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Background: Neuroimaging studies have shown that the high synchrony of spontaneous 
neural activity in the homotopic regions between hemispheres is an important functional 
structural feature of normal human brains, and this feature is abnormal in the patients 
with various mental disorders. However, little is known about this feature in obsessive–
compulsive disorder (OCD). This study aimed to further analyze the underlying neural 
mechanisms of OCD and to explore whether clinical characteristics are correlated with 
the alerted homotopic connectivity in patients with OCD.

Methods: Using voxel-mirrored homotopic connectivity (VMHC) during resting state, we 
compared 46 OCD patients and 46 healthy controls (HCs) matched for age, gender, 
and education level. A partial correlation analysis was used to investigate the relationship 
between altered VMHC and clinical characteristics in patients with OCD.

Results: Patients with OCD showed lower VMHC than HCs in fusiform gyrus/inferior 
occipital gyrus, lingual gyrus, postcentral gyrus/precentral gyrus, putamen, and orbital 
frontal gyrus. A significant positive correlation was observed between altered VMHC in the 
angular gyrus/middle occipital gyrus and illness duration in patients.

Conclusions: Interhemispheric functional imbalance may be an essential aspect of the 
pathophysiological mechanism of OCD, which is reflected not only in the cortico-striato-
thalamo-cortical (CSTC) loop but also elsewhere in the brain.

Keywords: obsessive–compulsive disorder (OCD), r-fMRI, functional connectivity (FC), interhemispheric functional 
connectivity, homotopic connectivity, voxel-mirrored homotopic connectivity (VMHC)

INTRODUCTION

Resting-state functional magnetic resonance imaging (r-fMRI) technology indirectly reflects the 
intrinsic, spontaneous neural activity of the brain and can be used to measure resting-state functional 
connectivity (RSFC) between brain regions directly (1). Voxel-mirrored homotopic connectivity 
(VMHC) is an R-fMRI analysis method proposed by Zuo XN in recent years (2). VMHC quantifies 
the RSFC between each voxel in one hemisphere and its mirrored counterpart in the other hemisphere 
(i.e., homotopic RSFC). R-fMRI studies have discovered the high synchronicity of spontaneous 
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activity between homotopic regions in healthy human brains, 
showing regional differences consistent with brain function levels 
(3, 4). Furthermore, a VMHC study using a large sample of healthy 
subjects (214 cases) demonstrated a robust homotopic RSFC 
architecture that exhibits regionally specific age- and sex-related 
changes across the lifespan (2). Therefore, high synchronicity 
of spontaneous neural activity between homotopic regions is 
considered an important feature of normal brain function.

Obsessive–compulsive disorder (OCD) is a common, typically 
chronic disorder marked by intrusive and disturbing thoughts 
(obsessions) and repetitive behaviors (compulsions) that the 
person feels driven to perform (5). The lifetime prevalence is about 
1–3%. The patients understand that these compulsive symptoms 
are unreasonable, unnecessary, but they are unable to control or 
get rid of them, thus falling into anxiety and pain (6). Furthermore, 
OCD is characterized by intense emotional arousal and executive 
control impairments (7). These two mechanisms influence 
each other and are responsible for maintaining the obsessive–
compulsive cycle (8). Although the exact pathophysiological 
mechanism of OCD is not fully understood, it is currently 
considered to be closely related to alterations in the cortico-
striato-thalamo-cortical (CSTC) circuitry, which includes some 
main gray matter (GM) nodes such as the orbitofrontal cortex 
(OFC), dorsolateral prefrontal cortex (DLPFC), anterior cingulate 
cortex (ACC), striatum, and thalamus (9, 10). The majority of 
previous OCD r-fMRI studies tended to use seed-based FC 
analyses with a focus on local abnormalities, especially within the 
fronto-striatal circuit. Recently, studies using the VMHC method 
explored altered homotopic RSFC in a variety of mental illnesses, 
such as depression, schizophrenia, sleep disorder, dementia, 
addiction barrier, bipolar disorders, and phobia (11–17). However, 
little is known about changes in the homotopic RSFC in OCD. 
Some early studies have suggested that OCD patients may have 
interhemispheric structural and functional abnormalities. Two 
studies on interhemispheric structural connectivity of the OCD 
patients found that abnormal corpus callosum (CC) morphology 
and fractional anisotropy (FA) (18, 19). Both increased and 
decreased FA values in the CC were reported in a meta-analysis 
of Diffusion tensor imaging (DTI) studies on OCD (20), which 
suggested that changes in the microstructure of the CC may be 
involved in the process of obsessions and compulsions (21). It is 
noteworthy that a neuropsychological study of OCD found that 
microstructural damage was significantly associated with cognitive 
performance in intra-hemispheric bundles but not in CC (22). 
Some Electroencephalography (EEG) studies found that compared 
with healthy controls (HCs), OCD patients had abnormal electrical 
activity on one side of the hemisphere (23–25) (left hemisphere or 
right hemisphere). A study of transcranial magnetic stimulation 
(TMS) found that stimulation of the right DLPFC resulted in the 
relief of OCD symptoms, while stimulation of the left DLPFC did 
not resolve (26). Additionally, a Positron emission tomography 
(PET) study found that left and right hemisphere DLPFC showed 
opposite perfusion responses in acute symptomatic OCD patients 
(27). Evidence from neurosurgery indicated that symptomatic 
improvements were observed in patients with OCD after right 
anterior capsulotomy, but not after left anterior capsulotomy (28, 
29). Nonetheless, the deficits in these patients seem not to be related 

to a specific lateralized dysfunction of a particular hemisphere, but 
probably due to a functional inter-hemisphere imbalance (30). 
Although all of the above findings suggested that there may be a 
special interhemispheric functional effect in OCD patients, there is 
almost no R-fMRI study that specifically clarify clarifies what is the 
interhemispheric functional connectivity pattern of OCD patients 
compared to healthy controls.

In this study, we used R-fMRI combined with the VMHC 
approach to explore changes in homotopic connectivity in 
OCD patients. We compared the VMHC differences between OCD 
patients and HCs, and between treated and drug-naive OCD 
patients. The aims of this study were to verify that OCD patients 
had significant VMHC abnormalities (31) and to examine whether 
medical treatment affects the altered VMHC in OCD. Moreover, 
we expected to explore a relationship between altered VMHC 
values and the clinical characteristics of OCD patients.

MATERIALS AND METHODS

Participants
This study has been approved by the Ethics Committee of 
Kunming Medical University (ClinicalTrials.gov: NCT01298622). 
The researchers introduced all participants to the purpose, 
content, potential risks, and benefits of the study; the principle of 
voluntary participation; and the anonymity and confidentiality 
of the research. All participants signed informed consent.

A total of 49 OCD patients (including the outpatients and 
inpatients) were recruited from the First Affiliated Hospital of 
Kunming Medical University from October 2011 to December 
2016. Inclusion criteria were as follows: a) comply with Diagnostic 
and Statistical Manual of Mental Disorders—Fourth Edition 
(DSM-IV) criteria for OCD based on the Structured Clinical 
Interview; b) Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) 
total score ≥16 points, and Hamilton Depression Rating Scale 
(HAMD) score <18 points; c) age ranges from 18 to 60 years old; 
d) preference for using the right hand; e) all the OCD patients’ 
patients’ obsessive–compulsive symptoms were not caused by 
another mental disorder or physical disease; f) exclude organic 
brain diseases and major physical illnesses; g) no metal implants 
in the body. When performing MRI scans, 25 of them are first-
episode untreated patients; 24 had received psychiatric medication 
for more than 4 weeks. The vast majority of the drugs taken by 
24 patients are SSRI (selective serotonin reuptake inhibitors) 
drugs. Of the 24 patients, 9 patients took sertraline, 5 patients 
took multiple drugs (two kinds of SSRI and venlafaxine or two 
kinds of SSRI and clomipramine), 3 patients took sertraline and 
fluoxetine, 3 patients took paroxetine, 2 patients took sertraline 
and paroxetine, and 2 patients took fluoxetine.

We also enrolled 46 healthy controls from society during 
the period from September 2011 to 2017. Entry criteria were as 
follows: a) age 18 to 60 years old; b) right-handed; c) no mental 
illness meeting the diagnostic criteria; d) no family history of 
mental illness; e) gender, age, handedness, and education years are 
matched with the OCD group; f) no metal implants in the body.

The obsessive–compulsive symptoms, depressive symptoms, 
and anxiety symptoms of the OCD group and the HC group 
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were evaluated using the Yale–Brown Obsessive Compulsive 
Scale (Y-BOCS), Hamilton Depression Rating Scale-17 items 
(HAMD-17), and Hamilton Anxiety Rating Scale (HAMA). The 
above evaluations were performed by two experienced clinical 
psychiatrists.

MRI Acquisition
MRI images were obtained using a Philips Achieva 3.0-T MRI 
scanner in the First Affiliated Hospital of Kunming Medical 
University. The participants were required to remain motionless and 
awake with their eyes closed. Soft earplugs and foam pads were used 
to reduce scanner noise and head motion. A gradient-echo sequence 
was also used to obtain high-resolution T1-weighted structural MRI 
images with the following parameters: time of repetition (TR)/time 
of echoing (TE) = 2,500/80 ms, slice thickness = 6 mm, field of vision 
(FOV) = AP (250 mm) × Right/left (RL) (193 mm) × Foot/head 
(FH) (142 mm), matrix size = 128 × 128, flip angle = 90°, slices = 
16, gap = 2 mm, scan duration time = 45 s. Normal T1-weighted 
MRI scans were first performed to exclude obvious structural 
abnormalities. The resting-state functional images were acquired 
by using an echo-planar imaging (EPI) sequence with the following 
parameters: TR/TE = 2,200/35 ms, flip angle = 90°, FOV = 230 × 230 
mm, matrix = 128 × 128, slice thickness = 3.0 mm without interlayer 
spacing, slices = 50, scan duration time = 17 min 40 s.

MRI Preprocessing
Functional magnetic resonance imaging (fMRI) data preprocessing 
were performed using the statistic parametric mapping software 
package (SPM12, http://www.fil.ion.ucl.ac.uk/spm) running in 
the Matlab 2012a (MathWorks, Natick, MA, USA) and in the 
Data Processing Assistant for Resting-State fMRI (DPARSF, 
http://rfmri.org/DPARSF) (32). The steps of preprocessing were 
as follows: a) format conversion: convert the Digital imaging and 
communications in medicine (DICOM) format of the original 
image data into Neuroimaging informatics technology initiative 
(NIFTI) format; b) removal of the first 10 time points; c) time 
correction; d) head motion correction, data removal of average 
head motion translation >2 mm and/or rotation >2° (excluding 
two untreated OCD subjects and one drug-treated OCD subject); 
e) linearly register each subject’s T1 image to the corresponding 
functional image and then divide it into gray matter, white matter, 
and cerebrospinal fluid; f) removal of the influence due to covariates 
(24-head movement parameters, white matter signal, cerebrospinal 
fluid signal); g) Each of the abovementioned registered images 
was non-linearly registered to the MNI (Montreal Neurological 
Institute) standard space and resampled to a voxel size of 3 × 3 × 
3 mm3; h) the signal was linearly detrended and bandpass filtered 
at 0.01–0.08 Hz to reduce low-frequency drifts and high-frequency 
physiological noise (i.e., respiratory and cardiac) (33).

VMHC Calculation
Before using the Data processing & analysis for (resting-state) brain 
imaging (DPABI) software to calculate VMHC, a brain symmetry 
template was initially created to minimize the influence of geometric 
differences between the hemispheres on VMHC. Specifically, first, 

all 46 normalized T1 images of the healthy controls are averaged to 
create an average normalized T1 image; then, this average T1 image 
is re-averaged using its left and right mirrored versions to generate 
a particular group symmetric template. Then, this group symmetric 
template is applied to the 46 standardized images after the above pre-
processing steps and then smoothed by a Gaussian kernel of 4-mm 
full width and half maximum (FWHM). VMHC is then calculated to 
obtain VMHC maps and zVMHC maps (Fisher z-transformation) 
for each subject. For each subject, VMHC was computed as Pearson 
correlation coefficient between each voxel’s residual time series and 
that of a corresponding voxel in the opposite hemisphere as described 
in a previous study. Similarly, the OCD group was processed to obtain 
a group symmetric template and 46 zVMHC maps. More details 
about the VMHC method were given in the article (2).

Statistical Analysis
Based on the statistical module in the DPABI software, group 
differences on zVMHC maps between the patients and the controls 
were calculated by using two-sample t tests, after adjustment 
for age, gender, education, mean framewise displacement 
(mean FD), and medication status. Given that a prior study 
has suggested that RSFC could be affected by micromovements 
from volume to volume (34), we calculated the mean framewise 
displacement (FD) values for each subject, which can reflect the 
temporal derivative of the movement parameters. FD values were 
calculated for each item as described in a previous study (34). 
The threshold for significance was set at p < 0.005 (two-tailed) 
and 5,000 iterations corrected by the TFCE + PT (Permutation 
test with Threshold-Free Cluster Enhancement) methods in the 
PALM tool (PALM—Permutation Analysis of Linear Models) 
(35, 36). Then, we got a corrected T-map. To observe the clinical 
relevancies of VMHC, the voxel-wise Pearson correlation 
analysis was calculated between each patient’s zVMHC map and 
clinical characteristics (Y-BOCS total score, Y-BOCS obsession 
score, Y-BOCS compulsion score, and illness duration) by using 
the abovementioned corrected T-map as a mask. Age, gender, 
mean FD, HAMD score, and HAMA score were applied as 
covariates of no interest. The threshold for significance was also 
set at p < 0.005 (two-tailed) and 5,000 iterations corrected by 
the TFCE + PT methods. Then, we extracted the mean zVMHC 
values of the brain regions exhibiting significant correlations 
between abnormal VMHC and clinical characteristics to get 
the scatter plot. Considering that SSRI may affect VMHC, two-
sample t tests were used to compare differences in zVMHC maps 
between 23 treated and 23 drug-naïve OCD patients, controlling 
for age, gender, education, and mean FD. The threshold for 
significance was corrected for TFCE + PT at p < 0.05 (two-tailed).

RESULTS

Demographics and Clinical Characteristics
The data of three patients (two untreated OCD subjects and one 
drug-treated OCD subject) were excluded from the analyses due 
to excessive head movement. Hence, the final samples included 
46 patients (23 untreated OCD subjects and 23 drug-treated OCD 
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subjects) and 46 controls. There were no statistical differences 
in gender, age, education level, and mean FD between 46 OCD 
and 46 HCs (see Table 1). Similarly, there were no statistical 
differences in gender, age, education level, obsessive–compulsive 
symptoms, depressive symptoms, anxiety symptoms, and mean 
FD between two patient groups (see Table 1).

VMHC Differences Between Groups
As shown in Table 2 and Figure 1, compared to the controls, 
the OCD patients showed significantly decreased VMHC in the 
fusiform gyrus/inferior occipital gyrus (t = −8.371, p < 0.005), 
lingual gyrus (t = −7.653, p < 0.005), postcentral gyrus/precentral 
gyrus (t = −7.701, p < 0.005), putamen (t = 4.321, p < 0.005), and 
orbital frontal gyrus (OFC) (t = 4.617, p < 0.005). No regions 
showed increased VMHC in the patients relative to controls. 
Moreover, there were no significant differences in VMHC when 
comparing the medicated and unmedicated patient sub-groups.

Correlation Between Altered VMHC and 
Clinical Characteristics
The altered VMHC in the angular gyrus/middle occipital gyrus 
was found to be significantly positively correlated with disease 
duration (R = 0.568, p < 0.05, see Table 3 and Figures 2 and 3). No 
other brain regions were found to have a significant correlation 
between VMHC values and symptom severity (Y-BOCS total 
score, Y-BOCS obsession score, and Y-BOCS compulsion score).

DISCUSSION

In this study, we found decreased VMHC within CSTC circuitry 
(putamen and OFC), the fusiform gyrus/inferior occipital 
gyrus, lingual gyrus, and postcentral gyrus/precentral gyrus in 
patients with OCD relative to controls. The altered VMHC was 
not correlated with the clinical severity of OCD symptoms in 
the patient group but had a significant positive correlation with 
disease duration. However, no brain regions showed significant 
differences in VMHC between the SSRI-treated and drug-naive 
patients.

Similar to this study, Wang et al. reported that patients with 
OCD had a lower VMHC in the CSTC circuitry (thalamus 
and OFC) than HCs, but no abnormal VMHC was found to be 
associated with the severity of clinical symptoms (after correction), 
nor was there a difference in VMHC between the SSRI-treated and 
drug-naive patients (37). However, inconsistent with this study, 
VMHC abnormalities in the fusiform gyrus/inferior occipital 
gyrus, lingual gyrus, and postcentral gyrus/precentral gyrus in 
OCD patients were not reported by Wang et al., which may be 
due to sample heterogeneity and analytical methods. For example, 
in this study, we calculated the group differences in VMHC 
between OCD patients and HCs based on whole brain voxels, 
while Wang et al. was based on the voxels that showed significant 
VMHC in any of the two groups (OCD patients and HCs) (37). 
To sum up, we found that OCD patients had significantly weaker 
homotopic RSFC than healthy controls, which is consistent with 
the findings in other various mental illnesses (11, 12, 14–17), 

TABLE 1 | Demographic and clinical characteristics of participants.

Demographic data OCD patients (46) HCs (46) t/χ² value p value

Age (years) 30.39 ± 10.68 31.83 ± 10.27 −0.657 0.513b

Gender (male/female) 26/20 26/20 0.000 1.000a

Education (years) 12.70 ± 2.97 13.83 ± 3.47 −1.679 0.097b

Illness duration (months) 49.83 ± 51.54 NA NA NA
Y-BOCS total score 28.85 ± 6.56 10.00 ± 0.00 19.490 <0.001b

Y-BOCS obsession score 15.17 ± 3.83 5.00 ± 0.00 18.037 <0.001b

Y-BOCS compulsion score 13.89 ± 4.88 5.00 ± 0.00 12.364 <0.001b

HAMD score 10.20 ± 4.87 0.52 ± 0.78 13.315 <0.001b

HAMA score 10.35 ± 4.67 0.65 ± 0.71 13.916 <0.001b

Mean FD 0.096 ± 0.031 0.088 ± 0.025 1.262 0.210b

Unmedicated OCD (23) Medicated OCD (23)

Age (years) 27.83 ± 10.53 32.96 ± 10.43 −1.660 0.104b

Gender (male/female) 11/12 15/8 1.415 0.234a

Education (years) 13.09 ± 3.09 12.30 ± 2.87 0.891 0.378b

Illness duration (months) 49.39 ± 60.18 50.26 ± 42.55 −0.057 0.955b

Y-BOCS total score 27.61 ± 6.16 30.09 ± 6.84 −1.291 0.204b

Y-BOCS obsession score 15.22 ± 4.12 15.13 ± 3.60 0.076 0.940b

Y-BOCS compulsion score 12.83 ± 4.74 14.96 ± 4.88 −1.502 0.140b

HAMD score 10.43 ± 5.00 9.96 ± 4.83 0.330 0.743b

HAMA score 10.00 ± 3.92 10.70 ± 5.39 −0.501 0.619b

Mean FD 0.093 ± 0.035 0.098 ± 0.028 −0.476 0.636b

Y-BOCS, Yale–Brown Obsessive–Compulsive Scale; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Scale; Mean FD, mean frame-wise displacement; HC, 
healthy controls; OCD, obsessive–compulsive disorder; NA, not available. aThe p value for gender distribution was obtained by chi-square test. bThe p values were obtained by two-
sample t tests.
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meaning that homotopic RSFC abnormalities may be as critical 
pathophysiological features of mental illness as Rest state network 
(RSN) abnormalities are (38–41).

Although recent neuroimaging studies emphasize the 
abnormal structures and functions of the CSTC circuitry in 
OCD, these previous studies have not explored the VMHC 
changes in the CSTC circuitry. Therefore, the VMHC alterations 
in the striatum and OFC reported in this study may provide 

TABLE 2 | Regions showing significant differences in VMHC between OCD patients and HCs.

Region BA Peak MNI coordinates
(x, y, z)

t value Cluster size
(voxel)

Fusiform Gyrus/Inferior 
Occipital Gyrus

19/37  ± 39 −63 −15 −8.371 529

Postcentral Gyrus/
Precentral Gyrus

3  ± 57 −9 33 −7.701 721

Lingual Gyrus 37  ± 22 −54 −11 −7.653 445
Putamen NA  ± 15 12 −3 −4.321 146
Orbital Frontal Gyrus 11  ± 9 42 −12 −4.617 50

VMHC, voxel-mirrored homotopic connectivity; BA, Brodmann area; MNI, Montreal Neurological Institute; NA, not available. Comparisons are adjusted for age, sex, education, 
and mean FD.

TABLE 3 | Regions showing significant correlations between VMHC value and 
illness duration in OCD patients.

Region BA Peak MNI 
coordinates

(x, y, z)

R value Cluster 
size 

(voxel)

Angular Gyrus/
Middle Occipital 
Gyrus

39  ± 36 −63 30 0.568 9

FIGURE 1 | Regions with decreased homotopic connectivity in obsessive–compulsive disorder (OCD) patients compared to healthy controls. L: left; R: right.
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FIGURE 3 | Significantly positive correlations between the VMHC values and the illness duration in the angular gyrus/middle occipital gyrus in OCD.

FIGURE 2 | Regions exhibiting significantly positive correlations between VMHC value and illness duration in OCD patients are presented as color overlays. The 
color bar represents R values. L: left; R: right.
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new evidence for abnormalities in the CSTC circuitry in OCD. 
Recent studies have been identifying additional brain correlates 
associated with OCD symptomatology outside of CSTC circuitry 
(42), with these findings contributing to the generation of new 
hypotheses for the OCD pathogenesis (31, 43). Therefore, the 
VMHC alterations outside the CSTC loop found in this study 
seem to confirm that the pathophysiological mechanism of 
OCD may be not only related to the CSTC loop. A recent meta-
analysis reported orbitofrontal and striatal dysfunction during 
executive control in OCD patients (44), as well as abnormalities 
in activation within precentral/postcentral and occipital lobe 
regions. In fact, these regions are also implicated in OCD during 
other tasks such as reward tasks (45, 46), psychomotor vigilance 
tasks (47), and emotional processing tasks (48–50). Therefore, 
based on the reduction of VMHC in the OFC, striatum, 
postcentral/precentral gyrus, and IOG/fusiform gyrus found 
in our study, we speculate that the abnormal VMHC may be 
related to cognitive/executive functional deficits and emotional 
processing impairment in OCD patients, an idea that should be 
tested directly in future research.

The CC is the main commissural fiber bundle mediating 
interhemispheric transfer (51), and broad reductions of 
homotopic connectivity after dissection of the CC (52) 
underscore the relevance of this structure for interhemispheric 
transfer. The CC has therefore been identified as an important 
structural basis of interhemispheric RSFC. A further supportive 
finding in the reviewed papers on OCD is the substantiation of 
microstructural abnormalities in the CC with strong evidence 
for increased and decreased FA (20, 53). Similarly, the results 
of our previous DTI studies based on the same OCD patients 
also support altered FA in the CC in OCD patients compared 
with HCs. Furthermore, the moderate correlations between 
VMHC and FA of the CC have been reported in patients with 
migraine and multiple sclerosis (54, 55). Therefore, these may 
suggest that reduced VMHC in OCD patients is based on 
obvious microstructural alterations of the CC, which should 
be further verified by implementing a correlation analysis 
between the altered VMHC and FA of the CC in OCD patients 
in future research.

To explore the effect of SSRI on the homotopic connectivity, 
we compared the group difference in VMHC between SSRI-
treated and drug-naive OCD patients and found no differences 
in VMHC in any brain region. The findings were consistent with 
a recent similar study (37); these results might imply the limited 
effect of medication on regulating abnormal VMHC in OCD. 
However, as this is a cross-section study, further prospect study 
comparing the same group of patients before and after treatment 
is thus necessary to elucidate the exact effect of medication on 
VMHC in OCD patients.

The decreased VMHC in the angular gyrus/middle occipital 
gyrus was found to be positively correlated with the illness 
duration. This may be due to functional compensation during 
disease development. In fact, there is a lot of evidence that 
the duration of the disease can cause significant changes in 
brain structure and function in OCD patients. For example, 
illness duration has been found to be correlated with both 
hippocampus and left amygdala volume abnormalities in OCD 

(56). Furthermore, decreased left caudate nucleus–thalamus 
connectivity within the CSTC circuitry have been found to 
be positively correlated with the illness duration of OCD 
(57). Reduced connectivity in an emotion processing network 
spanning the left cerebellar lobule VI and the lingual gyrus 
has been reported to be correlated with illness duration (58). 
Changes in both the Regional Homogeneity (ReHo) within the 
OFC and the functional connectivity between the OFC and 
angular gyrus has been reported to be correlated negatively with 
OCD duration (59). However, since the results of the correlation 
analysis after multiple comparison correction showed that the 
cluster (9 voxels) was very small, the results from the present 
study should be interpreted with caution.

Up to now, this study is the second study to explore 
interhemispheric functional connectivity in OCD patients 
by using the VMHC method. The present study illustrates the 
interhemispheric functional imbalance in OCD patients, which 
should improve the understanding of OCD. In addition, the 
currently recommended method of TFCE + PT was used for 
multiple comparison corrections, which has been shown to 
control the false-positive rate to within 5% and to lead to the 
highest reproducibility when compared with other common 
thresholding methods (35).

LIMITATIONS

Some limitations should be taken into consideration. Firstly, the 
relationship between altered VMHC and FA of the CC was not 
assessed in the present study. Future studies using a multimodal 
imaging method, such as voxel-based morphometry (VBM) 
and DTI, would help identify the unknown structural basis 
for VMHC alterations. Secondly, neuropsychological data, 
especially cognitive and behavioral information, were not 
collected in our study. The relationship between deficits in 
VMHC and cognitive dysfunction should be investigated in 
future research. Thirdly, the VMHC results in our study were 
obtained during resting state, and therefore, a task-oriented 
functional MRI study could provide a complementary view. 
Fourthly, although a rough assessment in the study did 
not reveal a significant effect of drug therapy on VMHC, 
longitudinal studies may be needed to clarify the effect of the 
drug on VMHC. Finally, a symmetrical standard template was 
applied with smoothed imaging data to improve the functional 
correlations between mirrored regions in the study. In general, 
the human brain is not symmetrical. Although morphometric 
asymmetry could not account for the reduced VMHC (15), the 
effects of methodological symmetry should not be overlooked.

CONCLUSION

Interhemispheric functional imbalance, especially the imbalance 
in the CSTC circuit, is an essential aspect of the pathophysiological 
mechanism of OCD. Our results not only confirm that the 
CSTC circuit plays an important role in OCD, but also find that 
abnormal VMHC in areas other than the CSTC circuit is also 
involved in the pathophysiological mechanism of OCD.
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