) 
controlled condition (CC) grown and (c) combined dataset of FD and CC populations. The trend lines for the 
pairwise comparisons of the six population pairs are shown in different colours. x-axis; pairwise FST, y-axis; % 
frequency.
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up-regulated ranged from 124 (Deh-CC vs. Deh-FD) to 250 (Chi-CC vs. Chi-FD) (Supplementary Table S6). 
Amongst the DEGs, on an average 96.1% (92.3 to 100%) unigenes had known functions in the TAIR10 database 
(Supplementary Table S6). The results of DGE between populations and their GO-term enrichments are provided 
in Supplementary Table S7a–h. The results indicated that the number of genes and the GO terms related to high 
light intensity were increasing with altitude.

The DGE values of a few randomly selected genes were further validated by qRT-PCR. The log2 fold-change 
values resulting from qRT-PCR were highly correlated with that of NGS, with overall of r =  0.91 and 
P-value <  0.0001 (Supplementary Fig. S6). In individual comparisons, the correlation value ranged from 0.85 to 
0.98 and was highly significant in all the cases (P-value <  0.0001).

Figure 5. Phylogenetic tree based on SNPs. Majority-rule consensus tree of 500 un-rooted neighbour joining 
trees constructed using the FST matrix of the Field (FD) and Controlled Conditions (CC) grown population 
pools. The pairwise FST matrix was randomly re-sampled 500 times. Values on the nodes indicate the percentage 
bootstrap support.

Figure 6. PCoA of Bio-climatic variables. Principle Co-ordinate Analysis (PCoA) of the four populations 
using five uncorrelated bio-climatic factors; MPGS, mean precipitation in growing season; MRGS, mean 
radiation in growing season; RS, radiation seasonality; TS, temperature seasonality; TAR, temperature annual 
range. See Supplementary Fig. S5 for the scree plot of the co-ordinates.
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Discussion
We report genome-wide polymorphisms in the coding region of West Himalayan Arabidopsis thaliana popula-
tions and their associations with the climatic variables of their natural habitat. The four populations were geo-
graphically proximal but colonized diverse habitats with distinct environmental conditions, primarily due to 
the differences in the altitude of their location. The climatic condition of West Himalayan region range from 
sub-tropical to temperate22. There are several reports on high altitude plant adaptations5,18,23. But, unlike the 
previous reports, the populations studied here represent a greater altitudinal gradient and a wider climatic range.

The pooling strategy has widely been used for estimation of SNP alleles in populations using NGS3,24. The 
strategy has been reported to be as accurate as sequencing individuals11,25. The pooling strategy has also been 
employed by using RNA samples (RNA-Seq). Using transcriptome sequencing of 10 bank voles, Konczal et al.26 
showed that the pooled RNA-Seq exhibits accuracy comparable with that of a pooled genome re-sequencing, pro-
vided the variation in expression level is accounted for. Moreover, Westram et al.10 showed that pooled RNA-Seq 
is reliable for variant allele frequency estimation, given a large number of individuals are included in the pool. 
RNA-Seq targets only the expressed genes, thereby providing a straightforward understanding of the underlying 
biological processes12. Our strategy of pooling a large number of samples, as well as employing methods such 
as exclusion of nucleotide positions not present in any of the populations and sub-sampling to an even number 
of reads helped to minimize the effect of DGE. Moreover, combining the field and controlled condition grown 
samples also minimized the effect of DGE in addition to providing an increased read depth. Further, the patterns 
of SNP distribution was found to be highly consistent in terms of depths and alternative frequency distribution 
indicating a consistently high-quality sequencing across the samples.

We employed a two-way approach to determine the genes that might provide adaptive fitness to populations 
in a local habitat. First, the population-specific SNPs were identified in each population against the A. thaliana 
reference genome and then the genes containing them were functionally categorized. Our hypothesis was that 
the population-specific SNPs may have arisen de novo in a particular population or may have migrated from a 
nearby population where they existed as selectively neutral loci in very low and undetectable frequencies4. Such 
polymorphisms may account for the among-population variations and if advantageous in local climate, can cause 
selective sweeps in populations27 and can be linked to the fitness of a population28. In the second approach, the 
gene-level pairwise FSTs of the populations were compared with the corresponding pairwise differences between 
bio-climatic variables. This approach is based on a presumption that an unusually strong correlation between the 
allele frequency differentiation and environmental variables indicates a potential identification of a candidate 
locus29. Such a strong correlation may also account for the population-level variations. However, such correlation 
may not always imply the causation for adaptation. The integration of genomic and ecological data may not be 
straightforward as it is difficult to distinguish between demography and selection as a cause of observed genetic 
variation30.

When all the SNP-containing genes were analyzed, no variation was found in enriched functional categories 
between the populations. This was due to the large percentage of SNP-containing genes which were shared among 
the populations (61.2 to 80.0%). A large number of shared SNP-containing genes also indicate a high gene-flow 
between the populations. However, in the case of local-level population-specific SNP-containing genes, the func-
tional enrichment was found to be markedly different between all the four populations. While the lowest altitude 
population, Deh did not retrieve any abiotic stress related GO-term, the high altitude populations of Mun and Chi 
showed enrichment of GO-terms related to high altitude stresses. Importantly, the enriched light-stress respon-
sive genes containing global-level population-specific SNPs appeared to provide a fitness advantage to these pop-
ulations, as there was observed a complete loss of significance in the GO-term enrichment analyses without these 
genes. For example, the functional categories enriched in Mun were ‘response to light stimulus’, ‘response to 
radiation’ and ‘response to red or far red light’. Interestingly, almost half of the observed genes in this functional 
category contained variants that were global-level population-specific. For example, CULLIN4 (CUL4) is respon-
sible for repression of photomorphogenesis; light harvesting complex of photosystem II 5 (LHCB5) encoding 
CHLOROPHYLL A/B BINDING PROTEIN CP26 of the antenna system of the photosynthetic apparatus and 
PHOTOTROPIN 2 (PHOT2) that functions as a blue-light photoreceptor. In Chi, there were seven genes related 
to pigment metabolism which contained global-level population-specific SNPs. For example, ZETA-CAROTENE 

Bio-climatic variable
effect size r (FD, 
CC, Combined) Closely related GO-terms

Temperature seasonality (TS) 0.787, 0.799, 0.800
response to temperature stimulus 
(GO:0009266), response to cold 
(GO:0009409), response to heat 
(GO:0009408)

Temperature annual range 
(TAR) 0.803, 0.808, 0.807

response to temperature stimulus 
(GO:0009266), response to cold 
(GO:0009409), response to heat 
(GO:0009408)

Mean precipitation in 
growing season (MPGS) 0.813, 0.819, 0.823

response to water (GO:0009415), 
response to water deprivation 
(GO:0009414)

Mean radiation in growing 
season (MRGS) 0.808, 0.808, 0.796

response to radiation (GO:0009314), 
response to light stimulus 
(GO:0009416)

Table 1.  Four un-correlated bio-climatic variables and their 95% effect size cut-off in field (FD), controlled 
condition (CC) grown and combined populations with their closely related GO-terms.
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ISOMERASE (Z-ISO), a carotene isomerase; CALRETICULIN-3 (CRT-3), which has been linked to anthocy-
anin accumulation in conjugation with elf18, Chlorophyllase (CLH-1) involved in chlorophyll degradation. 
Plant pigments such as carotenoids and anthocyanins are known to play an essential role in photoprotection by 
mechanisms such as scavenging of reactive oxygen species or by absorbing UV radiation31. In addition to the 
pigment metabolism related genes, ‘glucosinolate metabolic process’ was also found to be overrepresented by 
SNP-containing genes in Chi. Glucosinolates, a class of secondary metabolites in Brassicaceae, have been shown 
to have a role in plant stress responses including extreme temperatures and high light intensities32.

Unlike Mun and Chi, despite being a high altitude population, San did not show any enrichment in the 
population-specific SNPs containing genes related to the high altitude abiotic stresses. However, two highly char-
acterized genes, FHY3 and UVH1 were found to contain population-specific SNPs in San. The FHY3 transcrip-
tion factor is a key component in the light signaling pathways such as binding of COP1 promoter in response to 
UV-B33, PHYA signaling pathways34 and in the regulation of chlorophyll biosynthesis35. UVH1 is a DNA repair 
gene and a homolog of yeast RAD1. The product of RAD1 is a component of repair-endonucleases and confers 
resistance to UV radiation by excision repair in response to DNA damage36. The non-enrichment of abiotic stress 
related GO-terms in San could have been due to its geographical proximity to Chi (24 Km downstream on Baspa 
river). The San population might have got dispersed from Chitkul and due to genetic drift, lost the alleles having 
the fitness advantage in Chitkul. The milder climatic conditions in Sangla could be a possible explanation for this 
observation.

Sample AGI code Gene name (Abbreviation)
NO. 

SNPs

FST 
Deh vs. 

Mun
FST Deh 
vs. San

FST Deh 
vs. Chi

FST 
Mun vs. 

San

FST 
Mun vs. 

Chi
FST San 
vs. Chi

FD

AT5G35320 – 10 0.43 0.45 0.48 0.14 0.14 0.21

AT5G05690
CONSTITUTIVE 
PHOTOMORPHOGENIC DWARF 
(CPD)

8 0.60 0.94 1.00 0.19 0.18 0.26

AT5G05520 – 7 0.49 0.86 0.93 0.16 0.20 0.15

AT1G27650  (ATU2AF35A) 5 0.08 0.98 1.00 0.89 0.91 0.02

AT2G37678 FAR-RED ELONGATED 
HYPOCOTYL 1 (FHY1) 5 0.49 0.67 0.80 0.10 0.15 0.36

AT2G26930
4-(CYTIDINE 5′ -PHOSPHO)-
2-C-METHYL-D-ERITHRITOL 
KINASE (CDPMEK)

4 0.09 0.80 0.83 0.49 0.51 0.01

AT2G46970
PHYTOCHROME 
INTERACTING FACTOR 3-LIKE 
1 (PIL1)

4 0.45 0.80 0.94 0.55 0.69 0.15

AT3G23990 HEAT SHOCK PROTEIN 60 
(HSP60) 3 0.44 0.66 0.93 0.04 0.22 0.15

AT4G16780 HOMEOBOX PROTEIN 2 (HB-2) 3 0.27 0.99 1.00 0.42 0.44 0.01

AT5G06460 UBIQUITIN ACTIVATING 
ENZYME 2 (UBA 2) 3 0.51 0.83 0.97 0.31 0.55 0.18

AT1G78420 – 2 0.58 0.72 0.75 0.09 0.12 0.01

CC

AT4G36220 FERULIC ACID 
5-HYDROXYLASE 1 (FAH1) 11 0.68 0.66 0.97 0.63 0.97 0.12

AT4G33650 DYNAMIN-RELATED PROTEIN 
3A (DRP3A) 8 0.65 0.40 0.94 0.43 0.99 0.26

AT1G78420 – 2 0.35 0.23 0.73 0.28 0.83 0.23

AT4G25570 (ACYB-2) 2 0.03 0.95 1.00 0.84 0.88 0.01

AT5G20520 WAVY GROWTH 2 (WAV2) 1 0.01 0.05 0.03 0.03 0.01 0.01

Combined

AT5G43470
RECOGNITION OF 
PERONOSPORA PARASITICA 
8 (RPP8)

15 0.26 0.46 0.39 0.26 0.13 0.10

AT4G16420 HOMOLOG OF YEAST ADA2 2B 
(ADA2B) 6 0.50 0.70 0.93 0.49 0.77 0.16

AT1G74310 HEAT SHOCK PROTEIN 101 
(HSP101) 4 0.35 0.88 0.80 0.50 0.40 0.03

AT5G23120 HIGH CHLOROPHYLL 
FLUORESCENCE 136 (HCF136) 4 0.29 0.59 0.76 0.43 0.61 0.04

AT2G26150 HEAT SHOCK TRANSCRIPTION 
FACTOR A2 (HSFA2) 3 0.59 0.99 1.00 0.86 0.87 0.00

AT2G46340 SUPPRESSOR OF PHYA-105 1 
(SPA1) 3 0.58 0.83 0.94 0.54 0.69 0.07

AT1G15820
LIGHT HARVESTING COMPLEX 
PHOTOSYSTEM II SUBUNIT 6 
(LHCB6)

2 0.0027 0.0056 0.0051 0.0018 0.0005 0.0009

Table 2.  List of genes having strong correlation in the three-step procedure of stringency filtration post 
environmental correlation tests. Gene-level pairwise FST of the four population is shown for the strongly 
correlated genes in field (FD), controlled condition (CC) grown and combined populations samples.
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Further, the population-specific SNPs had a lower allele frequency as compared to the all-SNPs dataset, sug-
gesting their comparatively recent and de novo appearance in these populations9. Our earlier study has shown that 
these populations have a long evolutionary history in the West Himalayan region and the time to their most com-
mon ancestor (TMRCA) was found to be about 0.45 million years ago21. During this long evolutionary history, 
the ancestral populations colonized different climatic regions. Subsequently, novel variants might have arisen in 
response to the selective forces and the beneficial (non-deleterious) among them have swept the populations.

In the second approach, out of the highly correlated SNP-containing genes only 0.75 to 1.37% were found 
to be strongly correlated with the four uncorrelated bio-climatic factors in the three datasets. Moreover in the 
combined dataset, the small FST observed between the field and the controlled condition pools in all the popu-
lations confirmed that the variation in gene expression did not confound the allele frequency estimations. The 
highly stringent procedure allowed us to identify the most relevant SNP-containing genes associated with the four 
non-redundant bio-climatic variables. These climatic variables have previously been reported to mold plant adap-
tation3,7,16,17. However, out of the four bio-climatic factors only ‘mean radiation in the growing season’ (MRGS) 
resulted in its closely related GO-term enrichment i.e. ‘response to radiation’, represented by 11, 5 and 7 genes 
in FD, CC and combined datasets, respectively. The three datasets retrieved the same GO-term for the strongly 
correlated genes, indicating a role of increasing light intensity in population level variation along the altitudinal 
gradient. Although the other three bio-climatic variables had strongly correlated genes, none of these retrieved a 
closely related GO-terms. This was as expected because being an annual with a short life cycle, the climatic con-
ditions during the growing period (three months) has a major effect on the plant. During this period, the solar 
radiation intensity and its spectrum remains largely unaffected and varies between different altitudes. The effect 
of increasing light intensity with altitude was also corroborated by the results of DGE analysis. The GO-term 
enrichment analysis showed that light intensity related genes were primarily expressed in FD samples and, this 
pattern was more prominent with increasing altitude of populations. Therefore, the enrichment in the corre-
lated GO-category in a radiation-related bio-climatic factor was not surprising. Among the other three selected 
bio-climatic variables, ‘temperature seasonality’ and ‘temperature annual range’ being annual factors might have 
a small effect on the development of an annual plant like A. thaliana. The ‘mean radiation in growing season’ was 
the only highly variable bio-climatic factor among the four sites. Thus, the solar radiation of the growing season 
might play a major role in the population level variation of these populations.

Most of the strongly correlated genes were well characterized. For example, in FD, CONSTITUTIVE 
PHOTOMORPHOGENIC DWARF (CPD) is known for their role in UV-B acclimation of plants37, and FAR-RED 
ELONGATED HYPOCOTYL 1 (FHY1) is regulated by phytochrome A (phyA) and is involved in balancing the 
light signaling38. In the CC sample, the strongly correlated gene FERULIC ACID 5-HYDROXYLASE 1 (FAH1) 
is involved in synthesis of sinapate esters, well known to function as plant sunscreens from UV-radiation39. 
In the combined dataset, the strongly correlated gene SUPPRESSOR OF PHYA-105 1 (SPA1) is a regulator of 
Phytochrome-A. SPA1 interacts with CONSTITUTIVE PHOTOMORPHOGENESIS (COP1) and regulates 
photomorphogenesis in plants38,40. Another highly characterized gene, a transcriptional adaptor (ADA2B) is a 
component of Histone acetyltransferase GCN5 and is involved in plant adaptation to abiotic stresses including 
high light intensity stress40. HIGH CHLOROPHYLL FLUORESCENCE (HCF136) is a stabilizer of PSII and its 
mutants have been reported to be devoid of PSII activity41. A heat shock protein (HSP101) and a heat shock 
transcription factor (HSFA2) were also among the candidate genes. HSPs are generated in response to high light 
intensity induced production of ROS42 and most of the HSPs are known to respond in high light stresses43. It is 
notable that a heat shock protein (HSP60) of FD sample was also found to be strongly correlated.

Our study may be limited due to the use of interpolated climate data rather than actual field measure-
ments. Being remotely located these sites are presently not equipped with meteorological stations (except in 
Dehradun). However, interpolated climatic data has been widely used in studies related to genetic diversity, 
ecological niche modeling, adaptive divergence etc.3,16,44,45. The two strategies employed here viz. identification 
of population-specific SNP-containing genes and correlation of FSTs with climatic variables retrieved similar 
kind of GO-terms (i.e. high light intensity). However, the strongly variable genes identified by the two meth-
ods were entirely different. This was expected because an SNP having variable allele frequency can never be 
population-specific and vice versa. Another limitation in our study was the use of a small number of populations 
to detect the environmentally variable genes. Generally, a large number of populations are required to interpret 
the environment guided variations in the populations such as in Mendez-Vigo et al.5. However, a comparable 
number of populations have also been used for identification of genetic variations such as in Fischer et al.3. Yet, 
we emphasise on the need to take cautions to interpret these findings in general. However, efforts are being made 
to sequence more populations from this region.

Our two-way approach led to the identification of genes having a primary biological function related to high 
light intensity stress. High light intensity is one of the major stresses to which high altitude plants are exposed, 
as evident from the DGE analysis. Moreover, the environmental factors during the growth period of an annual 
plant are more important as compared to the annual averages. Thus, the selection of individuals in response to 
solar radiation stress during growing season of A. thaliana might play a major role in the emergence of genetic 
variation as compared to the annual factors. Further experiments involving functional validation of the genes 
may provide a deeper insight into their role in population-level variation, particularly in high altitude. Moreover, 
a number of SNP-containing genes had unknown functions. The SNPs in these genes may also contribute in the 
emergence of population-level variations in West Himalayan A. thaliana.

Methods
Collection of samples. Leaf samples were collected from four different populations in the West Himalaya. 
The populations were named with the first three letters of the name of nearest town or village, viz. Dehradun 
(Deh, 700 m a.m.s.l.), Munsiyari (Mun, 2000 m a.m.s.l.), Sangla (San, 2600 m a.m.s.l.) and Chitkul (Chi, 3400 m 
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a.m.s.l.) (Fig. 1 and Supplementary Table S1). Collections were performed at a stage defined as, plants with first 
flower open (principal growth stage 6.00)46 to plants having no more than 10 green siliques. To minimize the 
effect of microclimate, areas in each site were selected which maximally represented plants of almost uniform 
growth and microclimate. A total 50 individuals were randomly selected for each population from five such 
distinct patches. A minimum distance of two meters was maintained between any two plants. One to two rosette 
and cauline leaves were collected from each plant and stored in the RNAlater™  solution (Ambion, USA). Seeds 
of matured plants were collected from each population at the senescence/seed shedding stage. These seeds were 
grown under controlled conditions of 22 °C, 140 μ mol/m2/sec light and 16/8 hour day/night cycle. The leaves were 
collected from the stage as described above for the FD individuals and were stored in RNAlater™  solution for 
24 hours before the extraction of total RNA.

Extraction of total RNA and sequencing. Total RNA was extracted from the leaf tissue of ten plants 
representing one patch from the field (FD) as well as from the controlled conditions (CC) grown plants using mir-
Vana™  Kit (Ambion, USA). The quantity and quality of the RNA was measured by QIAxpertTM (Qiagen, USA) 
and 2100 BioAnalyzer™  (Agilent Technologies, USA), respectively. Equal amounts of RNA from each patch of a 
population were pooled together and considered as representative of the respective populations. The pooled RNA 
was treated with DNase (Ambion TURBO DNA-free DNase kit). cDNA libraries for the eight pools (four each of 
FD and CC) were prepared using the TruSeqTM RNA Sample Prep Kit v2. (Illumina, USA) with 1 μ g of total RNA., 
Paired-end sequencing was performed using the Illumina HiSeq 1000 platform.

Quality control of raw reads, mapping and calling of SNPs against the reference genome. Raw 
reads with a minimum of 80% bases with a quality score greater than 30 were selected. The filtered reads 
were mapped against the A. thaliana reference genome TAIR1047, followed by mapping using Tophat48. The 
Ambiguously mapped reads were filtered using Picard-tools v1.119.

To call the SNPs, the FASTQ formatted sequence files of FD and CC samples from each population were com-
bined. Mapped bam alignment files were used to call SNPs against the A. thaliana reference genome (TAIR10) 
using FreeBayes v0.0.349. The parameters used for calling variants were, ploidy =  200; minimum minor allele 
frequency =  0.05; minimum coverage =  20. Finally, to remove the biasness due to DGE between different data-
sets, the nucleotide positions that were not present in any of the populations were excluded. The called SNPs 
were annotated using the SIFT 4G (siftdb.org) tool. SIFT 4G classifies amino acid variants into synonymous and 
non-synonymous. Within the non-synonymous variants, it predicts the deleterious and non-deleterious types of 
amino acid changes. Variants that were not yet reported (as on 31st Mar 2015) in the NCBI dbSNP (ncbi.nlm.nih.
gov/SNP) database were identified as novel variants.

Identification of local- and global-level population-specific SNP-containing genes and their 
GO-term enrichment analysis. The deleterious and synonymous variants were excluded from further 
analysis. The remaining non-deleterious but non-synonymous SNPs were classified into two groups of genes. 
First, the genes containing SNPs that were present in a particular population but absent in other three local 
populations (local-level population-specific SNP-containing genes); second, such local-level population-specific 
SNP-containing genes which contained SNPs that were also not reported in the dbSNP (global-level 
population-specific SNP-containing genes). Our earlier study indicated that the San and Chi populations are phy-
logenetically very close21. Therefore, considering these two as a single population, a dataset of population-specific 
SNP-containing genes was also included in the analysis. To determine the patterns of SNPs among populations 
several statistical measures viz. the frequency distribution of alternative frequency, the frequency distribution of 
read depths and average AF of SNPs under local and global population-specific SNPs were estimated.

GO-term enrichment of all the non-synonymous SNP-containing genes and the population-specific 
SNP-containing genes was performed using AgriGO50. The significance for each GO-identifier was computed 
with the Fisher’s exact test and P-value ≤  0.05. To adjust for multiple comparisons, significant enrichment was 
accepted if the corresponding false discovery rate (FDR) was ≤ 0.05 in Yekutieli’s multi-test adjustment method.

Analysis of the climate data. Bio-climatic variables of the four locations were derived from the interpo-
lated climatic data. The data was extracted from the WorldClim51 database at the highest available resolution of 
30″  (second) and collected over a 50 year period (Year, 1950 to 2000). The solar radiation intensity is an important 
climatic variable along altitudes, but its data is currently not available from the WorldClim database. Therefore, 
the data for four radiation-related bio-climatic factors was extracted from the CliMond52 database at the highest 
available resolution of 10′  (minute) and collected over a 30 years period (Year, 1961 to 1991). It is important 
to assess the effect of climatic factors prevailing only during the growing season in these annual populations. 
Therefore, we derived three additional bio-climatic factors viz. mean temperature (MT), mean precipitation (MP) 
and mean radiation (MR) of the growing season (GS) of three months in the respective locations. Thus, overall 26 
bio-climatic variables were considered for the association analysis (Supplementary Table S8).

Pairwise correlation analysis (Pearson’s r) was conducted among these 26 bio-climatic variables to exclude 
the highly correlated factors (r ≥  0.8). To illustrate climatic variations between the sampling locations, Principal 
Co-ordinate analysis (PCoA) was performed.

Estimation of the gene-level allele frequency differentiation between populations (FST).  
Pairwise FST analysis of the FD and CC samples was performed using the PoPoolation2 program53. The SNPs were 
called using Samtools followed by the filtering of indels. To minimize the confounding effect of DGE on allele 
frequency estimation, the allele count data was sub-sampled to an even target coverage of 10 per variant position 
while excluding upper 2% most highly expressed reads following Westram et al.10. Random sub-sampling cycles 
were run in 50 replicates using sub-sampling with replacement strategy. Subsequently, the allele frequency at each 
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position was averaged to get an unambiguous synchronized SNP dataset. FSTs at gene level were calculated using 
the sliding window strategy with a pool size of 100. Fisher’s exact test was performed to test the significance of 
the FSTs. To identify the patterns of FSTs between populations, frequency distribution of gene level FSTs was deter-
mined in bins of 0.01.

The gene-level FST was also estimated for the combined data of FD and CC samples at an even target coverage 
of 20 per variant position and pool size of 200, following the above protocol. Further, to determine the effect of 
DGE on the SNP allele frequency, the position level FSTs were determined between individual pools.

Estimation of overall population differentiation (FST). The population level FST between all the pairs 
of populations in the combined data and individual samples (FD and CC) was calculated using Genepop v454. A 
majority-ruled (MJ) consensus tree was constructed by random re-sampling the population level FST matrix 500 
times using PHYLIP55.

Correlation between pairwise FST and Environmental factors. Genes with at least one significant FST 
comparison we called as ‘highly variable SNP-containing genes’. There were 7145, 8712 and 8195 highly variable 
SNP-containing genes in FD, CC and combined dataset respectively. These genes were used to correlate with 
the five selected environmental factors using the partial Mantel’s test (PMT). The pairwise FST matrix (Dx) of a 
gene was correlated with the distance matrix of four uncorrelated environmental factors (Dy) individually while 
controlling for the overall FST (Ds, population structure) between the populations by following Fischer et al.3. The 
PMT runs of these genes were performed using the parametric Pearson’s r correlation in the vegan R package by 
permuting Dx 1000 times.

Identification of genes strongly correlated with environmental variables. To identify genes with a 
strong correlation with environmental variables, a three-step stringency cut-off procedure was employed. First, the 
effect-size ‘r’ was determined as a threshold criterion for the correlation values between FST and bio-climatic varia-
bles. FST values between 0 and 1 were randomly generated to create 7145, 8712 and 8195 simulated matrices corre-
sponding to the same number of highly correlated genes in FD, CC and combined dataset respectively. For this, we 
first performed PMTs between the simulated pairwise FST values (Dx) (random values) and the five environmental 
factors (Dy) (real values), while controlling for the population structure using genome-wide pairwise FST (Ds) (real 
values). The 95% quantile of each bio-climatic factor was used as the threshold for r. Above this threshold value, a 
specific SNP locus was considered to be associated with the respective environmental factor. Second, genes having 
the r-values larger than the threshold but insignificant (P-value >  0.05) were discarded. Third, only those genes 
which fell under ‘response to abiotic stimulus’ GO-term were selected. This allowed us to exclude genes associated 
with the housekeeping cellular processes, biotic factors and the genes of unknown functions. Finally, GO-term 
enrichment of genes under each bio-climatic variable was performed. The genes under an enriched GO-term 
were considered as strongly correlated if the GO-term was closely related to its corresponding bio-climatic factor 
(Table 1).

Analysis of DEGs in four populations and their qRT-PCR validation. DGE analysis of four different 
populations was performed to determine DEGs of FD populations as compared to their respective CC popula-
tions (all FD vs. CC). In all the four comparisons the CC population was taken as the denominator for the deter-
mination of fold-change in gene expression.

The read counts per unigene were estimated using the HTseq-count program56. HTseq-count pre-processes 
the RNA-Seq data for DGE analysis by counting the number of reads mapped to a gene. The generated read 
counts were used for the identification of DEGs using the R bioconductor package DESeq57. DESeq infers dif-
ferential signal between a pair of RNA-Seq samples by using a model based on the negative binomial distribu-
tion. Finally, DESeq expresses the results in the form of log2 fold-change with their corresponding P-values and 
false discovery rates (FDR/ Q-value). Unigenes having a minimum of two-fold log2 fold-change value and a 
Q-value ≤  0.05 in the pairwise comparisons of the samples were selected for further analysis.

The GO-term enrichment analysis of the significantly expressed unigenes was performed using the Singular 
Enrichment Analysis (SEA) implemented in the AgriGO online tool. Genes were annotated with the locus iden-
tifier information from TAIR10. Significance for each GO-identifier was computed with the Fisher’s exact test. 
To adjust for multiple comparisons, significant enrichment was accepted if the corresponding Q-value ≤  0.05 in 
Yekutieli’s multi-test adjustment method. The lists of GO-terms generated from the results of high-throughput 
experiments are large and often highly redundant and thus, are difficult to interpret. Therefore, the REVIGO web 
server58 was used to remove this redundancy and summarize the significantly enriched GO-terms in a graphical 
form which was easier to understand and interpret.

qRT-PCR was performed to validate the gene expression results generated from NGS platform. Ten to fif-
teen differentially expressed genes (down- and up-regulated) from each sample were randomly selected 
(Supplementary Table S9). The primers for qRT-PCR were designed using the NCBI primer blast tool59 with 
primer melting temperatures (Tm) of 57 °C to 63 °C, product size of 90 to 120 bp and a maximum Tm difference 
of 3 °C between the forward and reverse primers. The total RNA from three biologically independent population 
pools (50 plants each) of FD and CC samples was extracted as described above. Additionally, three technical repli-
cates of each biological replicate were also used. The integrity of RNA was checked by agarose gel electrophoresis. 
High quality RNA was selected and quantified by using the QIAxpert™  microfluidic UV/VIS spectrophotometer 
(Qiagen, USA). The RNA was reverse transcribed to cDNA using the SuperScript™  III First-Strand Synthesis 
Kit (Invitrogen, USA) according to the manufacturer’s protocol. The PCR master mixture was setup by mixing 
5 μ l DyNAmo Flash SYBR Green (Thermo) (2X), 1 μ l cDNA, 1 μ l forward primer (5 pm/μ l), 1 μ l reverse primer 
(5 pm/μ l), and milli-Q water up to 10 μ l. qRT-PCR was performed with cycling conditions: initial denaturation 
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at 95 °C for 10 min, followed by denaturation at 95 °C for 20 sec, 40 cycles of annealing and extension together at 
60 °C for 60 sec. The amplification reaction was performed using the ABI 7500 real-time PCR system (Applied 
Biosystems, USA). The threshold cycle (Ct) value for each gene was quantified, normalized by Ct value of internal 
control gene, GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GADPH). The relative expression was 
calculated using the 2−ΔΔCt method60. The relative expression values were then converted to log2 fold-change. The 
differential expression values from qRT-PCR were correlated with that of NGS using the Pearson’s correlation test.
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