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a b s t r a c t

Alzheimer's disease (AD) is the most uncertain form of Dementia in terms of finding out the mechanism. AD 
does not have a vital genetic factor to relate to. There were no reliable techniques and methods to identify 
the genetic risk factors associated with AD in the past. Most of the data available were from the brain 
images. However, recently, there have been drastic advancements in the high-throughput techniques in 
bioinformatics. It has led to focused researches in discovering the AD causing genetic risk factors. Recent 
analysis has resulted in considerable prefrontal cortex data with which classification and prediction models 
can be developed for AD. We have developed a Deep Belief Network-based prediction model using the DNA 
Methylation and Gene Expression Microarray Data, with High Dimension Low Sample Size (HDLSS) issues. 
To overcome the HDLSS challenge, we performed a two-layer feature selection considering the biological 
aspects of the features as well. In the two-layered feature selection approach, first the differentially ex-
pressed genes and differentially methylated positions are identified, then both the datasets are combined 
using Jaccard similarity measure. As the second step, an ensemble-based feature selection approach is 
implemented to further narrow down the gene selection. The results show that the proposed feature se-
lection technique outperforms the existing commonly used feature selection techniques, such as Support 
Vector Machine Recursive Feature Elimination (SVM-RFE), and Correlation-based Feature Selection (CBS). 
Furthermore, the Deep Belief Network-based prediction model performs better than the widely used 
Machine Learning models. Also, the multi-omics dataset shows promising results compared to the single 
omics.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The life expectancy of the people has improved with changes in 
standard of living; however, the aging population and age-related 
diseases are also equally growing. The major complaint among the 
elderly is Dementia, which occurs for two reasons, brain injury or 
neurodegenerative disease [1]. The former is always static, while the 
latter is progressive and fatal. One such deadly form of Dementia is 
Alzheimer's Disease (AD), often termed as the Neurodegenerative 
and proved to be a progressive disease, i.e., it develops gradually 
over a while [2]. It causes permanent and irreversible impairment to 
the neurons in the brain, majorly affecting the Cerebrum part of the 
brain [3]. The clinical symptoms of AD are continuous decline in 
cognitive activities, such as memory and thinking skills, which 

eventually hinder the patient's daily routine [4]. Several risk factors 
characterize AD; some clinically approved risk factors are age, high 
alcohol consumption, lifestyle, genetic factors, or depression [5]. 
Among these factors, genetics seems to contribute 70% in causing 
AD [6].

In neuropathological terms, AD is characterized as the deposition 
of Amyloid β peptides, neurofibrillary tangles, neural injury, and 
chronic neuroinflammation [6]. Also, the dysfunction caused in the 
brain parts such as the Hippocampus, Amygdala, and Cortical areas 
contributes significantly to causing AD.

According to the sources, it is one of the significant health care 
challenges in the current century, which affected around 5.5 million 
people (65 and older) worldwide [7]. The prediction says 1 in every 
85 people will be down with AD by 2050 [8]. This cortical atrophy is 
60–80% heritable to the first-degree relatives. AD is a progressive 
disease; it persists for many years, deteriorating the patient's health 
slowly and steadily, resulting in death [7]. The treatments for AD are 
mostly transient (cure for a short time), not long-term.
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Recent researches and advancements in bioinformatics have led 
to high-throughput omics data, which contributes significantly to 
gaining insights about the disease at a detailed molecular level and 
assists in developing disease-modifying treatments [9]. Along with 
the bioinformatics methods, the development in Artificial In-
telligence, Machine Learning has also led to numerous research 
opportunities in understanding the disease. Recently, the research is 
concentrated on integrating various omics data [9], for example, 
combining Gene Expression with Data Methylation or integrating 
Copy Number Validation (CNV) with DNA methylation, and so on. 
Integration of omics data assists in overcoming the difficulties in 
understanding the disease and developing advanced accurate 
models that incorporate the nature of biology [10].

As the advancements in acquiring omics data have been tre-
mendous, the interest has grown towards computer-aided methods 
such as Machine Learning. The omics data is widely utilized in the 
Machine Learning domain for taking the diagnosis and treatment a 
step forward [11]. Though the idea seems interesting, there are cri-
tical challenges in executing it. One such challenge is the biological 
process involved in two different omics datasets, which are inter-
active and sometimes interdependent. A countable number of stu-
dies related to omics data integration in Cancer were carried out 
over the years [12–16], though only fewer models are developed in 
diagnosing and predicting other diseases. One of the "other diseases" 
is AD; most of the studies carried out in AD are based on Phenotypes, 
i.e., Brain images (MRI, CT, PET, etc.). Genotypic analyses are rare and 
upcoming, as it is difficult to obtain data from the brain tissues [17]. 
However, recent technologies and advancements have made it 
possible. A study based on the Single Polynucleotide Polymorphism 
(SNP) with APOE from Genome-wide Association Study (GWACS) has 
divulged that an increase and decrease in the APOE gene increases 
the risk of AD [18]. However, many other risk factors are associated 

with AD, which cannot be described with SNP alone. Thus, in-
tegrating omics data will reveal various other biomarkers, with 
which an accurate predictive model can be built [19,20].

One other critical challenge in integrating the omics data is that 
they are High-Dimensional-Low-Sample-Size (HDLSS) types, which 
requires high-ended computational methods to break down the 
features to find the essential biomarkers and build a predictive 
model. Thus, Artificial Intelligence, Machine Learning, and Deep 
Learning come in handy.

Artificial intelligence approaches, such as machine learning and 
deep learning are increasingly popular in the genetic research. Deep 
learning techniques are more advanced than the machine learning 
approaches, especially when there is HDLSS issue, as they can handle 
feature selection as part of the classification process. AD is a pro-
gressive neurological disorder found mostly in the older age groups 
[21–25]. The diagnosis is mostly done through brain imaging. Thus, 
the research is more focused on the imaging datasets. For instance, 
in this work, Le net architecture and the CNN techniques are applied 
on the MRI data in classification of AD and non-AD [26]. There are 
numerous works that are carried out in this area [26–31]. The main 
challenge is working with the imaging dataset is sometimes the 
results may be inaccurate. Thus, there must be more research works 
carried out in the gene expression based datasets. However, the 
problem with the gene expression dataset is the HDLSS. Studies are 
done to handle the HDLSS issue with the help of the machine 
learning and deep learning approaches.

Although Machine Learning is effective on other types of data, it 
is not suitable for HDLSS datatypes, it requires multiple stages of 
optimizations, and the steps must be predefined. Machine Learning 
learns and gains knowledge from past data and makes knowledge-
able decisions based on the acquired information. Although it is a 
black box, Deep Learning is on the fly and accurate on HDLSS 

Fig. 1. The process involved in classification AD. 
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datasets. The Deep Learning algorithms create an artificial neural 
network as layers, which can learn and make intelligent “human- 
like” decisions on its own. (Fig. 1).

2. Materials and methods

2.1. Data Source

In this study we have used two types of datasets, Microarray gene 
expression, and DNA Methylation. DNA Microarray gene expression 
data are collected using the microscopic slide that consists of mas-
sive amount of gene sequences. The mRNAs are captured in these 
slides, which is a template for building the proteins. These micro-
array chips are highly helpful in analysing the gene expression. DNA 
Methylation is the process of making chemical modifications in the 
DNA. It is participates in gene expression and cell differentiation. 
During the methylation process, the methyl groups are transferred to 
cytosine on the C5 position to form methyl cytosine. DNA methy-
lation influences the gene activities that is important for performing 
cognitive functions.

Three heterogeneous large-scale datasets have been used in this 
study accessed from the Gene Expression Omnibus (GEO) data re-
pository under the National Centre for Biotechnology Information 
(NCBI). Among the three datasets, two are gene expression, and the 
other one is the DNA Methylation profile. The datasets with acces-
sion numbers GSE33000 [32], GSE44770 [33], and GSE80970 [34]
associated with Alzheimer's are extracted from the Human Pre-
frontal Cortex.

The AD gene expression datasets are integrated to expand the 
size of the sample. The final integrated set has 696 records with 203 
features. Among the 696 records, 439 are cases (AD), and 257 are 
controls (non-demented). The DNA Methylation dataset, which was 
extracted with the help of Illumina Human Methylation, has 142 
records with 503 features. Among the 142 samples, 68 are controls 
(AD), and 74 are cases (non-demented).

We used the R Studio to implement the proposed framework. For 
pre-processing the datasets, we used the limma package in R, which 
is powerful for analysing the gene expression datasets. The 
GEOquery package is used to download the datasets from the 
GeoOmnibus database. For the SVM we used the e1071 package, and 
deepnet for the deep belief network.

2.2. Data Preparation

For using the data for further evaluation, the data needs to be 
pre-processed. The raw integrated gene expression data is normal-
ized using the Z-Score normalization after applying the log10 

transformation [35]. The Z-Score normalization is done to make the 
data comparable across all the experiments.

If g1, g2, …. gn are the respective genes and I the intensity, Z-Score 
is given by [35],
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The raw DNA Methylation data with Beta-Values, we have cal-
culated the M-Values. M-Values is a metric widely used in 
Methylation studies to measure the methylation levels (highly me-
thylated and unmethylated). With 'I' being the intensity, M-Value is 
given by [36],
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We have used quantile normalization to eliminate the back-
ground signals and systematic errors along with the M-Values. The 

data distribution before and after normalization of the combined 
dataset can be seen in Figs. 2 and 3.

2.3. Feature selection

In this study, we have used multi-omics data, which has its dif-
ficulties. It is challenging to combine two datasets with different 
biological meanings and retrieve them for various purposes. 
Thereby, their distributions vary. Gene expression is a sequence of 
processes that eventually result in the formation of proteins through 
translation and transcription [37]. DNA Methylation is part of Epi-
genetics (heritable changes in the gene expression), which modifies 
the gene by adding the Methyl group (CH3) to the DNA, affecting the 
gene expression [38].

The only common characteristic among the Microarray data and 
the DNA Methylation data is that they are both HDLSS datasets, one 
vital issue most researchers have with genetic data. It is dangerous 
to use the data, resulting in high variance and an acute overfitting 
problem. To overcome the HDLSS challenge, an appropriate algo-
rithm for selecting only the necessary features is necessary. Several 
works in the literature have used the conventional dimension re-
duction algorithms; however, these algorithms don't consider the 
biological meaning of the data and fail to identify the relationship 
between the omics data. Moreover, machine learning methods are 
more suitable for datasets with large sample sizes. Thus, in this 
study, we have designed a framework for feature selection by con-
sidering the characteristics of Differentially Methylated Positions 
(DMP) and Differentially Expressed Genes (DEG).

The proposed feature selection is carried out in two steps. Gene 
Expression researchers seek to identify the Differentially Expressed 
(DE). Thus, the first step is to determine the Differentially Expressed 
Genes (DEG) and Differentially Methylated Positions (DMP). In the 
Microarray data analysis, the DEGs are identified through the ratio 
between the gene expression level in the target and the control 
sample. The ratio is then scaled with the help of 2 logarithms, and 
the resultant is termed the Log2 Ratio. Further, the absolute value of 
the log2 ratio is the Fold Change (FC). FC is the intuitive method 
widely used in finding out the DEGs. Also, Significance Analysis of 
Microarrays (SAM) is used to find out the statistical significance of 
the genes, and each gene is assigned with a P-Value. The common 
threshold used for FC are |FC=  > 1.5 or |FC=  > 2 and for P-Value its P- 
Value <  0.01. In this study, we have maintained a threshold of 
|FC=  > 2 and P-Value <  0.01 for the Microarray Gene Expression Data. 
For finding out the DMPs, the same criteria as the Microarray can be 
followed. The threshold we maintained for DMPs is |FC=  > 1.5 and P- 
Value <  0.01. We have selected the DMPs with CpG sites found under 
1500 base pairs from the start site of the transcription. The methy-
lation near the transcription sites has a high probability of regulating 
gene expression. Once the DEGs and DMPs are identified, we used 
Jaccard Similarity to find the similarity between the two datasets. 
Jaccard Similarity Coefficient is a standard statistical method, in 
recent days used commonly in gene expression data to find the si-
milarity between two sets. It is primarily composed of sets, objects, 
unions, and intersections. The cut-off for Jaccard index varies from 0 
to 1. Closer to one, more are the features similar to each other.

To find out the similarity using the Jaccard index, we first created 
a randomized version control using the two omics datasets. For each 
gene set, we generated ‘m′ sized gene set with respect to the gene 
set size distribution of the original gene set. Further, we have 
random sampled ‘m′ genes from the original gene set, where the 
probability of sampling for each gene is proportional to their oc-
currence in the original dataset. For all pairs of genes (from two 
different datasets), we calculated the set similarity using the Jaccard 
coefficient of edges (m, n),
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Where, Sm and Sn represent the boolean values of the gene expres-
sion data of gene m and gene n.

The cut-off for Jaccard similarity coefficient used in this study is 
0.8. In the second phase, we applied intersection to merge the two 
datasets. The hypothesis here is that if the gene is down or up- 
regulated in Microarray and its respective CpG site is hyper or hypo- 
regulated, it has significant involvement in causing the disease. The 
DMPs have their respective genes. The sample size after combining 
both the datasets is 838 with 513 cases and 325 controls. After the 
intersection of both datasets, we need to ensure that the effect from 
the datasets is minimum as the sample size has increased. Thus, we 
have performed the variance partitioning to assess the contribution 
of each feature to variation that happens to the response variable. 
We used the variation partitioning method in R to find out the 
variance that are attributable to the multiple features in the dataset. 
The variation partitioning method requires a dataset that is nor-
malized already. As we have normalized the datasets using the 
standard normalization techniques mentioned above, we have ap-
plied the variance partitioning on the integrated dataset. The sig-
nificant features from both the datasets are already ranked based on 
the FC and p-values. However, after combining the dataset, we need 
to find out whether the features in the dataset still contributes to the 
response variable and does not deviate much.

We designed a setup using R to find out the differences, using the 
F-test to find out the variance among the groups is higher than the 
variance within the group. We identified the statistically significant 
features using the p-value. The threshold for p-value is kept as less 
than 0.01. The features that do not satisfy the threshold are elimi-
nated and further processed using the ensemble feature selection. 

Further, the features age and gender have very low variance, 0.08 
and 0.05 respectively, which indicates they do not contribute much 
to the target variable and the classification models implemented. 
Thus, we have eliminated the age and gender features from the 
dataset.

2.4. Ensemble feature selection

There are four feature selection techniques, filter, wrapper, em-
bedded, and ensemble. This study has built ensemble-based feature 
selection techniques, which will be applied as the second layer of 
feature selection. Ensemble-based models combine different leaners, 
which are then put together using an aggregation technique. The 
first step in building an ensemble is to choose the different feature 
selection approaches, and the second step is to combine the outputs 
and offer a single decision. In this study, we have used five filter 
techniques (ReliefF, Information gain, Signal-to-noise ratio, Mutual 
Information, and Chi-squared) into an ensemble and combined their 
outputs using an aggregation technique. 

• ReliefF – This filter approach calculated the proxy statistics of the 
features, using the quality and relevance to the target feature. The 
proxy statistics are the feature scores or weights that ranges from 
− 1 to + 1.

• Information gain – It calculates the reduction in entropy (dis-
order) from the transformation dataset. It can be used as a filter 
based feature selection approach by estimating the information 
gain of each feature with respect to the target feature.

• Signal-to-noise ratio – SNR filter approach is used to estimate the 
minimal variation within each group and mean expression be-
tween the groups. Ranks are given to all the features based on the 
expression levels identified with the help of SNR test statistics.

Fig. 2. Sample dataset before normalisation. 

Fig. 3. Sample dataset after normalisation. 

N. Mahendran and D.R. Vincent P M Computational and Structural Biotechnology Journal 21 (2023) 1651–1660

1654



• Mutual Information – It is a measure to calculate the average 
uncertainty reduction of one feature that results from the 
learning value of another feature. It helps in identifying the 
mutual dependence between the features.

• Chi-squared test: Chi-squared test is generally used to test the 
independence between the two events in statistics. As a feature 
selection technique, the chi-square value for two features are 
calculated and the target feature, then choose the features based 
on the chi-square ranks.

3. Deep belief neural network

This paper implements the Deep Belief Network with the RBM. 
DBN is composed of stochastic and latent variables, binary and called 
the hidden layers. DBN is a probabilistic generative model con-
structed using the Restricted Boltzmann Machines (RBMs), re-
presenting the layers of the architecture [39].

RBMs are commonly defined as the generative model that is 
based on energy. It consists of two layers, the first layer being the 
visible layer and the second layer being the hidden layer, having 
nodes connected across the layers [40]. The RBMs involve weight, 
bias, and activation function. The nodes in the visible layer take a 
low-level feature from the dataset under learning and pass it to the 
first hidden layer. Then, it is multiplied with a weight, and a bias is 
added to the result. The resultant will be produced after processing 
through an activation function, which produces the output for the 
hidden node [41].

4. Training RBM

Provided the observed state, the energy joint configuration for 
the RBMs visible unit and hidden units (vu, hu) is written as,

=
= = = =

E vu hu y vu z hu W vu hu( , )JC
a

A

a a
b

B

b b
b

B

a

A

ba a b
1 1 1 1 (1) 

where ya is the bias of the ath visible unit and zb is the bias of the bth 

hidden unit, Wba is the weight initialized to the connection between 
the ath visible unit and bth hidden unit. RBM allots a probability for 
each configuration of (vu, hu). The relationship between the prob-
ability distribution and the energy function is given by,

= ×p vu hu
N

e( , )
1

c

E vu hu( , )JC

(2) 

where, Nc is the normalization constant or partition function and it 
is written as the summation of all possible connections between the 
visible and the hidden layers.

=N ec
vu hu

E vu hu

,

( , )JC

(3) 

If there are 'm' visible units and 'n' hidden units, the conditional 
probability for the visible units vu configuration, given the hidden 
units hu configuration is written as,

=
=

p vu hu p vu hu( ) ( | )
a

m

a
1 (4) 

Similarly, the conditional probability of the hidden units (hu) 
configuration, given the visible units (vu) configuration is written as,

=
=

p hu vu p hu vu( ) ( )
b

n

b
1 (5) 

When the RBM is of binary units with vua and hub {0, 1}, the 
probability is given as,

= = +
=

p hu vu z vu W( 1 )b b
b

B

a ba
1 (6) 

and,

= = +
=

p vu hu y hu W( 1 )b c
a

A

b ba
1 (7) 

The visible unit vector's probability is written as,

= =p vu p vu hu p vu hu p hu( ) ( , ) ( ) ( )
hu hu (8) 

The probability can be increased by adjusting the biases and the 
weights to lower the energy of a specific vector and raise the energy 
of other vectors. The RBM's learning algorithms basically implement 
the log-likelihood with gradient ascent. The log probability with 
respective weights after computing the derivative is given by,

=logp vu
W

vu hu vu hu
( )

ba
a b data a b model

(9) 

. data is the expectation of the data distribution and . model is 
the expectation of the model distribution. vu hua b model requires 
huge number of computation steps and Gibbs sampling, which, 
unfortunately, takes long time. Therefore, Hinton proposed CD-k 
(Contrastive Divergence), which speeds up the learning process. In 
CD-k, the vu hua b model is replaced with vu hua b k , k having the small 
values. The following rules are implemented in order to correct the 
bias and weight in the network,

=W vu hu vu hu(ab a b data a b k)

=z hu hu(b b data b k

=y vu vu(a a data a k

Where, is the learning rate.

5. Deep belief network training

The RBMs are stacked together in a greedy approach to form a 
Deep Belief Network. We have proposed a Deep Belief Network with 
simple stopping criteria in this study. The hyperparameters must be 
fine-tuned in any deep nets for better results. It is tricky to choose 
appropriate hyperparameters in deep learning networks. The per-
formance of the nets with certain configurations might not be the 
same as the performance when the configuration is changed. 
Bayesian optimization records previous results and checks the 
probabilistic model to select the next set of parameters. Thus, it is 
effective in choosing optimal hyperparameters. Therefore, we have 
used Bayesian Optimization to optimize DBN hyperparameters. It 
aims to construct a probabilistic model considering the objective 
function, such as Accuracy, Root Mean Squared Error. Bayesian op-
timization can choose better settings within fewer iterations. It is 
promising because it takes informative decisions in choosing the 
next hyperparameter. The objective value function in our model is 
the test dataset accuracy. We aim to find the best test accuracy 
within determining bounds for the parameters chosen, 8–12 hidden 
layers, learning rate between 0.01 and 0.2, 200–400 no. of nodes per 
layer, and dropout rate between 0.6 and 0.9.

For choosing the features from the omics data, and the hy-
perparameters for the DBN, the proposed feature selection method, 
along with the Bayesian Optimization techniques, is performed with 
5-fold cross-validation. The learning is performed for 300 epochs, 
and the parameter combination with the highest test accuracy is 
selected. An average of all the 5-fold learnings hyperparameter is 
applied for the final proposed model. The input layer in the proposed 
model includes the Gene expression and DNA Methylation data. Our 
problem is a binary classification; therefore, the output layer has two 
nodes with integer encoding. We used the Rectified Linear Unit 
(ReLU) as the activation function and the softmax regression in the 
output layer to normalize the value between 0 and 1. We have used 
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the cross-entropy cost function to evaluate how wrong the model is. 
The cross-entropy cost function, in simple terms, is the measure of 
the distance between the probability distribution of the actual and 
the predicted vector.

The critical issue in any machine learning or deep learning model 
is overfitting. Therefore, to avoid overfitting, we have formulated a 
simple stopping criterion. After every 50 epochs, the test accuracy of 
the last 15 epochs will be compared with the average test accuracy 
to check whether the accuracy is converging or decreasing. Also, the 
training accuracies will also be compared in the same way. If both 
the conditions are satisfied, the learning will be stopped.

6. Results

6.1. Hypotheses

We have carried out this study by framing the following hy-
pothesis, 

1. Combining the gene expression microarray data and the DNA 
Methylation data will produce a better prediction of Alzheimer's.

2. The proposed feature selection approach considers the data's 
biological characteristics and improves the learning model's 
performance by choosing the critical features.

3. The Deep Belief Network with an added stopping criteria will 
improve the learning accuracy compared to the machine learning 
model.

We have compared the proposed method and the existing 
methods to verify the hypothesis mentioned above. We have done a 
two-phased analysis to evaluate the assumptions. In the first phase, 
we implemented the existing feature selection techniques to en-
hance the performance of the conventional machine learning 
models and the Deep Belief Network with the added stopping cri-
teria using the single omics dataset (gene expression microarray and 
the DNA Methylation). In the second phase, we have implemented 
the models with the multi-omics data, combined data with the help 
of the proposed feature selection method.

We have split the data into a training set and the testing set and 
applied the five-fold cross-validation. In the first phase, we trained 
SVM, Naïve Bayes, and proposed a Deep Belief Network with features 
selected by SVM-RFE and Correlation-based Feature Selection (CBS) 
using the single omics data. The parameters for the SVM kernel are 
Radial Basis Function (RBF), complexity set to 1 and Gamma as auto; 
the parameters for DBN are chosen with the Bayesian Optimization's 
help. The resultant parameters are shown in Table 1. After applying 
Bayesian optimization, the final parameters used in the DBN are the 
Learning rate = 0.02, Dropout = 0.83, hidden layers = 8, and the 
number of nodes per layer is 315.

The SVM-RFE and CBS are applied to the single omics data, and 
the AD classification is done with the help of SVM, NB, and the 
proposed DBN. The results are tabulated in Table 2. The table, we can 
notice that the average number of genes selected by SVM-RFE is 49, 
and CBS is 21.6. The number of CpG sites selected by SVM-RFE and 
CBS is 107 and 81.6, respectively. The selected features are inputted 
into the classification methods. The average accuracy of SVM-RFE is 

0.692, and CBS is 0.725. Also, we can notice that the DBN has better 
accuracy with both SVM-RFE and CBS than SVM and NB.

The DEG and DMP are combined to form a multi-omics dataset in 
the second phase. The SVM-RFE and CBS feature selection techni-
ques are applied to the combined dataset. The results are tabulated 
in Table 3. The table shows that the average number of genes se-
lected by all three feature selection methods is more than the fea-
tures selected in the single omics data. However, the average 
accuracy is better with the multi-omics data than the single omics 
data. The average genes selected by SVM-RFE is 120.6, CBS is 94, and 
the average of the proposed method is 39. The proposed method has 
less average than the other two methods. Still, the accuracy of the 
proposed method is considerably better than the other two 
methods. Also, we can notice that the accuracy of DBN is slightly 
better than the other classification methods. The average accuracy of 
SVM-RFE with SVM, NB, and DBN with multi-omics data is 78%, 76%, 
and 82%, respectively. The average accuracy of the proposed feature 
selection and DBN produces better accuracies in all five folds. 
(Table 4).

The framework is further tested using two other datasets 
(GSE109887 and GSE118553) both extracted from the temporal 
gyrus region of the brain. The GSE109887 has 78 samples with 29 
control and 54 cases, and GSE118553 has 83 samples with 29 control 
and 54 cases. The classification accuracy of the proposed model with 
the testing multi-omics dataset is 82%, which is better than the ac-
curacy obtained in the cross validation. The implemented framework 
offers better results than the standard feature selection and classi-
fication algorithms, the results are not promising when compared to 
the models implemented with the imaging datasets. For instance, 
the accuracy of CNN on AD neuroimaging initiative (ADNI) dataset is 
97.8%, whereas, the framework implemented using the multi-omics 
dataset is 82%. However, there is a lot of scope for research and 
improvement in the Alzheimer’s omics data.

7. Discussion and conclusion

AD, in recent days, is common among the elderly and is con-
sidered deadly. It ends fatally if not taken care of with appropriate 
treatment. The development is slow and progressive. Several kinds 
of researches are going on to find the gene representatives and early 
prediction of AD. The maximum of the researches is focused on the 
single omics dataset, which has the problem of HDLSS. Recently, few 
works of literature have been focused on the multi-omics data, in-
tegrating the single omics data. Integrating single omics data into 
multi-omics data will solve the issue of HDLSS moderately. Thus, we 
have designed a framework to select the important features con-
sidering their biological characteristics from the multi-omics data. 
We implemented the techniques using the single omics (Gene 
Expression Microarray and DNA Methylation) and the multi-omics 
dataset. The proposed feature selection is based on the Jaccard Index. 
We have applied the Fold Change and Z-Score to normalize and find 
out the DMPs and DEGs from the dataset. The multi-omics dataset is 
formed by combining both the datasets (Gene Expression Microarray 
and DNA Methylation). Then the Jaccard Index is applied to find out 
the similarity between the genes from the Microarray and DNA 
Methylation. The DBN with the added stopping criteria is also 

Table 1 
The Bayesian Optimization Results. 

5-Fold Cross Validation Learning Rate Dropout Rate Hidden Layers Number of Nodes per layer Test Accuracy

1 0.025 0.685 12 256 0.992
2 0.017 0.887 7 380 0.997
3 0.015 0.785 6 280 0.994
4 0.012 0.897 8 311 1.000
5 0.010 0.910 9 352 0.995
Average 0.02 0.83 8 315 0.9956
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proposed. The parameters of the DBN are optimized using the 
Bayesian Optimization technique, and the average of 5 folds is ap-
plied to the final model.

We have framed three hypotheses, and to evaluate the hypoth-
esis, the single omics, and multi-omics dataset are used with ex-
isting feature selection techniques and the proposed feature 
selection technique. Furthermore, we have implemented the con-
ventional machine learning models and the proposed DBN to vali-
date the feature selection technique. The results are tabulated; from 
the results, we can notice that all three hypotheses framed are va-
lidated and satisfied.

The existing feature selection techniques PCA and CBS are im-
plemented with both single omics and multi-omics datasets. In the 
multi-omics data experiment, we have noticed that the iteration 
K= 3 has the highest accuracy of any other iterations. Among the 
genes selected in the fold three, MS4A4A is reported in the AlzGene 
Database, and BEX2 seems important in inhibiting neuronal differ-
entiation. As a result of the study, it can be found that the results are 
better in the case of the multi-omics data. Fig. 4 shows the accuracy 

of the prediction models with the widely used feature selection 
methods and the proposed feature selection technique with 5-Fold 
Cross-Validation. The dark brown bars show the accuracy of DEGs, 
and light brown bars show the DMPs from the single omics dataset. 
The pink trend line on top of the bars shows the accuracy of the 
models implemented with the multi-omics dataset. The plot clearly 
shows the upper hand of the models implemented with the multi- 
omics dataset.

Furthermore, the proposed feature selection and the DBN pre-
diction model perform considerably better than the other two 
Machine Learning models. Thus, the hypothesis proposed in this 
study is validated. Although the DBN model produces better results 
than the Machine Learning methods, further enhancements must 
improve accuracy. It is critical to find the risk factors and the genes 
responsible for AD, as it is the common form of Dementia yet un-
certain of the cause. The future work will include analyzing the 
multi-omics dataset and finding out the genes responsible for 
causing the AD using computational methods, and validating the 
results with the help of bioinformatics tools.

Table 2 
Feature Selection using the Single Omics AD dataset. 

Feature Selection Algorithm 5 Fold Cross Validation Learning Algorithm No of Gene Selected Accuracy No of CpGs selected Accuracy

SVM-RFE K = 1 SVM 25 0.564 164 0.628
Naïve Bayes 0.625 0.615

Proposed DBN 0.792 0.657
K = 2 SVM 18 0.763 78 0.634

Naïve Bayes 0.785 0.627
Proposed DBN 0.824 0.668

K = 3 SVM 4 0.786 226 0.751
Naïve Bayes 0.792 0.775

Proposed DBN 0.847 0.794
K = 4 SVM 2 0.693 56 0.683

Naïve Bayes 0.735 0.705
Proposed DBN 0.786 0.751

K = 5 SVM 30 0.663 11 0.675
Naïve Bayes 0.718 0.725

Proposed DBN 0.805 0.797
Average 49 0.692 107 0.699
CBS K = 1 SVM 26 0.654 122 0.685

Naïve Bayes 0.625 0.677
Proposed DBN 0.688 0.704

K = 2 SVM 34 0.712 54 0.724
Naïve Bayes 0.749 0.733

Proposed DBN 0.781 0.790
K = 3 SVM 7 0.759 11 0.769

Naïve Bayes 0.787 0.745
Proposed DBN 0.812 0.826

K = 4 SVM 30 0.742 153 0.780
Naïve Bayes 0.738 0.792

Proposed DBN 0.768 0.814
K = 5 SVM 11 0.631 68 0.653

Naïve Bayes 0.682 0.691
Proposed DBN 0.751 0.781

Average 21.6 0.725 81.6 0.744
Proposed Feature Selection K = 1 SVM 22 0.718 102 0.697

Naïve Bayes 0.768 0.708
Proposed DBN 0.795 0.735

K = 2 SVM 32 0.754 46 0.680
Naïve Bayes 0.749 0.678

Proposed DBN 0.796 0.720
K = 3 SVM 4 0.746 12 0.756

Naïve Bayes 0.780 0.754
Proposed DBN 0.806 0.797

K = 4 SVM 2 0.815 17 0.808
Naïve Bayes 0.802 0.756

Proposed DBN 0.863 0.844
K = 5 SVM 18 0.785 9 0.799

Naïve Bayes 0.782 0.780
Proposed DBN 0.814 0.843

Average 15.6 0.784 37.2 0.757
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Table 3 
Feature Selection using the Multi-omics AD dataset. 

Feature Selection Algorithm 5 Fold Cross Validation Learning Algorithm No of Gene Selected(Gene Expression + DNA Methylation) Accuracy

SVM-RFE K = 1 SVM 252 0.692
Naïve Bayes 0.649
Proposed DBN 0.817

K = 2 SVM 178 0.785
Naïve Bayes 0.812
Proposed DBN 0.847

K = 3 SVM 10 0.829
Naïve Bayes 0.80
Proposed DBN 0.861

K = 4 SVM 138 0.768
Naïve Bayes 0.774
Proposed DBN 0.827

K = 5 SVM 25 0.681
Naïve Bayes 0.741
Proposed DBN 0.818

Average 120.6 0.78
CBS K = 1 SVM 115 0.682

Naïve Bayes 0.701
Proposed DBN 0.719

K = 2 SVM 210 0.737
Naïve Bayes 0.761
Proposed DBN 0.818

K = 3 SVM 25 0.791
Naïve Bayes 0.798
Proposed DBN 0.841

K = 4 SVM 102 0.788
Naïve Bayes 0.804
Proposed DBN 0.814

K = 5 SVM 18 0.689
Naïve Bayes 0.712
Proposed DBN 0.787

Average 94 0.762
Proposed Feature Selection K = 1 SVM 35 0.751

Naïve Bayes 0.797
Proposed DBN 0.817

K = 2 SVM 39 0.781
Naïve Bayes 0.824
Proposed DBN 0.818

K = 3 SVM 36 0.775
Naïve Bayes 0.787
Proposed DBN 0.89

K = 4 SVM 44 0.842
Naïve Bayes 0.824
Proposed DBN 0.868

K = 5 SVM 41 0.812
Naïve Bayes 0.811
Proposed DBN 0.837

Average 39 0.815

Table 4 
Selected genes for the proposed method (Multi-omics dataset). 

Folds Genes selected in each fold

K = 1 (35) TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4

K = 2 (39) TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4, CRH, ZNF438, CD59, BDNF

K = 3 (38) TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4, CRH, ZNF438, HAP-1

K = 4 (42) TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4, CRH, ZNF438, CD59, BDNF, NRN1, WSB2, HAP-1

K = 5 (41) TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4, CRH, ZNF438, CD59, BDNF, NRN1, WSB2

Intersection of genes selected in all five 
folds

TMSL3, SAT1, SYTL4, SLC25A5, STAG2, SLC9A6, SRPX, TA2, ARMC5, ELF4, BEX2, DDX3Y, BEX5, CNKSR2, ELK1, MORF4L2, 
FLNA, MORC4, GPRASP1, MID1IP1, MAGED1, MCTS1, MAP7D2, RRAGB, NGFRAP1, RPGR, PAK3, RNF128, PIGA, RBMX, PIR, 
PJA1, MS4A6A, DTNA, TCEAL4
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