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Abstract

The autophagy-endolysosomal pathway is an evolutionally conserved degradation system

that is tightly linked to a wide variety of physiological processes. Dysfunction of this system

is associated with many pathological conditions such as cancer, inflammation and neurode-

generative diseases. Therefore, monitoring the cellular autophagy-endolysosomal activity is

crucial for studies on the pathogenesis as well as therapeutics of such disorders. To this

end, we here sought to create a novel means exploiting Keima, an acid-stable fluorescent

protein possessing pH-dependent fluorescence excitation spectra, for precisely monitoring

the autophagy-endolysosomal system. First, we generated three lines of transgenic (tg)

mouse expressing monomeric Keima-fused MAP1LC3B (mKeima-LC3B). Then, these tg

mice were subjected to starvation by food-restriction, and also challenged to neurodegen-

eration by genetically crossing with a mouse model of amyotrophic lateral sclerosis; i.e.,

SOD1H46R transgenic mouse. Unexpectedly, despite that a lipidated-form of endogenous

LC3 (LC3-II) was significantly increased, those of mKeima-LC3B (mKeima-LC3B-II) were

not changed under both stressed conditions. It was also noted that mKeima-LC3B-positive

aggregates were progressively accumulated in the spinal cord of SOD1H46R;mKeima-LC3B

double-tg mice, suggestive of acid-resistance and aggregate-prone natures of long-term

overexpressed mKeima-LC3B in vivo. Next, we characterized mouse embryonic fibroblasts

(MEFs) derived from mKeima-LC3B-tg mice. In contrast with in vivo, levels of mKeima-

LC3B-I were decreased under starved conditions. Furthermore, when starved MEFs were

treated with chloroquine (CQ), the abundance of mKeima-LC3B-II was significantly

increased. Remarkably, when cultured medium was repeatedly changed between DMEM

(nutrient-rich) and EBSS (starvation), acidic/neutral signal ratios of mKeima-LC3B-positive

compartments were rapidly and reversibly shifted, which were suppressed by the CQ
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treatment, indicating that intraluminal pH of mKeima-LC3B-positive vesicles was change-

able upon nutritional conditions of culture media. Taken together, although mKeima-LC3B-

tg mice may not be an appropriate tool to monitor the autophagy-endolysosomal system in

vivo, mKeima-LC3B must be one of the most sensitive reporter molecules for monitoring

this system under in vitro cultured conditions.

Introduction

The autophagy-endolysosomal pathway is an evolutionally conserved degradation system that

is tightly linked to a wide variety of physiological processes [1, 2]. Three different forms of the

autophagic pathways; i.e., macroautophagy, microautophagy, and chaperon-mediated autop-

hagy are currently documented. In particular, macroautophagy (hereafter referred to as

“autophagy”) together with the endolysosomal pathway plays a crucial role in the removal and

degradation not only of cytoplasmic long-lived as well as misfolded proteins but also of dam-

aged or superfluous organelles through a sequential step comprising the autophagosome for-

mation, maturation (fused with endosomes and/or lysosomes) and degradation within

autolysosomes/lysosomes [1].

A plethora of studies has been demonstrated that dysfunction of the autophagy-endolysoso-

mal system is associated with many pathological conditions such as cancer, inflammation and

neurodegenerative diseases [2–6]. In order to uncover the contribution of this system to the

pathogenesis, and then to develop the therapeutic treatment for such disorders, proper moni-

toring of the autophagy-endolysosomal activities is extremely important [7]. Thus far, micro-

tubule-associated protein 1 light chain 3 (LC3), whose lipidated form (LC3-II) is highly

enriched onto autophagosomal membrane during entire stages of autophagy; from the forma-

tion to maturation of autophagosomes, has reliably been used for such purposes [7, 8]. In par-

ticular, LC3 tagged with a green fluorescent protein, GFP-LC3 [9], has widely been utilized in

not only in vitro culture experiments but also in vivo animal studies. Indeed, we and others

have previously reported that GFP-LC3 can be used to monitor the autophagic status as well as

disease progression in a GFP-LC3-expressing animal model of amyotrophic lateral sclerosis

(ALS); i.e., human mutant SOD1-expressing transgenic mice [10, 11].

Despite of such usefulness of GFP-LC3, there are some shortcomings to monitor the flux

throughout the entire autophagic system due to the reason that the fluorescence of GFP dimin-

ishes under lysosomal acidic conditions. To overcome such weaknesses, several groups have

generated a series of acid-resistant and -sensitive tandem fluorescent proteins fused with LC3,

such as RFP-GFP-LC3 [12–14], mCherry-EGFP-LC3 [15] and GFP-LC3-RFP-LC3ΔG [16], as

an alternate to GFP-LC3. However, since quenching the fluorescence of GFP under the course

of gradual maturation and/or acidification of intralumenal endosomes and/or autophago-

somes slowly and incompletely occurs, the sensitivity for monitoring the maturation of endo-

somes and autophagosomes using these tandem fusion LC3 proteins might still be limited.

Another type of the pH-sensitive and acid-resistant tandem probes such as mTagRFP-mWa-

sabi-LC3 [17] and pHluorin-mKate2-tagged LC3 [18], both of which seemed to be more

appropriate to monitor the maturation of autophagosomes, was also reported, but their sensi-

tivities for monitoring the acidification of particular vesicles have yet to be thoroughly

investigated.

Recently, a fluorescent variant of a protein from the stony coral Montipora, called Keima,

has been developed [19], and applied to monitor the autophagy activity [20]. With the use of
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monomeric Keima-Red (mKeima-Red), which has variable excitation spectra in a pH-depen-

dent fashion and shows proteolytic resistance in acidic compartments, the entire autophagy

flux can be more efficiently monitored by a single fluorescence protein alone [20]. When

mKeima fuses with a tandem repeat sequence of cytochrome c oxidase subunit 8 (mt-

mKeima), it can also be specifically recruited to mitochondria, allowing a sensitive and selec-

tive monitoring of mitophagy with the simultaneous use of other green emitting fluorophores

in cells [20]. Thus, if mKeima could be properly targeted to the membrane of autophagosomes

as well as endocytic vesicles by fusing with selectively localized molecules such as LC3, a more

selective and sensitive monitoring of the vesicular maturation and acidification would become

possible. Furthermore, like GFP-LC3, in order to measure the autophagic-flux in tissues and/

or cells by Western blotting with the use of appropriate antibodies [10], mKeima-fused LC3

could be utilized as an “autophagomometer” [8] much easier than endogenous LC3.

In this study, by exploiting merits of mKeima and LC3 combined, we newly developed a

single fluorescent protein-based and pH-sensitive probe, mKeima-LC3B, as a novel analytical

tool for the autophagy-endolysosomal system. We generated transgenic (tg) mice that were

expressing mKeima-LC3B. To assess their usefulness, we characterized biochemical as well as

histological phenotypes of mKeima-LC3B-tg mice under stressed conditions; i.e., starvation or

neurodegeneration in vivo. Further, we investigated cellular responses to the starvation using

mouse embryonic fibroblasts (MEFs) derived from these animals in vitro.

Materials and methods

Plasmid construction

We generated pCAG_mKeima_LC3B plasmid to express mKeima fused to human

MAP1LC3B (LC3B) under control of the chicken β-actin (CAG) promoter in mammalian

cells. The mKeima and LC3B sequences were amplified from pmKeima-S1 (MBL) and

pEGFP-LC3B [21] by PCR using primers with site-specific restriction sites, respectively

(mKeima: XhoI-AgeI-kozac-mKeima_F; 5’-gatctcgagaccggtccaccatggtgagtgtg
atcgcta-3’ and PacI-mKeima_R; 5’-gatcttaattaaaccgagcaaagagtggcgtg-
3’, LC3B: PacI-LC3B_F; 5’-gatcttaattaatatgccgtcggagaagacct-3’ and

SmaI-BsiWI-LC3B_R; 5’-gatcccgggcgtacgttacactgacaatttcatcccga-3’).

These amplicons were digested with proper restriction enzymes, ligated and cloned into the

unique AgeI-BsrGI restriction sites of pAMF plasmid that contained [CAG_AgeI_EGFP_Bsr-

GI_polyA] cassette [22]. Plasmid DNA for pCAG_mKeima-Red_LC3B extracted from trans-

formed bacteria using NucleoBond Xtra Midi kit (TaKaRa) was further digested with NotI.
Resulting NotI-restricted insert DNA (CAG_mKeima_LC3B_polyA) (S1 Fig) was purified by

NucleoSpin Gel and PCR Clean-Up (TaKaRa) and subjected to microinjection.

Animals

C57BL/6J (B6), BDF1, ICR and MCH(ICR) mice were purchased from CLEA Japan. We used

two previously-established tg mice carrying the H46R mutation in the human SOD1 gene

[SOD1H46R; a mouse model of amyotrophic lateral sclerosis (ALS)] [10, 21, 23] and those

carrying the GFP-fused human-MAP1LC3B cDNA (GFP-LC3) [9]. SOD1H46R-tg and

GFP-LC3-tg mice were backcrossed to B6 mice for more than 10 generations and maintained

as B6 congenic lines. Mice were housed at an ambient temperature of 23 ± 2˚C and humidity

of 55 ± 15% with a 12 h light-dark cycle. Food and water were fed ad libitum unless otherwise

noted. All animal experimental procedures were carried out in accord with the Fundamental

Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic

Research Institutions under the jurisdiction of the Ministry of Education, Culture, Sports,

PLOS ONE Monitoring the autophagy-endolysosomal system using monomeric Keima-fused LC3

PLOS ONE | https://doi.org/10.1371/journal.pone.0234180 June 8, 2020 3 / 29

https://doi.org/10.1371/journal.pone.0234180


Science and Technology (MEXT), Japan, and reviewed and approved by The Institutional Ani-

mal Care and Use Committee at Tokai University (Permitted #; 181033).

Generation of mKeima-LC3B-expressing transgenic mice

To induce superovulation, we intraperitoneally injected each donor female B6 mouse (8–9

weeks of age) with 5 IU pregnant mare serum gonadotropin (PMSG) (Sankyo Yell), and

female BDF1 mouse (8–12 weeks of age) with 7.5 IU PMSG. After 48 h, 5 IU human chorionic

gonadotropin (hCG) (Sankyo Yell) was further injected intraperitoneally into each donor

mouse. Oocytes that were recovered from superovulated female B6 and BDF1 mice were sub-

jected to in vitro fertilization (IVF) with sperms obtained from B6 and BDF1 male mice (10

weeks of age), respectively. To create tg animals, we microinjected NotI-restricted insert DNA

(CAG_mKeima_LC3B_polyA) into 428 B6-derived and 813 BDF1-derived fertilized eggs.

Among them, 369 B6-derived and 511 BDF1-derived eggs were transplanted into the oviduct

of pseudopregnant recipient ICR and MCH(ICR) mice, respectively.

To confirm the presence of transgene in the genome, we designed two sets of primer pair

for PCR; Keima_LC3 fused gene (338 bp): Keima_F1; 5’-tctttgcacgagatggaatg-3’
and LC3B_R1; 5’-tatcaccgggattttggttg-3’, and CAG promoter (239 bp):

CAG_F2; 5’-ccgctcgacattgattattga-3’ and CAG_R2; 5’-tgccaagtgggcagt
ttac-3’ (S1 Fig). Genomic DNA was extracted from ear tissue of mice. Standard reaction

mixture for ExTaq (TaKaRa) was used for amplification. Thermal conditions used were as fol-

lows; 95˚C 5 min denaturation followed by 30 cycles of [98˚C/10 s, 56˚C/30 s, 68˚C/3 min].

PCR products were analyzed by agarose-gel electrophoresis. B6 and BDF1-derived mKeima-

LC3B-tg mice were maintained as B6 background and were backcrossed to B6 mice for 4–5

generations, respectively.

Copy number estimation

Copy numbers of the transgene in tg mice were determined by quantitative PCR. Genomic

DNA of each tg mouse was obtained from tail tissues by the phenol-chloroform extraction.

Quantitative PCR was performed by FastSYBR Green MasterMix by 7500 Fast Real-time PCR

system (LifeTec) using following primers; for the mKeima gene: Keima_F; 5’-catctgttga
gcagtgaaatag-3’ and Keima_R; 5’-cgctgcttgaaggtcttctc-3’, for the PGK

gene as a control: PGK_F; 5’-caggactaaagatgcgtggat-3’ and PGK_R; 5’-acctgc
aagcgctacactt-3’. Real-time PCR was performed with thermal conditions as follows;

95˚C/2 min denaturation followed by 40 cycles of [95˚C/3 s, 60˚C/30 s]. Copy numbers of

transgene were calculated by double delta Ct analysis compared with mKeima and PGK.

Starvation in vivo
To study the effects of starvation in vivo, mice were deprived of food for 24 or 48 h. These mice

were allowed to freely access drinking water.

Generation of mKeima-LC3B-expressing ALS mouse model

We generated mKeima-LC3B-expressing SOD1H46R (mKeima-LC3B;SOD1H46R) mice by

crossing male SOD1H46R-tg mice with female mKeima-LC3B-tg mice. The offsprings were

genotyped by PCR using genomic DNA extracted from ear tissues. Primers for the SOD1

transgene were as previously described [24].
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Antibodies

Antibodies used for western blot analysis were as follows; primary antibodies included guinea-

pig anti-human SQSTM1 (1:3000, PROGEN), rabbit anti-human LC3 (1:5000, MBL), rabbit

anti-GAPDH (1:5000, Sigma-Aldrich) and mouse monoclonal anti-β-actin (1:10000, Sigma-

Aldrich) antibodies. Secondary antibodies included horseradish peroxidase (HRP)-conjugated

anti-rabbit IgG (1:5000, GE Healthcare bioscience), HRP-conjugated anti-mouse IgG (1:5000,

GE Healthcare bioscience) and HRP-conjugated anti-guinea-pig IgG (1:3000, SantaCruz)

antibodies.

Antibodies used for immunohistochemistry were as follows; primary antibodies included

rabbit anti-human LC3 (1:1000, MBL), mouse monoclonal anti-mKeima (1:1000, DAKO), iso-

type control mouse IgG2a (1:100, DAKO) and isotype control rabbit IgG (1:100, DAKO) anti-

bodies. Secondary antibodies included N-Histofine1 Simple Stain Mouse MAX PO

(Nichirei) and EnVision+ System-HRP Labelled Polymer anti-mouse antibody (DAKO).

Western blot analysis

Western blot analysis was performed as previously described [21] with minor modifications.

Briefly, mouse tissues were homogenized in Lysis buffer [50 mM Tris-HCl (pH7.5), 150 mM

NaCl, 0.1% (w/v) SDS, 0.5% (w/v) deoxycholic acid, 1% (w/v) Triton X-100, Complete Prote-

ase Inhibitor Cocktail (Roche)] using Shake Master NEO (Bio Medical Science Inc.). MEFs

cultured in 3.5 cm culture dish were washed with phosphate buffered saline (PBS), and then

lysed with Lysis buffer. After centrifugation at 12,000 × g for 5 min, supernatant was collected.

Protein concentration of these samples was determined by DC protein assay kit (Bio-Rad Lab-

oratories). Equal amount of protein was separated on SDS-polyacrylamide gels, and then

transferred onto polyvinylidene difluoride membrane (Millipore). Membranes were blocked

with 5% (w/v) skimmed milk diluted in TBST [25 mM Tris-HCl (pH7.5), 150 mM NaCl, 0.1%

(w/v) Tween-20] for 1 h at 37˚C, and subsequently incubated with primary antibody diluted in

blocking solution overnight at 4˚C. After washing with TBST, membranes were incubated

with HRP-conjugated secondary antibody. Immunoreactivities of primary antibodies were

visualized with Immobilon-Western Chemiluminescent HRP Substrate (Millipore) and ana-

lyzed using Ez-Capture Analyzer (ATTO). Signal intensities were quantified using CS analyzer

ver 3.0 (ATTO).

Histochemistry and immunohistochemistry

Mice were anesthetized with 4% isoflurane by inhalation, and transcardially perfused with 4%

paraformaldehyde/phosphate buffer (PFA/PB) (Muto Chemical). Tissues were removed and

post-fixed for 48 h in 4% PFA/PB, followed by paraffin embedding. Paraffin sections were

sliced on microtome at a thickness of 4–5 μm. For immunohistochemistry, tissue sections

were deparaffinized and hydrated. Sections were incubated in Target Retrieval Solution

(pH6.0) (DAKO) and heated at 120˚C for 5 min. After cooling at room temperature (RT), sec-

tions were treated with 3% H2O2 solution to inactivate endogenous peroxidase activities. For

anti-mKeima antibody, sections were blocked by the treatment with PBS (pH 7.2) containing

5% normal goat serum (NGS) for 30 min at RT, followed by incubation with primary antibody

in PBS for 1 h at RT. Sections were washed with PBS for 15 min and incubated with secondary

antibody for 1 h. After washing with PBS for 15 min, sections were stained with 3,3’-diamino-

benzidine (DAB). For anti-LC3 antibody, sections were blocked by the treatment with TBST

containing 0.05% Tween 20/5% NGS for 30 min at RT, followed by incubation with primary

antibody in Antibody Diluent (DAKO) for 1 h at RT. Sections were washed with TBST for 15

min and incubated with secondary antibody for 1 h. After washing with TBST for 15 min,
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sections were stained with DAB. To determine specificity of immunostaining, serial sections

were similarly processed except that primary antibody was omitted. Sections were counter-

stained with hematoxylin. Images were observed and captured by fluorescence microscope

BX63 equipped with DP73 camera (Olympus).

Preparation of mouse embryonic fibroblasts and cell culture

Primary MEFs were established form embryos that were obtained from wild-type, mKeima-

LC3B-tg and GFP-LC3-tg mice at 13.5 days post coitus. Embryos were soaked into sterile PBS

and dissected, and their visible organs were removed. Remaining skin tissues were further

digested and sheared by pipetting in 1 ml of Trypsin-EDTA solution (0.5 g porcine trypsin

and 0.2 g EDTA-4Na/L Hanks’ Balanced Salt Solution with phenol red) (Sigma-Aldrich). After

incubation for 15 min at 37˚C, tissues were treated in Dulbecco’s Modified Eagle Medium

(DMEM) (Nacalai tesque) supplemented with 10% heat-inactivated fetal bovine serum (FBS)

(Biowest), 100 U/ml penicillin and 100 μg/ml streptomycin (Sigma-Aldrich). Dissociated cells

were seeded onto a 60 mm cultural dish at an appropriate cell density and cultured in the same

culture medium in 5% CO2 atmosphere at 37˚C. Adherent cells as MEFs were used.

Nutrient starvation in vitro
For starvation, MEFs established from wild-type, mKeima-LC3B-tg and GFP-LC3-tg embryos

were treated with EBSS (116.4 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4�7H2O,

1.0 mM NaH2PO4�2H2O, 26.2 mM NaHCO3, 5.6 mM Glucose). To monitor the autophagic

flux, lysosomal degradation was inhibited by addition of 50 μM chloroquine (CQ), a lysosomo-

tropic agent that inhibits the lysosomal proteases, to the medium.

Flow-cytometry

For data acquisition, we used a LSRFortessa flow cytometer (Becton Dickinson). Signals were

measured using two parameters; emission filter 670/30nm (Qdot 655 filter) excited by violet

laser (405 nm) and 610/20nm (PE-Tx-Red filter) by yellow-green laser (561 nm). All data were

analyzed using FlowJo software (Becton Dickinson). MEFs were washed with PBS(-), treated

with trypsin, and collected to a 1.5-ml tube (Sumitomo Bakelite). After centrifugation, cells

were suspended with DMEM in the absence or presence of 50 μM CQ and transferred to 5mL

Round Bottom Polystyrene Tube (CORNING), followed by recording data. To obtain data

from MEFs under starved conditions, cultured cells in DMEM were washed with PBS(-) and

trypsinized. After centrifugation, medium was replaced with EBSS, and capturing and process-

ing of data were immediately (in less than 1 min) started. Four quadrants (Q1-Q4) were

assigned based on the distribution of background signals observed in wild-type MEFs, in

which Q4 contained the maximum number of cells within its minimum area.

Fluorescence imaging

To examine the pH sensitivity of mKeima, MEFs expressing mKeima-LC3B were fixed with

4% PFA in PBS (-) (pH 7.5) for 15 min, followed by washing three times with PBS (-) at RT.

After capturing the images for mKeima as a basal control, fixed cells were buffered at pH 4.0

(50 mM acetate buffer), pH 5.0 (50 mM acetate buffer), pH 6.0 (50 mM phosphate buffer), pH

7.0 (50 mM MOPS buffer), pH 8.0 (50 mM MOPS buffer) or pH 9.0 (50 mM bicine buffer).

Then, fluorescent signals were detected. Fixed MEFs treated with EBSS (pH 7.4–7.6) were also

observed. All images were captured and analyzed by ZEISS LSM880 laser scanning confocal

microscope (Carl Zeiss).
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Live-cell imaging

For live-cell imaging of LC3-positive vesicular compartments in wild-type and mKeima-

LC3B-tg derived MEFs, we used ZEISS LSM880 laser scanning confocal microscope equipped

with a 40 x C-Apochromat water-immersion objective lens, a multi-argon laser (458, 488, and

514 nm), a DPSS laser (561 nm) and a Diode laser (405 nm) (Carl Zeiss). Images for mKeima

and LysoTracker blue DND-22 (Thermo) were obtained at emission wavelengths of 616–696

nm and 406–501 nm, respectively. Images were also obtained using a 100 x Plan Apochromat

(1.46 NA) oil objective on the Airyscan array detector and processed in conjunction with the

Airyscan processing toolbox in the ZEN software (Carl Zeiss). Microscope incubation system

was used to maintain constant environmental conditions inside the observation chamber,

which was set at 37˚C by injecting heated and humidified air containing 5% CO2. To observe

the changes in fluorescent signals for mKeima-LC3B, we repeatedly replaced culture media

from DMEM to EBSS, and from EBSS to DMEM. We also measured the signals under transi-

tional conditions from DMEM to DMEM+CQ (50 μM), DMEM to EBSS+CQ, EBSS to

DMEM+CQ, EBSS to EBSS+CQ, DMEM+CQ to DMEM, DMEM+CQ to EBSS and DMEM

+CQ to EBSS+CQ. Ratio (561 nm/458 nm) images of mKeima were created by ZEN software.

High-content analysis

For live-cell time-lapse analysis, MEFs were cultured in a 96-well plate using live-cell chamber

of a Cellomics Arrayscan VTI (Thermo) at 10 × magnification using Target Activation Bioap-

plication. During image capturing, culture plate was placed in an incubation chamber to main-

tain appropriate environmental conditions (37˚C, 5% CO2). Images for mKeima was obtained

from fluorescent data by using these two excitation wavelengths (485 nm and 549 nm) and

emission at> 590 nm. Ratio of signal intensity (549 nm/485 nm) was used as an index of the

autophagic activity.

Statistical analysis

Data in this study were presented as mean ± standard deviation (S.D.) or standard error of

means (S.E.M.). Statistical analyses were conducted using PRISM 8 (GraphPad). Statistical sig-

nificance was evaluated by ANOVA (analysis of variance) followed by Bonferroni’s multiple

comparison test between groups. We considered p-values< 0.05 to be statistically significance.

Results

Generation of mKeima-LC3B-expressing transgenic mice

We microinjected NotI-restricted insert DNA (CAG_mKeima_LC3B_polyA) into B6-derived

fertilized eggs. These eggs were transplanted into the oviduct of recipient ICR mice. As a result,

a total of 60 pups was obtained. Among them, 4 mice (F0) were confirmed to carry the trans-

gene in their genome. From these F0 mice, 3 independent lines were successfully established

(Table 1). Copy numbers of transgene in KLC3_35_105, KLC3_35_106 and KLC3_44 lines

were estimated to be 80–100, 80–100 and 8 copies, respectively. To confirm the expression of

protein, we next performed western blot analysis of extracts from a variety of tissues. As a con-

trol, we also used GFP-LC3-tg mice [9, 10]. Although GFP-LC3 fusion protein was ubiqui-

tously and highly expressed in GFP-LC3-tg, mKeima-LC3B was rather preferentially expressed

in the central nervous system (CNS), hearts and muscles, but not in other peripheral tissues of

mKeima-LC3B-tg mice, with highest in KLC3_44 line (Fig 1A).

To obtain mouse lines that ubiquitously expressed mKeima-LC3B, we further injected the

same DNA construct to BDF1-derived fertilized eggs, followed by transplantation into the
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oviduct of recipient MCH(ICR) mice. As a result, a total of 115 pups was obtained. Among

them, 20 mice (F0) were confirmed to carry the transgene. Two out of 6 lines, which expressed

mKeima-LC3B in tail tissues, were further subjected to copy number analysis, revealing that

BDKLC3_10–4 and BDKLC3_17–1 lines carried 6 and 12 copies of the transgene, respectively

(Table 1). Next, we analyzed tissue distribution of mKeima-LC3B in these lines. Although

BDKLC3_10–4 line showed a similar expression pattern as did KLC3_44, BDKLC3_17–1 line

was confirmed to be ubiquitously expressed the mKeima-LC3B fusion protein (Fig 1B).

Effects of starvation on mKeima-LC3B in vivo
To study the effects of starvation in vivo, 2 lines of mKeima-LC3B-tg mice (KLC3_44 and

BDKLC3_17–1) were subjected to food-restriction study. After deprivation of food for 24 or

48 h, tissue samples were prepared from each mouse and analyzed the expression of mKeima-

LC3B and endogenous LC3 using anti-LC3 antibody. By western blot analysis, no visible lipi-

dated-form of LC3 (LC3-II) for mKeima-LC3B was observed not only in the CNS but also in

heart and muscles, even though strong bands representing mKeima-LC3B-I were evident.

Nonetheless, it is noted that increased level of endogenous LC3-II was observed in muscles

after 48 h of starvation, indicating that autophagy is upregulated, at least, in skeletal muscles in

response to food deprivation (Fig 2).

To further clarify autophagic response to starvation in vivo, we conducted immuno-histo-

chemical analysis using either anti-LC3 or anti-mKeima antibody. Previously, it has been

reported that food deprivation induces autophagy in the Purkinje cells and cortical neurons,

[25]. However, there are no such discernable evidences in mKeima-LC3B-tg mice (S2A–S2D

Fig). Instead, signals representing both endogenous LC3 and mKeima-LC3B were significantly

increased in motor neurons of the spinal cord (Fig 3A and S2E Fig), indicating that motor neu-

rons were highly responsive neurons to food deprivation in vivo. Regarding peripheral tissues,

although there were no visible increased signals in the heart (Fig 3B and 3C), dot-like struc-

tures appeared in skeletal muscle (Fig 3D), which was consistent with the previous report [9].

Effects of mutant SOD1 overexpression on mKeima-LC3B in vivo
We have previously shown that in double-tg SOD1H46R;GFP-LC3 mice, level of a lipidated-

form of GFP-LC3; i.e., GFP-LC3-II is significantly increased in the spinal cord as disease pro-

gresses [10], implying that GFP-LC3 is an excellent molecular marker to monitor the

Table 1. Summarized results of integrated copy number of transgene and the levels of protein expression in mKeima-LC3B transgenic lines.

Strain Line Copy numbers Protein expression # Selected line

B6 KLC3_35_105 80~100 n.d.

KLC3_35_106 80~100 n.d.

KLC4_44 ~8 1.00 ��

BDF1 BDKLC3_7–5 n.d. 4.80

BDKLC3_9–1 n.d. 1.40

BDKLC3_10–4 ~6 2.09 ��

BDKLC3_11–2 n.d. 0.56

BDKLC3_13–2 n.d. 0.66

BDKLC3_17–1 ~12 2.58 ��

# Relative values to mKeima-LC3B expression in tail tissue of KLC3_44 mouse.

n.d., not determined.

��, Selected line: Transgenic mouse lines used for further analyses in this study.

https://doi.org/10.1371/journal.pone.0234180.t001
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Fig 1. Tissue distribution of mKeima-LC3B fusion protein in mKeima-LC3B transgenic mice. (A) Western blot analysis of transgene-derived proteins (GFP-LC3

and mKeima-LC3B) and endogenous LC3 in wild-type (B6), GFP-LC3 transgenic (GFP-LC3) and 3 KLC3 lines of mKeima-LC3B transgenic [44 (hemi; hemizygote),

35_105 and 35_106] (see Table 1) mice. (B) Western blot analysis of mKeima-LC3B and endogenous LC3 in wild-type (B6), a KLC3 line of mKeima-LC3B transgenic

[44 (homo; homozygote)], and 2 BDKLC3 lines of mKeima-LC3B transgenic (10–4 and 17–1) (see Table 1) mice. Tissue samples analyzed are as follows: cerebral cortex

(cerebrum), midbrain + medulla + pons (MMP), spinal cord, cerebellum, heart, gastrocnemius (muscle), liver, ling, spleen, and kidney. Twenty μg of total proteins from

each tissue was subjected to SDS-PAGE and analyzed by immunoblotting using anti-LC3 antibody. GAPDH was used for a loading control. Positions of mKeima-LC3B

and endogenous LC3 are indicated. White and gray arrowheads shown on the right indicate a possible truncated mKeima-LC3B (indicated as mKeima-LC3’) and non-

specific bands, respectively. Size-markers are shown on the left.

https://doi.org/10.1371/journal.pone.0234180.g001
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autophagy-endolysosomal system in the CNS in vivo. To clarify whether mKeima-LC3B would

become an alternative and utilizable maker, we generated double-tg SOD1H46R;mKeima-LC3B

(KLC3_44) mice and analyzed mKeima-LC3B, endogenous LC3 and SQSTM1 in the brain

and spinal cord from pre-symptomatic as well as end-stage double-tg mice. Unexpectedly, lev-

els of a lipidated form of mKeima-LC3B (mKeima-LC3-II) were not changed by overexpres-

sion of mutant SOD1 despite of their advanced disease phenotypes (Fig 4A, 4D and 4E). By

contrast, ratio of endogenous LC3-II/LC3-1, as a marker of autophagosome formation, of the

same double-tg mice at end stage was significantly increased (Fig 4B, 4F and 4G). These results

indicate that mKeima-LC3B does not properly convert to the lipidated form in vivo even

Fig 2. Western blot analysis of LC3 in tissues from mKeima-LC3B transgenic mice under starvation conditions in vivo. Two lines of mKeima-LC3B transgenic

mouse (KLC3_44 and BDKLC3_17–1) were subjected to food-restriction study. Mice were fed ad libitum or deprived of food for either 24 or 48 h. Tissue samples

analyzed are as follows: cerebral cortex (cerebrum), midbrain + medulla + pons (MMP), spinal cord, cerebellum, heart and gastrocnemius (muscle). Protein extract

from whole body of a founder stillborn mouse (KLC3_56D) was also used (control). Five μg of total proteins from each tissue was subjected to SDS-PAGE and analyzed

by immunoblotting using anti-LC3 antibody. Positions of mKeima-LC3B and endogenous LC3-I and LC3-II are indicated. White and gray arrowheads shown on the

right indicate a possible truncated mKeima-LC3B (indicated as mKeima-LC3’) and non-specific bands, respectively. Size-markers are shown on the left.

https://doi.org/10.1371/journal.pone.0234180.g002
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Fig 3. Immunohistochemical analysis of LC3 in tissues from wild-type and mKeima-LC3B transgenic mice under

starvation conditions in vivo. (A) Lumbar spinal cord (L4-L5), (B and C) cardiac muscles and (D) skeletal muscle

(gastrocnemius), which were prepared from mKeima-LC3B transgenic (tg) mice under either fed (control) or starved

(48 h) conditions, were fixed and immunostained with anti-LC3 (α-LC3) or anti-mKeima (α-mKeima) antibody.

Mouse lines used in this analysis were (A) BDKLC3_17–1, (B) KLC3_44, (C) BDKLC3_17–1, and (D) BDKLC3_17–1.

Scale bars indicate (A, a-h) 200 μm, (A, a’-h’) 100 μm, (B, a-h) 200 μm, (C, a-h) 100 μm and (D, a-h) 100 μm.

https://doi.org/10.1371/journal.pone.0234180.g003
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though autophagy itself is dysregulated in the CNS, which is in stark contrast to GFP-LC3

[10]. It was also noted that SQSTM1 tended to be accumulated in the CNS of mKeima-LC3B-

tg mice, suggesting that overexpression of mKeima-LC3B alone induced proteostatic stress in
vivo (Fig 4C, 4H and 4I). Indeed, immunohistochemical analysis revealed that mKeima-LC3B-

positive aggregates were progressively accumulated in the spinal cord of SOD1H46R;mKeima-

LC3B mice (Fig 5), suggestive of an aggregate-prone nature of long-term overexpressed

mKeima-LC3B molecules. These data demonstrate that mKeima-fused LC3 may not be an

appropriate means to monitor the autophagy-endolysosomal system under stressed conditions

in vivo.

Effects of starvation on mKeima-LC3B in vitro
Next, we investigated whether mKeima-LC3B could become a useful tool to monitor the

autophagy-endolysosomal system in vitro. MEFs derived from wild-type, GFP-LC3-tg and

mKeima-LC3B-tg (line BDKLC3_17–1) mice were subjected to autophagic-flux analysis, in

which LC3-II levels in the presence or absence of lysosomal inhibitors were used as “autopha-

gomometer” [8]. Under starved conditions, levels of LC3-I, including GFP-LC3-I, mKeima-

LC3B-I and endogenous LC3-I, were gradually decreased over time (Fig 6A). Further, level of

SQSTM1 in mKeima-LC3B-expressing MEFs was initially decreased followed by restoring

back to the basal level during prolonged starvation (Fig 6A), consistent with the previous

report [26]. When cells were treated with CQ, levels of GFP-LC3-II and mKeima-LC3B-II

were increased (Fig 6A). Further, endogenous LC3-II in all tested cell types were comparably

increased (Fig 6A). These results indicate that degree of autophagic clearance was affected by

neither GFP-LC3 nor mKeima-LC3B overexpression, and thus that mKeima-LC3B-tg-derived

MEFs can normally respond to starvation like do GFP-LC3-tg-derived MEFs.

To confirm whether mKeima-LC3B fusion protein would show pH-dependent fluorescence

signals as anticipated [20], we analyzed the pH-sensitivity of mKeima-LC3B in mKeima-

LC3B-expressing MEFs. After fixation, fluorescence signals for mKeima were first detected,

and then fixed cells were treated with buffer solutions with different pH, followed by detecting

fluorescence signals again. For comparison, we also obtained the images for living-cells treated

with DMEM or EBSS. As a result, pH-dependent changes in mKeima-emitted fluorescence

signals representing either neutral pH (excitation at 458nm) or acidic pH (excitation at

561nm) were demonstrated, in which ratio of acidic/neutral signals were significantly changed

in a pH-dependent manner, particularly in the range between pH5 and pH8 (S3 Fig). Based on

these data, mKeima-LC3B could monitor a wide range of the maturation step of autophago-

somes into autolysosomes. Further, it was speculated that the pH value of mKeima-LC3B-con-

taining compartments under nutrient-rich conditions in living cells ranged from pH6 to pH7,

while those under starvation conditions were around pH5 (S3 Fig). Together, mKeima-LC3B

fusion protein properly shows pH-dependent fluorescence signals as previously reported [20].

To determine whether mKeima-LC3B-based monitoring for the autophagy-endolysosomal

system was compatible with high-throughput approaches, we analyzed mKeima-LC3B-

expressing MEFs using a flow cytometer. A clear shift in acidic/neutral ratio of detected clus-

ters were observed in live-cell analysis, in which neutral signal-dominated (Q1; 0.1%, Q3;

85.5%) and acidic signal-dominated (Q1; 15.9%, Q3; 8.3%) distributions were detected under

autophagy-suppressed (DMEM+CQ) and starved (EBSS) conditions, respectively, when com-

pared to normal nutrient-rich conditions (DMEM) (Q1; 4.9%, Q3; 38.1%) (Fig 6B–6D). These

results demonstrate that flow cytometry-based live-cell analysis of mKeima-LC3B can be appli-

cable to high-throughput screening approaches. Collectively, in contrast to in vivo (Fig 4),
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mKeima-LC3B must be a useful molecular reporter to monitor the autophagy-endolysosomal

system under cultured conditions in vitro.

Live-cell imaging of mKeima-LC3B-expressing MEFs under nutrient-rich

and starvation conditions

To clarify the intracellular behavior of mKeima-LC3B under nutrient-rich and starvation con-

ditions, we conducted a live-cell imaging of mKeima-LC3B in mKeima-LC3B-expressing

MEFs. We adopted an experimental setting in which cultured medium was repeatedly replaced

from DMEM (nutrient-rich) to EBSS (starvation), and then from EBSS back to DMEM. First,

we confirmed that medium change process itself did not affect the acidic/neutral signal ratio of

mKeima-LC3B-positive compartments (S1 Movie and S2 Movie). Surprisingly, when cultured

medium was repeatedly switched, acidic/neutral signal ratios were rapidly and reversibly

changed, indicating that pH in mKeima-LC3B-localizing compartments was dynamically

interchangeable between neutral and acidic ranges (Fig 7A, Fig 8A, S3 Movie and S4 Movie).

To confirm whether the fluctuations observed in mKeima-LC3B-positive signals actually

reflected the changes in the intralumenal pH, we performed a simultaneous staining with

acidic vesicles with LysoTracker. As expected, a majority of perinuclear LysoTracker-positive

vesicles representing late-endosomes, amphisomes and/or autolysosomes were also mKeima-

Fig 4. Effects of mutant SOD1 overexpression on autophagy-related proteins in vivo. (A-C) Western blot analysis of

mKeima-LC3B, endogenous LC3 and SQSTM1 in double transgenic [SOD1H46R;mKeima (KLC3_44)] and a single mKeima-

LC3B transgenic (mKeima) mice (KLC3_44). Three pre-symptomatic mice (Pre-smpt.; 13–23 weeks of age) and three end-stage

mice (24–26 weeks of age) and their age-matched mKeima-LC3B transgenic mice were used. Ten μg of total proteins from each

tissue [MMP (midbrain + medulla + pons) and spinal cord] was subjected to SDS-PAGE and analyzed by immunoblotting using

anti-LC3 and anti-SQSTM1 (p62) antibodies. Western blots for (A) mKeima-LC3B, (B) endogenous LC3 and (C) SQSTM1 are

shown. White arrowhead shown on the right of panel (A) indicates a possible truncated mKeima-LC3B (indicated as mKeima-

LC3’). GAPDH was used for a loading control. Positions of size-markers are shown on the left. (D-I) Quantification of signal

intensities in western blots. Ratios (in arbitrary unit; AU) of (D) mKeima-LC3-II/mKeima-LC3-I/GAPDH in MMP, (E)

mKeima-LC3-II/mKeima-LC3-I/GAPDH in the spinal cord, (F) endogenous LC3-II/LC3I/GAPDH in MMP, (G) endogenous

LC3-II/LC3I/GAPDH in the spinal cord, (H) SQSTM1/GAPDH in MMP and (I) SQSTM1/GAPDH in the spinal cord are

shown. Values are expressed as mean ± (S.D.). Individual data points are also shown. Statistical significance was evaluated by

one-way ANOVA with Bonferroni’s post hoc test; �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0234180.g004

Fig 5. Immunohistochemical analysis of LC3 in double transgenic mice expressing mutant SOD1 and mKeima-LC3B. Lumbar spinal cord (L4-L5)

tissues, which was prepared from (A, a, B, and b) two pre-symptomatic and (C, c, D and d) two end-stage double transgenic mice [SOD1H46R;mKeima

(KLC3_44)] expressing both mutant SOD1 (SOD1H46R) and mKeima-LC3B, were immunostained with anti-LC3 antibody. Scale bars indicate (A-D) 200 μm

and (a-d) 100 μm.

https://doi.org/10.1371/journal.pone.0234180.g005
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Fig 6. Effects of starvation on mKeima-LC3B fusion protein in MEFs. (A) Western blot analysis of GFP-LC3 and mKeima-LC3B (top panel), endogenous

LC3 (2nd panel) and SQSTM1 (3rd panel). MEFs prepared from GFP-LC3-tg, mKeima-LC3B-tg (BDKLC3_17–1) and wild-type mice were cultured in DMEM

followed by incubation in EBSS with or without 50 μM chloroquine (CQ) for indicated time-periods. Two-point three (2.3) μg of total proteins from each

sample was subjected to SDS-PAGE and analyzed by immunoblotting using anti-LC3 and anti-SQSTM1 antibodies. β-actin was used for a loading control.

Positions of GFP-LC3-I and -LC3-II are shown on the left. Positions of mKeima-LC3B-I and -LC3-II, endogenous LC3-I and LC3-II, and SQSTM1 are shown

on the right. White arrowheads shown on the right indicate a possible truncated mKeima-LC3B (indicated as mKeima-LC3’). Size-markers are shown on the

left. (B) Flow cytometric analysis of the fluorescent signals in wild-type (WT) MEFs treated with EBSS. Four quadrants (Q1-Q4) wereassigned based on the

distribution of background signals observed in WT MEFs, in which Q4 contained the maximum number of cells within its minimum area. (C) Flow
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LC3 positive. Further, they similarly showed pH-dependent fluorescence signals upon changes

in cultured media (Fig 7B, S4 Fig, S5 Movie, S6 Movie and S7 Movie). Notably, under pro-

longed starvation conditions; i.e., 60 to 120 min in EBSS, acidic signals in mKeima-LC3B-/

LysoTracker-positive vesicle compartments were further increased (Fig 7B), which was fully

consistent with previous findings [18]. These data suggest that a rapid and reversible change of

pH in LC3-positive autophagosomes and/or amphisomes may precede the vesicle-fusion-

based gradual acidification and maturation of autolysosomes.

Next, to further confirm such notions, we conducted a live-cell imaging using a high-reso-

lution Airyscan analysis and investigated the more detailed behavior of mKeima-LC3B-posi-

tive vesicles. Under nutrient-rich conditions (DMEM), acidic/neutral ratio of fluorescence

signals in mKeima-LC3B-positive vesicles was unchanged (S8 Movie). Under repeated-

exchanging conditions between nutrient-rich and starvation, acidic/neutral signal ratio was

rapidly and reversibly changed, in which the signal shifts of the inner-side of vesicular mem-

brane were more evident than those of the cytoplasmic face (Fig 7C, Fig 8B and S9 Movie).

Notably, such changes seemed to occur autonomously without committing the vesicular

fusion (Fig 7C, Fig 8B and S9 Movie). Quantification of these signal shifts using a high-content

analysis revealed that increased signal ratio by starvation reached maximum level within ~20

sec after challenging starvation medium (Fig 8C and S5 Fig). Further, such acidic signals were

reversed within ~10 sec when medium returned to nutrition-rich one (Fig 8C). These results

indicate that intraluminal pH of mKeima-LC3B-positive vesicles is rapidly changeable upon

nutritional conditions of culture media.

Finally, to test whether these rapid and reversible changes in intraluminal pH of mKeima-

LC3B-positive vesicles were associated with genuine maturation of autophagosomes and/or

endosomes, we conducted a live-cell imaging as well as quantification of acidic/neutral signals

for mKeima-LC3B in the presence or absence of CQ. Treatment with CQ resulted in a gradual

decrease of acidic/neutral signal ratio, whose levels were reached to minimum over ~ 6 min of

CQ treatment (Fig 9A and S10 Movie), indicating that deacidification by CQ proceeded much

slower than did by medium switch from EBSS to DMEM. Interestingly, when the medium was

changed from DMEM to EBSS+CQ, prior to CQ-dependent deacidification, a rapid and tran-

sient acidification was still observed (Fig 9B and S11 Movie). Fully-acidified mKeima-LC3B-

positive vesicles by EBSS were also similarly deacidified by CQ (Fig 9C, Fig 9D, S12 Movie and

S13 Movie). Further, vesicles under fully-deacidified conditions by CQ were rapidly reacidified

by EBSS treatment (Fig 9E, Fig 9F, S14 Movie and S15 Movie). Notably, MEFs with persistent

exposure to CQ were totally unresponsive to the medium switch from DMEM to EBSS; i.e.,

from DMEM+CQ to EBSS+CQ (S16 Movie). These results suggest that a rapidly changeable

intraluminal pH of mKeima-LC3B-positive vesicles depends, at least in part, on the process of

the authentic vacuolar-type H+-ATPase (V-ATPase)-linked maturation system of autophago-

somes and/or endosomes [27].

Discussion

We here established a number of tg mouse lines that were expressing the mKeima-LC3B chi-

meric protein as a possible novel means for monitoring the autophagy-endolysosomal system.

By conducting a series of in vivo as well as in vitro experiments, we revealed that mKeima-

LC3B could be a sensitive reporter molecule for monitoring the autophagy-endolysosomal

cytometric analysis of the mKeima-derived fluorescent signals in mKeima-LC3B-expressing MEFs. Data of MEFs treated with DMEM, DMEM + 50 μM CQ

and EBSS (starvation) are shown. Horizontal and vertical axes indicate the emission signal intensities of mKeima at neutral (Comp-Qdot 655-A) and acidic

(Comp-PE-Tx-Red-YG-A) pH, respectively. (D) Comparative analysis of the mKeima-derived fluorescent signals obtained from panel B.

https://doi.org/10.1371/journal.pone.0234180.g006

PLOS ONE Monitoring the autophagy-endolysosomal system using monomeric Keima-fused LC3

PLOS ONE | https://doi.org/10.1371/journal.pone.0234180 June 8, 2020 16 / 29

https://doi.org/10.1371/journal.pone.0234180.g006
https://doi.org/10.1371/journal.pone.0234180


PLOS ONE Monitoring the autophagy-endolysosomal system using monomeric Keima-fused LC3

PLOS ONE | https://doi.org/10.1371/journal.pone.0234180 June 8, 2020 17 / 29

https://doi.org/10.1371/journal.pone.0234180


system under in vitro cultured conditions. However, the use of mKeima-LC3B-tg mice may

not be appropriate due to an aggregate-prone nature of overexpressed mKeima-LC3B in vivo,

particularly in the brain.

Since dysfunction of the autophagy-endolysosomal system is thought to be associated with

many pathological conditions such as cancer, inflammation and neurodegenerative diseases, it

must be very important to properly and precisely understand each step of the autophagy-endo-

lyosomal system, which includes the autophagosome formation, maturation and degradation.

Thus far, LC3 tagged with a green fluorescent protein, GFP-LC3, has mostly been utilized to

detect the formation of autophagosomes not only in cells but also at an in vivo level [9]. None-

theless, there are still some shortcomings to monitor the flux throughout the entire autophagic

system using this fusion protein due to its vulnerability to acidic conditions. To overcome

such weaknesses, a number of improved molecular probes, such as RFP-GFP-LC3 [12–14],

mCherry-EGFP-LC3 [15], GFP-LC3-RFP-LC3ΔG [16], mTagRFP-mWasabi-LC3 [17] and

pHluorin-mKate2-tagged LC3 [18], has been developed thus far. In this study, we newly devel-

oped an alternative marker; i.e., mKeima-LC3B, for monitoring the autophagy-endolysosomal

activity, and investigated its usefulness in in vivo animal as well as in vitro cell culture studies.

Previously, it has been shown that GFP-LC3-expressing tg mice is a useful tool to study

autophagic responses to starvation in vivo [9]. We and others have also demonstrated that

GFP-LC3 emerges as a sensitive molecular marker to monitor the progression of disease in an

ALS mouse model in vivo [10, 11]. Therefore, to prove as to whether mKeima-LC3B could

response to stresses including food deprivation and neurodegeneration, we conducted a series

of in vivo studies. Unexpectedly, our results clearly demonstrated that unlike endogenous LC3

or GFP-LC3, mKeima-LC3B did not properly respond to these stresses, even though autop-

hagy itself was dysregulated in corresponding mice. Notably, extended expression of mKeima-

LC3B rather seemed to result in accelerated proteolytic stresses, particularly, in the CNS. Since

the mKeima protein may have some intrinsically aggregate-prone properties conferring resis-

tance to acidic conditions [20], it is speculated that mKeima-LC3 is less-efficiently degraded in

autolysosomes and/or lysosomes as previously reported [28]. Taken together, mKeima-fused

LC3-expressing animals may not be an appropriate tool to monitor the autophagy-endolysoso-

mal system under stressed conditions in vivo.

Contrary to in vivo experiments, we were able to show that mKeima-LC3B could be utilized

to sensitively monitor the dynamic changes of maturation states in the autophagy-endolysoso-

mal system in cultured cells. It has been reported that pH value of the cytosol ranges between

7.2 and 7.6 [29, 30]. It is also estimated that the intralumenal pH of nascent autophagosomes is

close to that of the cytosol. On the other hand, the intralumenal pH of other organelle and vesi-

cles are varied, in which the endoplasmic reticulum, cis-Golgi, trans-Golgi, secretory vesicles,

Fig 7. Effects of starvation on mKeima-LC3B-positive vesicular compartments in MEFs. (A) Representative images

of mKeima-LC3B-expressing MEFs. MEFs prepared from mKeima-LC3B-tg mice (BDKLC3_17–1) were cultured in

DMEM. After incubation in DMEM for 2 min, medium was repeatedly changed from DMEM to EBSS and from EBSS

to DMEM every 80 sec. Images in each row represent as follows: upper row; Neutral (mKeima; ex. 458 nm, green), 2nd

row; Acidic (mKeima; ex. 561 nm, red), 3rd row; Merge (mKeima; Neutral + Acidic) and lower row; ratio [mKeima;

561 nm (Acidic)/458 nm (Neutral)]. Scale bars indicate 40 μm. (B) Representative images of mKeima-LC3B and

LysoTracker double-positive vesicles. MEFs prepared from mKeima-LC3B-tg mice were cultured in DMEM. After

incubation in DMEM for 1 min, medium was repeatedly changed from DMEM to EBSS and from EBSS to DMEM

every 80 sec. Images in each row represent as follows: upper row; Neutral (mKeima; ex. 458 nm, green), 2nd row;

Acidic (mKeima; ex. 561 nm, red), 3rd row; Merge (mKeima; Neutral + Acidic), 4th row; ratio [mKeima; 561 nm

(Acidic)/458 nm (Neutral)], 5th row; LysoT (LysoTracker blue; ex. 405 nm, blue) and lower row; Merge [mKeima

(Neutral + Acidic) + LysoTracker blue]. Scale bars indicate 20 μm. (C) Representative high-resolution images of

mKeima-LC3B-positive vesicles by Airyscan analysis. Merged images (mKeima; Neutral + Acidic) are shown. Scale

bars indicate 0.5 μm.

https://doi.org/10.1371/journal.pone.0234180.g007
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early endosomes, recycling endosomes, late endosomes and lysosomes are estimated to be

~7.2, ~6.7, ~6.0, 5.2–5.7, ~6.3, ~6.5, ~6.0 and ~5.5, respectively [31]. Since ratio of the bimodal

excitation fluorescent spectrum (acidic/neutral) of mKeima-LC3B allowed to determine the

approximate pH values ranging between pH5 and pH8, estimating the maturation states of

mKeima-LC3B-resided compartments, especially autophagosomes, endosomes and lysosomes,

in cells might be possible. Indeed, in this study, we can estimate that the pH value of mKeima-

LC3B-containing compartments in living MEFs under nutrient-rich conditions ranges from

pH6 to pH7, while those under starvation conditions are around pH5.

One of the remarkable findings in this study is that although the full maturation of autopha-

gosomes by the fusion with lysosomes seems to be slow (in a range of hours) as has previously

been reported [18], changes of pH in mKeima-LC3B-positive vesicles is rather very rapid (in a

range of seconds). Furthermore, to our surprise, the intraluminal pH of mKeima-LC3B-posi-

tive vesicles is reversibly changeable upon nutritional conditions of culture media. Impor-

tantly, these shifts are completely suppressed by the CQ treatment. Thus, a rapid and

reversible change of pH in mKeima-LC3-positive autophagosomes observed in this study is

likely to rely on the function of genuine vesicular proton pumps, which may precede the vesi-

cle-fusion-based gradual acidification and ultimate irreversible maturation of autolysosomes.

It has been well studies on the relationship between amino acid starvation and the activa-

tion of autophagy [1]. Amino acid starvation promotes the formation of unc-51-like kinase 1

(ULK1)-/LC3-/SQSTM1-positive nascent autophagosomes, which is regulated by the mecha-

nistic target of rapamycin (mTOR) complex 1 (mTORC1)-mediated sensing of amino acids.

Resulting autophagosomes sequentially mature through multiple steps comprising of vesicle

fusion with endosomes (to form amphisomes) and/or lysosomes (to form autolysosomes).

Over such maturation steps, the vesicular proton pump V-ATPase, which is localized not only

on lysosomal membrane but also on most of endocytic vesicles, plays an essential role in the

intralumenal acidification [27]. Activity of V-ATPase is regulated by many different mecha-

nisms, which includes the association of the catalytic V1 domain with the membrane-associ-

ated V0 domain, the coupling efficiency between ATP hydrolysis and proton translocation,

and the interaction with specific lipid environments [32]. Recently, it has been revealed that a

reversible assemble of V-ATPase; i.e., the association and dissociation of V1 and V0, in

response to the changes in amino acid levels is linked to the luminal pH and the catalytic activ-

ity of V-ATPase, but not to the phosphatidylinositol-3 kinase (PI3K) and mTORC1 activities

[33]. Thus, since autophagosome-lysosome fusion itself is also independent of the V-ATPase-

mediated acidification [34], it is highly likely that the activation of V-ATPase prior to lysosome

fusion leads to rapid acidification of mKeima-LC3B-positive vesicles. However, at present, the

exact molecular pathway, which is responsible for the amino acid starvation-induced

Fig 8. Live-cell analysis of MEFs expressing mKeima-LC3B. (A) Representative live-cell time-lapse images of MEFs expressing

mKeima-LC3B (related to Fig 7A). MEFs prepared from mKeima-LC3B-tg mice (BDKLC3_17–1) were cultured in DMEM. After

incubation in DMEM for 2 min, medium was repeatedly changed from DMEM to EBSS and from EBSS to DMEM every 80 sec.

Images (Z-stack = 2) were captured every 4 sec. Images in each row represent as follows: upper row; Neutral (mKeima; ex. 458 nm,

green), 2nd row; Acidic (mKeima; ex. 561 nm, red), 3rd row; Merge (mKeima; Neutral + Acidic) and lower row; ratio [mKeima; 561 nm

(Acidic)/458 nm (Neutral)]. Lap-times and medium conditions are shown in the top and bottom, respectively. (B) Representative high-

resolution live-cell time-lapse images of mKeima-LC3B-positive vesicles under transitional conditions from nutrient-rich (DMEM) to

starvation (EBSS) and from starvation (EBSS) to nutrient-rich (DMEM) states (related to Fig 7C). Images were captured every 300

msec. Lap-times are shown in the top. Blue and pink bars shown in the bottom indicate the incubation period with DMEM and EBSS,

respectively. Gray bar indicates the period of medium exchange. (C) Quantitative analysis of changes in mKeima-derived fluorescent

signal ratio (Acidic/Neutral) under transitional conditions from nutrient-rich (DMEM) to starvation (EBSS) and from starvation

(EBSS) to nutrient-rich (DMEM) states. Data were captured for a total of 500 sec at 1 sec intervals [observed field; n = 39 (total number

of cells; n� 480)]. Values are expressed as mean ± (S.E.M.).

https://doi.org/10.1371/journal.pone.0234180.g008
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Fig 9. Quantitative analysis of changes in mKeima-derived fluorescent signal ratio in the presence of chloroquine. Changes in mKeima-derived fluorescent signal

ratio (Acidic/Neutral) under transitional conditions from (A) nutrient-rich (DMEM) to DMEM + 50 μM chloroquine (CQ) (observed field; n = 5, total number of cells;

n� 60), (B) DMEM to starvation (EBSS) +CQ (observed field; n = 4, total number of cells; n� 50), (C) EBSS to DMEM + CQ (observed field; n = 6, total number of

cells; n� 70), (D) EBSS to EBSS + CQ (observed field; n = 4, total number of cells; n� 50), (E) DMEM + CQ to DMEM (observed field; n = 7, total number of cells; n�

70) and (F) DMEM + CQ to EBSS (observed field; n = 5, total number of cells; n� 60) states are shown. Values are expressed as mean ± (S.E.M.).

https://doi.org/10.1371/journal.pone.0234180.g009
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activation of V-ATPase and thus rapid acidification (~ within 20 sec) of these vesicles, remains

unclear.

One perplexing but important question arising from this study includes as to how a rapid

deacidification (~ within 10 sec) of mKeima-LC3B-resided compartments occurs by changing

the media from EBSS back to DMEM. When we added CQ to cell cultures, the deacidification

of mKeima-LC3B-positive vesicles gradually and directionally proceeded from the peripheral

to center of the cell over ~6 min (see Fig 9D and S13 Movie), indicative of a slow penetration

of CQ into the cells. Conversely, it is reasonable to assume that rapid and synchronized deacid-

ification of mKeima-LC3B-positive vesicles is rather mediated by virtue of a certain signaling

pathway to sense the amino acid repletion in culture media. Thus far, besides V-ATPase, the

alkali cation/proton exchanger SLC9A6/NHE6, whose mutations are linked to Christianson

syndrome, is known to be implicated in the intraluminal pH homeostasis in endocytic vesicles,

namely in recycling endosomes [35]. However, to the best of our knowledge, there have been

no studies demonstrating the active-deacidification of autophagosomes and/or endocytic vesi-

cles. On the other hand, it has been reported that the activity of V-ATPase itself in the endocy-

tic pathway is reversibly regulated [32]. Interestingly, the intracellular concentration of

calcium ions was also reversibly changed by responding to the presence and/or absence of

amino acids in culture media, in which the addition and withdrawal of amino acids result in

decrease and increase of intracellular calcium concentrations, respectively [36]. Although the

authors in this interesting study have claimed that increased calcium ions activate Ca2+/cal-

modulin-dependent kinase kinase (CaMKK) and AMP-activated protein kinase (AMPK) with

concomitant inhibition of mTORC1, thereby inducing autophagy (in a range of hours), the

response of decrease in the intracellular calcium concentration to amino acid supplement was,

in fact, remarkably rapid (in a range of seconds) [36] as we observed in DMEM-induced rapid

deacidification. It is also notable that the vesicular pH (pH6-7) is further shifted towards alka-

line pH (~pH8) when CQ is added to DMEM (see Fig 9A and S10 Movie), indicating that the

moderate but persistent activation of V-ATPase occurs to maintain the physiological pH

(pH6-7) in autophagosomes and/or endocytic vesicles even under nutrition-rich conditions.

Based on these notions, we hypothesize two possible mechanisms to explain the rapid

deacidification of mKeima-LC3B-resided compartments by changing culture media from

EBSS to DMEM. First, amino acid repletion can trigger a rapid decline of the V-ATPase activ-

ity via certain signaling pathways; e.g., calcium ion-mediated signaling. Consequently, the abil-

ity to maintain an intraluminal acidity is instantly lost, resulting in autophagosomes and/or

endocytic vesicles with homeostatic neutral pH (pH6-7) within ~10 sec. Second, there may

exist a yet-to-be-identified active deacidification mechanism that responds to extracellular

amino acids. However, at this stage, we could not fully explain the mechanism and/or signaling

pathway for these rapid-reversible phenomena in an evidence-based manner.

Another issue that has yet to be addressed is the exact and/or precise definition of the

mKeima-LC3B-labeled compartments. It has been well described that endocytic pathway and

autophagic pathway are interrelated [37, 38]. In addition, several recent studies have demon-

strated that LC3-positive vesicles include not only autophagosomes and amphisomes [21] but

also endosomes derived through distinct endocytic pathways, such as LC3-associated phagocy-

tosis (LAP) [39], LC3-associated endocytosis (LANDO) [40] and LC3-conjugated multivesicu-

lar bodies containing extracellular vesicles to be secreted [41]. Thus, it is possible that

mKeima-LC3B-positive vesicles include other than autophagosomes and/or amphisomes. To

precisely and distinctly define mKeima-LC3B-positive compartments, development an addi-

tional set of specific vesicular markers with fluorophore, which can be simultaneously used

with mKeima, will be required.

PLOS ONE Monitoring the autophagy-endolysosomal system using monomeric Keima-fused LC3

PLOS ONE | https://doi.org/10.1371/journal.pone.0234180 June 8, 2020 22 / 29

https://doi.org/10.1371/journal.pone.0234180


In conclusions, the intralumenal pH of mKeima-LC3B-residing compartments, probably

autophagosomes, endosomes and autolysosomes, can be rapidly and reversibly changed upon

nutritional conditions. Currently, it has been believed that the maturation of autophagosomes

toward autolysosomes and/or lysosomes is the one-way directional pathway [1, 6, 7]. However,

it is possible that at some stages of maturation, autophagosomes and/or endosomes still place

in undetermined fate before tilting toward the irreversible maturation step of vesicular com-

partments. Currently, the physiological meaning of such reversible rapid changes of the intra-

lumenal pH is unclear. In order to answer these questions, further studies will be required.

Detailed characterization of autophagosome maturation step by using mKeima-LC3B as a

molecular probe will give us more clues to understanding the autophagy-endolysosomal pro-

cess in the manifestation of many physiological as well as pathological conditions.

Supporting information

S1 Fig. Schematic diagram of transgene construct for mKeima-LC3B transgenic mouse.

Transgene construct consists of cytomegalovirus enhancer (E), chicken β-actin promoter

(Pro), rabbit β-globin splice acceptor (S), mKeima-Red cDNA, full-length human MAP1LC3B

cDNA (LC3B), and rabbit β-globin poly A (Poly A). Positions of restriction enzymes used for

cloning and primers for genotyping are shown.

(TIF)

S2 Fig. Immunohistochemical analysis of LC3 in tissues from wild-type and mKeima-

LC3B transgenic mice under starvation conditions. (A) Cerebral cortex, (B) hippocampus,

(C) cerebellum, (D) pons (facial nucleus), and (E) lumbar spinal cord (L4-L5), which were pre-

pared from wild-type and mKeima-LC3B transgenic (tg) mice under either fed (control) or

starved (48 h) conditions, were fixed and immunostained with anti-LC3 (α-LC3) or anti-

mKeima (α-mKeima) antibody. Mouse lines used in this analysis were (A-D) BDKLC3_17–1

and (E) KLC3_44. Scale bars indicate (A, a-f) 200 μm, (A, g-l) 100 μm, (B, a-f) 200 μm, (B, g-l)

100 μm, (C, a-f) 200 μm, (C, g-l) 100 μm, (D, a-f)) 200 μm, (D, g-l) 100 μm, and (E) 200 μm.

(TIF)

S3 Fig. The pH sensitivity of mKeima-LC3B. After fixation, fluorescent signals for mKeima

in mKeima-LC3B-expressing MEFs, which were prepared from mKeima-LC3B-tg mice

(BDKLC3_17–1), were detected (Pre). Then, fixed cells were buffered at (A) pH 4.0, (B) pH

5.0, (C) pH 6.0, (D) pH 7.0, (E) pH 8.0, or (F) pH 9.0, or treated with (G) EBSS (pH 7.4–7.6),

followed by detection of fluorescent signals (Post). (H) For comparison, images for living cells

treated with DMEM or EBSS are shown. Scale bars indicate 50 μm.

(TIF)

S4 Fig. Representative live-cell time-lapse images of MEFs expressing mKeima-LC3B.

MEFs prepared from mKeima-LC3B tg mice (BDKLC3_17–1) were cultured in DMEM. After

incubation in DMEM for 1 min, medium was repeatedly changed from DMEM to EBSS and

from EBSS to DMEM every 80 sec. Images (Z-stack = 1) were captured every 2.5 sec. Images

in each row represent as follows: upper row; Neutral (mKeima; ex. 458 nm, green), 2nd row;

Acidic (mKeima; ex. 561 nm, red), 3rd row; Merge (mKeima; neutral + acidic), 4th row; ratio

[mKeima; 561 nm (acidic)/458 nm (neutral)], 5th row; LysoT (LysoTracker blue; ex. 405 nm,

blue), and lower row; Merge [mKeima (neutral + acidic) + LysoTracker blue]. Lap-times and

medium conditions are shown in the top and bottom, respectively. As a negative control,

images of wild-type MEFs cultured in DMEM are also shown. Scale bar indicates 20 μm.

(TIF)
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S5 Fig. Quantitative analysis of changes in mKeima-derived fluorescent signal ratio

(related to Fig 8). Changes in mKeima-derived fluorescent signal ratio (Acidic/Neutral)

under transitional conditions from nutrient-rich (DMEM) to starvation (EBSS) states are

shown. Two independent experiments, in which data were captured for 100 sec at 1 sec inter-

vals [EBSS 1st (magenta circle); observed field; n = 29 (total number of cells; n� 350) and

EBSS 2nd (yellow circle); observed field; n = 55 (total number of cells; n� 670)], were per-

formed. Signal ratio under nutrient-rich conditions [DMEM (blue circle); observed field;

n = 50 (total number of cells; n� 610)] was also monitored as a control. Values are expressed

as mean ± (S.E.M.).

(TIF)

S1 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under conditions with

repeated changes in nutrient-rich medium (DMEM). After incubation in DMEM for 60

min, medium was changed from DMEM to fresh DMEM. Merged images (Z-stack = 2) for

mKeima signals [neutral (green) + acidic (red)] were captured every 5 sec. Scale bar indicates

20 μm.

(MOV)

S2 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under conditions with

repeated changes in starvation medium (EBSS). After incubation in EBSS for 60 min,

medium was changed from EBSS to fresh EBSS. Merged images (Z-stack = 2) for mKeima sig-

nals [neutral (green) + acidic (red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S3 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under nutrient-rich con-

ditions (DMEM) (related to Figs 7 and 8). Merged images (Z-stack = 2) for mKeima signals

[neutral (green) + acidic (red)] were captured every 4 sec. Scale bar indicates 20 μm.

(MOV)

S4 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under conditions with

repeated changes in media between nutrient-rich (DMEM) and starvation (EBSS) states

(related to Figs 7 and 8). After incubation in DMEM for 2 min, medium was repeatedly

changed from DMEM to EBSS and from EBSS to DMEM every 80 sec. Merged images (Z-

stack = 2) for mKeima signals [neutral (green) + acidic (red)] were captured every 4 sec. Scale

bar indicates 20 μm.

(MOV)

S5 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under conditions with

repeated changes in media between nutrient-rich (DMEM) and starvation (EBSS) states

(related to Fig 7). After incubation in DMEM for 1 min, medium was repeatedly changed

from DMEM to EBSS and from EBSS to DMEM every 80 sec. Images for LysoTracker blue (Z-

stack = 1) (blue) were captured every 2.5 sec. Scale bar indicates 10 μm.

(MOV)

S6 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under nutrient-rich con-

ditions (DMEM) (related to Fig 7). Merged images (Z-stack = 1) for signals of mKeima [neu-

tral (green) and acidic (red)] and LysoTracker blue (blue) were captured every 2.5 sec. Scale

bar indicates 10 μm.

(MOV)

S7 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under conditions with

repeated changes in media between nutrient-rich (DMEM) and starvation (EBSS) states
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(related to Fig 7). After incubation in DMEM for 1 min, medium was repeatedly changed

from DMEM to EBSS and from EBSS to DMEM every 80 sec. Merged images (Z-stack = 1) for

signals of mKeima [neutral (green) and acidic (red)] and LysoTracker blue (blue) were cap-

tured every 2.5 sec. Scale bar indicates 10 μm.

(MOV)

S8 Movie. A time-lapse movie of mKeima-LC3B-positve vesicles under nutrient-rich con-

ditions (DMEM) (related to Figs 7 and 8). Merged images for mKeima signals [neutral

(green) and acidic (red)] were captured every 300 msec. Scale bar indicates 0.5 μm.

(MOV)

S9 Movie. A time-lapse movie of mKeima-LC3B-positve vesicles under conditions with

repeated changes in media between nutrient-rich (DMEM) and starvation (EBSS) states

(related to Figs 7 and 8). Medium was repeatedly changed from DMEM to EBSS and from

EBSS to DMEM every 80 sec. Merged images for mKeima signals [neutral (green) and acidic

(red)] were captured every 300 msec. Scale bar indicates 0.5 μm.

(MOV)

S10 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from nutrient-rich (DMEM) to DMEM + 50 μM chloroquine (CQ) states (related

to Fig 9A). After incubation in DMEM for 80 sec, medium was changed from DMEM to

DMEM + CQ. Merged images (Z-stack = 2) for mKeima signals [neutral (green) + acidic

(red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S11 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from nutrient-rich (DMEM) to starvation (EBSS) + 50 μM chloroquine (CQ) states

(related to Fig 9B). After incubation in DMEM for 80 sec, medium was changed from

DMEM to EBSS + CQ. Merged images (Z-stack = 2) for mKeima signals [neutral (green)

+ acidic (red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S12 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from starvation (EBSS) to nutrient-rich (DMEM) + 50 μM chloroquine (CQ) states

(related to Fig 9C). After incubation in EBSS for 60 min, medium was changed from EBSS to

DMEM + CQ. Merged images (Z-stack = 2) for mKeima signals [neutral (green) + acidic

(red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S13 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from starvation (EBSS) to EBSS + 50 μM chloroquine (CQ) states (related to Fig

9D). After incubation in EBSS for 60 min, medium was changed from EBSS to EBSS + CQ.

Merged images (Z-stack = 2) for mKeima signals [neutral (green) + acidic (red)] were captured

every 5 sec. Scale bar indicates 20 μm.

(MOV)

S14 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from nutrient-rich (DMEM) + 50 μM chloroquine (CQ) to DMEM states (related

to Fig 9E). After incubation in DMEM + CQ for 60 min, medium was changed from DMEM

+ CQ to DMEM. Merged images (Z-stack = 2) for mKeima signals [neutral (green) + acidic

(red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)
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S15 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from nutrient-rich (DMEM) + 50 μM chloroquine (CQ) to starvation (EBSS) states

(related to Fig 9F). After incubation in DMEM + CQ for 60 min, medium was changed from

DMEM + CQ to EBSS. Merged images (Z-stack = 2) for mKeima signals [neutral (green)

+ acidic (red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S16 Movie. A time-lapse movie of MEFs expressing mKeima-LC3B under transitional con-

ditions from nutrient-rich (DMEM) + 50 μM chloroquine (CQ) to starvation (EBSS)

+ 50 μM chloroquine (CQ) states. After incubation in DMEM + CQ for 60 min, medium was

changed from DMEM + CQ to EBSS + CQ. Merged images (Z-stack = 2) for mKeima signals

[neutral (green) + acidic (red)] were captured every 5 sec. Scale bar indicates 20 μm.

(MOV)

S1 File. Uncropped images for immunoblots. Immunoreactivities were visualized with

Immobilon-Western Chemiluminescent HRP Substrate (Millipore) and analyzed using Ez-

Capture Analyzer (ATTO).

(PDF)
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