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Introduction

Free radicals are molecules containing one or more unpaired elec-
trons in atomic or molecular orbitals.1 Reactive free radicals play 
a crucial part in different physiological processes ranging from 
cell signaling, inflammation and the immune defense.2 There 
is increasing evidence that abnormal production of free radicals 
lead to increased stress on cellular structures and causes changes 
in molecular pathways that underpins the pathogenesis of several 
important human diseases, including heart disease, neurologi-
cal disease and cancer and in the process of physiological age-
ing.3,4 Understanding the contribution of free radical stress in the 

pathogenesis of disease will allow us to study the development 
of oxidative stress; a condition that occurs due to an imbalance 
between cellular production of oxidant molecules and the avail-
ability of appropriate antioxidants species that defend against 
them. It is hoped that this knowledge will subsequently lead to 
the development of effective therapeutic interventions against 
oxidative stress.

One of the major contributors of oxidative stress is the reac-
tive oxygen species (ROS) family of molecules. These include free 
radicals such as superoxide anion (O

2
.-), hydroxyl radical (HO.), 

lipid radicals (ROO-) and nitric oxide (NO). Other reactive oxy-
gen species, hydrogen peroxide (H

2
O

2
), peroxynitrite (ONOO-) 

and hypochlorous acid (HOCl), although are not free radicals 
but they have oxidizing effects that contribute to oxidative stress. 
ROS has been implicated in cell damage, necrosis and cell apop-
tosis due to its direct oxidizing effects on macromolecules such 
as lipids, proteins and DNA.5 Production of one free radical can 
lead to further formation of radicals via sequential chain reac-
tions.6 Reactions between radicals and polyunsaturated fatty 
acids within cell membrane can result in fatty acid peroxyl radi-
cals, which accumulate in cell membrane and alter protein func-
tion and signal transduction. Under oxidative stress, excessive 
superoxide also releases free iron from iron-containing molecules, 
which further generate highly reactive hydroxyl radicals (HO.) 
by reacting with hydrogen peroxide in the Fenton reaction.7 ROS 
can also induce the opening of the mitochondria membrane 
permeability transition pore (PTP) and cause a release in cyto-
chrome c and other factors that can lead to apoptosis-mediated 
cell death.8,9 O

2
.- radicals can further interact with the signaling 

molecule nitric oxide (NO) resulting in the formation of reactive 
nitrogen species (RNS), which further reduce NO bioavailabil-
ity and cause NO toxicity known as “nitrosative stress”.10 Like 
ROS, excessive production of reactive nitrogen species results 
in nitrosylation reactions that change the structure of proteins, 
leading to loss or change of protein function.11

In physiological conditions, cells would increase activities of 
antioxidant enzymes and other antioxidant defences to counter-
act occurrence of oxidative stress.12-14 These include manganese 
dependent superoxide dismutase such as manganese superox-
ide dismutase (Mn-SOD), Copper/Zinc superoxide dismutase 
(Cu/Zn SOD), glutathione peroxidase, glutathione reductase 
and catalase (CAT). MnSOD and Cu/ZnSOD convert O

2
.- 

to hydrogen peroxide, which is then transformed to water by 
glutathione peroxidase or catalase. Other antioxidant defences 
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include radical scavengers such as vitamin E, beta carotene and 
vitamin C.

This article aims to illustrate in detail, molecular pathways 
that regulate redox status of cells and the consequence of imbal-
ance between free radical production and antioxidant activity 
during the cardiovascular disease process (Fig. 1).

Physiological Sources of Reactive Oxidant Species 
in Cells

Several mechanisms or pathways are associated with the produc-
tion of free radicals within cells under physiological conditions. 
These include mitochondria respiration, nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidases, xanthine oxidase 
and uncoupled NO synthases (Fig. 2).

Mitochondrial respiration as a source of reactive oxidant spe-
cies in cells. Mitochondrial respiration involves transport of elec-
trons from NADH or flavoprotein-linked dehydrogenases which 
ultimately result in reduction of oxygen to water, producing ATP 
in the process. This transport chain involves oxidative phos-
phorylation (OxPHOS) of complexes that are both nuclear and 
mitochondrial DNA encoded. Mitochondria produce significant 
amounts of cellular reactive oxidant species (ROS) via aberrant 
O

2
 reaction.15,16 During electron transport, approximately 2–5% 

of electrons escape to react with O
2
 resulting in the production of 

ROS, which primarily occur at complexes I and III.17 This pro-
cess in physiological conditions is tightly controlled with major-
ity of ROS produced remaining inside intact mitochondria.18 In 
addition, some elements of the mitochondrial outer membrane 

Figure 1. In physiological and disease states, the involvement of the inflammatory state initiated within cellular environment. This entails increased ac-
tivities of antioxidant enzymes and other antioxidant defences to counteract occurrence of oxidative stress mainly characterised by nitric oxide (NO) 
and reactive oxygen species (ROS). This molecular fiasco illustrates into cellular pathways that regulate redox status of cells and the consequence of 
imbalance between free radical production and antioxidant activity during the cardiovascular disease process.

Figure 2. Several interlinked pathways that include mitochondria 
respiration, NADPH oxidases, xanthine oxidase and uncoupled NO 
synthases are associated with the production of free radicals within 
cells under physiological conditions. Mitochondria produce signifi-
cant amounts of cellular ROS via aberrant O2 reaction. This rate of 
mitochondrial respiration and ROS formation is largely influenced by 
the coupling state of the mitochondria, and in turn by factors such as 
internal and external Ca2+ levels and antioxidant activity. In response 
to the presence of respiratory burst explained in the text, NADPH 
oxidase activity get modulated by upregulation of component mRNAs 
and other inflammatory mediators such as TNFalpha thus dependent 
on the increase in transcription of p22phox, an important subunit of 
NAD(P)H oxidase.
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NADH/NADPH oxidase system as a source of reactive oxi-
dant species in the cell. NADH/NADPH oxidases are mem-
brane-associated enzymes that catalyse the 1-electron reduction of 
oxygen using NADH or NADPH as the electron donor. NADPH 
is particularly important in generation of ROS in phagocytic cell 
systems in response to the presence of foreign organisms in a series 
of changes known as “respiratory burst”.24 NADH/NADPH oxi-
dases are also important sources of endovascular ROS. NADH/
NADPH oxidases are the major oxidases in vascular tissue and in 
cardiac cells.25

NADH/NADPH activity is regulated by a number of factors 
known to be involved in the pathogenesis of cardiovascular dis-
ease including cytokines, hormones, local metabolic changes and 
haemodynamic forces. Exposure of human umbilical endothe-
lial cells to 5–20 dyne/cm2 unidirectional lamina shear stress 
results in a transient elevation in NADH-dependent O

2
.- forma-

tion whereas oscillatory shear causes sustained increase in oxidase 
activity.26 NADH/NADPH-dependent oxidase activity is also 
increased in vascular smooth muscle cells by stimulation with 
the vasoactive agonist angiotensin II. Angiotensin II increases 
NADH and NADPH driven O

2
.- production in cultured vascular 

smooth muscle cells (VSMC) and aortic adventitial fibroblasts.27 
NADH/NADPH-dependent O

2
.- formation is increased in exper-

imental rat model of angiotensin II-induced hypertension.25

such as monoamine oxidases produce NO or H
2
O

2
 which result 

in increased free radical stress.19 The rate of mitochondrial respi-
ration and ROS formation is largely influenced by the coupling 
state of the mitochondria, and in turn by factors such as inter-
nal and external Ca2+ levels and antioxidant activity. Mn-SOD 
located in the mitochondrial matrix is an important antioxidant 
regulating ROS production.

The balance between oxidants and antioxidants commonly 
termed “redox state” of mitochondria also influences the opening 
of mitochondrial permeability transition pore (MPTP), which is 
associated with energy uncoupling and further ROS production20 
and development of disease process. For instance, overproduction 
of mitochondrial ROS/NO is associated with early atherosclero-
sis and hypercholesterolemia. Mitochondrial ROS is also linked 
to vascular cell pathology from hyperglycaemia induced glyca-
tion and protein kinase C activation.21 Mitochondrial source of 
H

2
O

2
 play a key role in flow-mediated dilatation in human coro-

nary resistance arteries.22

In endothelial cells hypoxia induces ROS generation and 
decreases activator protein-1 (AP-1) transcriptional activity, 
shown to be limited by inhibition of mitochondrial complex III 
with myothioxol, which suggest mitochondrial ROS are involved 
in hypoxia-induced signaling.23

Figure 3. Proposed mechanism of xanthine oxido-reductase pathways. The enzymatic inhibition results in an increased availability of hypoxanthine 
for purine nucleotide synthesis via 5'-nucleotidase and inosine monophosphate (IMP) and adenosine monophosphate (AMP) dephosphorylation, 
thereby facilitate dissipating adenosine triphosphate (ATP) synthesis. On one hand, transmembrane ion gradients push cytosolic concentrations of cal-
cium to rise, which in turn, activities protease that irreversibly converts xanthine dehydrogenase (XDH), predominant in vivo, in to xanthine oxidase 
(XO). At the same time, cellular ATP is catabolised to hypoxanthine, which accumulates in the diseased cell. During the reperfusion phase, XO using 
readmitted oxygen and hypoxanthine generates superoxide and hydrogen peroxide. Scheme derived from Puig et al., 1989.140
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NO is a major cell signaling molecule involved in a large vari-
ety of different physiological processes including neurotransmis-
sion, regulation of vascular dynamics and immune regulation.45 
It is one of the main mediators of endothelium-dependent relax-
ation (EDR). NO release is induced by either vascular shear-
stress or by eNOS activation in response to cytokine activation46 
and plays a protective role in suppressing abnormal prolifera-
tion of vascular smooth muscle cells (VSMCs) following vari-
ous pathological situations.47 NO has been shown to react with 
and cancelled by reaction with excess ROS directly inactivating 
it.48 O

2
.- reacts with NO to produce peroxynitrite, which reduces 

bioavailability of NO and produces more damaging secondary 
species. ROS may also affect NO responses by oxidizing sites on 
the protein that reacts with NO (direct competition) or which 
would otherwise influence NO binding (allosteric modulation). 
There concentration of NOS in blood vessels is therefore depen-
dent on the balance between production of NO on one hand and 
destruction by ROS on the other. Xanthine oxidase and NADPH 
oxidases are inhibited by NO, thereby NOS activity also regulate 
free radical production and maintain ROS/NO homeostasis.49 
Evidence of eNOS contribution to cellular ROS is present in 
the context of hypercholesterolemia,50 atherosclerosis,51 coronary 
artery disease,52 aging and diabetes.53

Imbalance between endothelial NO and ROS production is 
one of the major contributor of endothelial dysfunction which 
plays an important part in atherosclerosis and cardiac disease.54

Regulation of Physiological Function and Disease 
Process by Reactive Oxidant Species Signaling

In addition to its direct damaging effect on macromolecules, 
ROS can act as biochemical messengers that regulate various 
intracellular signaling pathways. ROS have been implicated in 
regulation of calcium (Ca2+) induced signaling in the vascu-
lature which in turn can activate calcium dependent protein 
kinases activity such as PKC and calcineurin.55 Intracellular 
ROS also affect the activity of protein kinase pathways by influ-
encing the redox state of the cell. Alterations in the redox state 
of protein cysteinyl residues result in changes in protein confor-
mation and function. Influence of Tyrosine kinase activity by 
ROS has been observed in a variety of cell types.55 Stimulation 
of vascular smooth muscle cell (VSMC) by platelet-derived 
growth factor (PDGF) transiently increases H

2
O

2
 production 

that induces tyrosine phosphorylation, mitogen activated pro-
tein kinase (MAPK) activation and chemotaxis, effects that 
were not observed in the higher intracellular concentration of 
the antioxidant N-acetylcysteine.43 Stimulation of VSMC with 
O

2
.- generating agent LY83583 also resulted in the increase of 

MAPK activity in a concentration dependent manner.56 Lac-
Cer, a glycosphingolipid implicated in the proliferation of 
VSMC and atherosclerotic plaque formation has also been 
shown to stimulate O

2
.- production, activation of NADPH and 

MAPK pathway induction.57

Gene expression pattern is also regulated by ROS via mod-
ulation of transcription factor activity particularly nuclear 
factor kappaB (NFκB), AP-1 and the peroxisome proliferators-

Activation of the oxidase can be mediated by intracellular 
second messengers.28 For instance, lipoxygenase metabolites of 
arachidonic acid mediate angiotensin II stimulation of NAD(P)
H oxidase in VSMC.29 Furthermore oxidase activity can also be 
modulated by upregulation of component mRNAs. TNFalpha 
increases NAD(P)H oxidase activity in VSMC over 24 hours, 
which is dependent on the increase in transcription of p22phox, 
an important subunit of NAD(P)H oxidase.30

Treatment with exogenous antioxidant SOD improves blood 
pressure and vascular reactivity in rat model of angiotensin II 
induced hypertension.31 Re-oxygenation following a period of 
hypoxia is accompanied by an increase in lactate that stimulates 
NADH oxidase activity in cardiac myocytes.32 Various factors 
including thrombin, platelet-derived growth factor, and cytok-
ines such as tumor necrosis factor-alpha (TNFalpha) also induce 
NADH/NADPH-dependent oxidase activity.30,33 Elevated levels 
of NADH-dependent O

2
.- have been found to be associated with 

diabetes and hypercholesterolemia in human saphenous vein 
segments obtained from patients undergoing coronary artery 
bypass surgery34 and in cardiac remodelling following myocar-
dial infarction.35

Xanthine oxido-reductase system as a source of reactive oxi-
dant species in the cell. Xanthine oxido-reductase exists in two 
interconvertible forms, either as xanthine dehydrogenase or xan-
thine oxidase.36 The first form reduces NAD+ whereas the latter 
reacts with molecular oxygen, leading to the production of super-
oxide anion and hydrogen peroxide.37 In the purine catabolism, 
xanthine oxido-reductase catalyses oxidative hydroxylation of 
hypoxanthine to xanthine, and then from xanthine to uric acid, 
which is a strong antioxidant and a free radical scavenger (Fig. 3). 
The dual role of xanthine oxidase means that it is an important 
regulator of cellular redox state.

Under pathophysiological stress conditions, xanthine 
oxido-reductase is an important source of oxidative stress.13 In 
experimental atherosclerosis caused by diet induced hypercho-
lesterolemia, excess superoxide production was inhibited using 
oxypurinol, a xanthine oxidase inhibitor.38 Xanthine oxidase 
generates ROS via purine metabolism pathway and is involved in 
causing endothelial dysfunction in patients with coronary disease 
and contractile dysfunction in heart failure.39

NOS uncoupling as a source of reactive oxidant species in 
the cell. Uncoupled NO Synthase (NOS) contribute to ROS 
generation and result in vascular endothelial dysfunction.40,41 
Endothelial NOS (eNOS) is a cytochrome P450 reductase-like 
enzyme that catalyses flavin-mediated electron transport from the 
electron donor NADPH to a prosthetic heme group. NOS are the 
major source of endogenous NO. eNOS can produce both NOS 
via its oxygenase function and superoxide through its reductase 
function, the later dependent on NADPH. This enzyme requires 
tetrahydrobiopterin (BH-4) bound near this heme group to trans-
fer electrons to guanidino nitrogen of L-arginine to form nitric 
oxide (NO).42 Uncoupling of eNOS contribute to ROS when 
deficiency of L-arginine or BH-4.43 In the absence of L-arginine 
or BH-4, eNOS can produce O

2
.- and H

2
O

2
.41 The product of 

reaction between NO and O
2

.- can oxidize BH
4
 and this may lead 

to further eNOS uncoupling.44
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detected in the intima and media of atherosclerotic lesions 
and in smooth muscle cells, endothelial cells, macrophages 
and T cells of atherosclerotic plaques.71 It has also been reported 
that NFκB also plays a role in mediating T-cell signaling in  
atheromatous plaques.72,73

Cardiac specific blockade of NFκB in rodents has been shown 
to reduce myocardial infarct size following ischaemia/reperfu-
sion injury. NFκB knockout mice have also been shown to have a 
decreased infarct size and improved haemodynamics after ischae-
mia/reperfusion injury, although the effects have not been seen 
in the long term.74

NFκB activation in atherosclerosis can be due to several fac-
tors. Local vascular injury has been shown to decrease inhibitory 
protein IκB and result in increased macrophage infiltration.75 
Localized adventitial hypoxia has been implicated in NFκB 
activation.76 Oxidized low density lipoprotein (LDL) which is 
implicated to plays a major role in atherosclerosis formation also 
regulate NFκB activity. In an in vivo study, injected LDL par-
ticles localised to arterial walls and underwent oxidative modi-
fication and subsequent activation of endothelial NFκB activity 
and expression of NFκB-dependent genes.77 Advanced glycation 
end products (AGEs) formed through non-enzymatic reactions 
of sugars with amino groups of proteins, nucleotides and lipids 
have also been shown to accumulate in atherosclerotic plaques 
and are thought to activate monocytes infiltration through 
NFκB.78 Furthermore the hormone angiotensin II, in addition 
to its effects on blood pressure also participates in the forma-
tion of atherosclerosis through expression of adhesion molecules 
and IL-6 in smooth muscle cells, this process is partly regulated 
through NFκB.79

Involvement of infectious agents has been implicated in the 
pathogenesis of atherosclerosis. Expression of Toll Like Receptors 
(TLR), found to activate NFκB, are involved in the initial rec-
ognition of pathogenic antigens such as bacterial lipopolysaccha-
rides have been found to be upregulated in human atherosclerotic 
arteries compared to low levels in normal arteries.80

ROS signaling via AP-1 activation. AP-1 is a family of basic 
domain/leucine zipper (bZIP) transcription factors characterized 
by their specific trans-activation through the cis-acting transcrip-
tional control DNA element, the 12-O-tetradecanoyl phorbol-
13-acetate (TPA) response element (TRE). AP-1 is a heterodimer 
of members of FOS and JUN families, or a homodimer of JUN 
proteins.81

AP-1 activity is controlled by both transcriptional and post-
translational mechanisms in response to variety of extracellular 
stimuli.82 The expression of c-JUN and c-FOS is induced by 
various mitogens83 such as hydrogen peroxide,84 UV,85 and ion-
izing radiation.17 Arachidonic acid metabolite concentration and 
Mitogen kinase pathway activity are involved in mediating acti-
vation of AP-1.86 AP-1 is also important in the regulation of gene 
expression of various target genes involved in cell proliferation 
and transformation.87

In smooth muscle cells AP-1 expression or DNA-binding 
activity have been shown to be upregulated by H

2
O

2
, oxidized 

LDL and lipid peroxidation.88 It is suggested that AP-1 activation 
under oxidative conditions may be mediated by phosphorylation 

activated receptor (PPAP) family of transcriptional activators2 
where redox cycling of cysteinyl residues plays an important 
part in this transcription factor regulation process.58

ROS signaling via NFκB activation. NFκB is one of the  
most commonly studied transcriptional factors influenced by 
cellular redox state.59 NFκB is a family of inducible transcrip-
tion factors first described as B-lymphocyte-specific nuclear pro-
teins essential for transcription of immunoglobulin kappa (κ) 
light chains. It is important in regulation of inflammation, stress 
responses, expression of cytokines and cell adhesion molecules, 
regulation of immune response and programmed cell death.60

NFκB forms functional dimerized structure composed of 
members of the Rel family, which include p65 (RelA), NFκB-
1(p50), NFκB-2(p52), c-Rel and RelB.61 Members of the Rel 
family carry a Rel homology domain which contains a nuclear 
localization signal (NLS). The homodimers and hetero-dimers 
are kept inactive by structurally association with IκB family of 
inhibitory proteins in the cytoplasm including IκB-a, IκB-b, 
IκB-e, as well as p105 and p100 precursors of p50 and p52.62

Dissociation of NFκB from its IκB inhibitory protein is the 
initial step of NFκB activity. Upon activation by stimulatory 
signals phosphorylation of IκB by ubiquitin-dependent protein 
kinase results in its ubiquitination and proteolytic degrada-
tion. Amino acid residues Ser-32 and Ser-36 of IκB are essential 
for phosphorylation and Lys-21 and Lys-22 are important for  
ubiquitination process. The activated NFκB rapidly translocate 
to the nucleus to regulate NFκB responsive genes.63 Members of 
IκB are also nuclear transcription factors that interact with NFκB 
family members directly in the nucleus, influencing its function. 
Many of the stimuli related to atherosclerosis are upstream regu-
lators of NFκB such as oxidized LDL, cytokines (TNFa, IL-1), 
UV light, ionizing radiation and infectious agents.

ROS is an important intermediate second messenger of 
NFκB activation by upstream stimuli such as TNF and IL-1.64 
Antioxidants including vitamin E and N-acetylcysteine have 
been shown to reverse activation of NFκB by stimuli,65 however 
it is thought that a non-antioxidant action on NFκB activity may 
also be responsible.65

NFκB cooperates with other transcription factors in orches-
trating gene expression. The interaction between NFκB and 
AP-1 is particularly important as many genes involved in the  
regulation of inflammation require both transcription fac-
tors working together.66 The modulation of NFκB signaling is 
affected by post-translational modifications, including reversal 
acetylation of the RelA/p65 subunit. Full transcriptional activity 
of RelA/p65 requires the acetylation of locus Lys-310, which can 
be deaceytylated by sirtuin-1 (SIRT1), a class II histone deacetyl 
transferase.67 The small molecular agonist of SIRT1, Resveratrol, 
has been shown to inhibit NFκB signaling by promoting the 
deacetylation of RelA/p65.68

NFκB induce the transcription of more than 200 genes, 
of which many are involved in regulation of inflammation,  
the production of cytokines, and upregulation of prothrom-
botic markers, processes associated with pathogenesis of 
atherosclerosis.69 NFκB is found to be upregulated in ath-
erosclerotic vessels70 and its nuclear translocation has been 
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superoxide dismutase activity.102 The lack of myeloperoxidase 
activity suggests that elevated leukocyte/macrophage production 
of ROS is not involved in the process.

Endothelial vasodilator dysfunction can lead to paradoxical 
vasoconstriction effects and occurs in situations with sympathetic 
activation such as exercise. In the cardiac vasculature this can 
result in angina pectoris.96 During increased metabolic demand, 
vasodilator dysfunction in coronary vessels has been shown to 
result in ischemia, even in the absence of pathological stenosis.99

Endothelium dysfunction has been observed in patients with 
established coronary artery disease or risk factors for both coro-
nary and peripheral vascular disease.100 Impairment in endothe-
lium-dependent vasorelaxation predicts adverse cardiovascular 
events and long-term outcomes.101

Atherosclerosis in coronary arteries even at early stages is 
associated with evidence of endothelium dysfunction.101 Long-
term cigarette smoking is an independent risk factor for impaired 
endothelium-dependent coronary vasodilation regardless of the 
presence or absence of coronary atherosclerotic lesions.102 Studies 
in the human forearm have demonstrated decreased flow-depen-
dent dilation in chronic smokers.103 The blunted endothelium 
dependent relaxation (EDR) was improved with antioxidant vita-
min C in chronic smokers, indicating the involvement of ROS 
in the pathogenesis.104 Hypertension is also linked to increased 
vascular oxidative stress in a number of animal models of hyper-
tension.105 Hypertension leads to blunting of EDR through effect 
of oxidative stress.106

Endothelium-dependent coronary blood flow regulation is 
blunted in the presence of elevated cholesterol levels. Furthermore 
the type of cholesterol appears to produce different response. 
Reduced EDR is closely related to LDL cholesterol levels but 
ameliorated with high HDL-levels.106

At sites of plaque growth, NO release is increased in response 
to increased shear-stress acting on the vessel wall. This may lead 
to vasodilation and structural vessel wall remodelling.107 Baseline 
vasomotor tone is also decreased in atherosclerotic vessels by a 
functional mechanism.108

Reduction in NO bioavailability can be decrease by several 
mechanisms including reduction in eNOS expression, lack of 
substrate or cofactors for eNOS activity, alterations of eNOS 
cellular signaling and increase in NO degradation.109 Mice with 
eNOS knockout are more prone to develop typical atheroscle-
rotic lesions in response to adventitial vessel wall injury compared 
to wild-type mice.110

The bioavailability of NOS is more important for coronary 
artery dilatation than the activity of eNOS and generation of 
NOS. The bioavailability of NOS is influenced by the amount 
of ROS present that can transform NO to ONOO- and oxidized 
tetrahydrobiopterin to dihydrobiopterin which lead to eNOS 
uncoupling and further ROS production.95 Upregulation of tetra-
hydrobiopterin which improves bioavailability of NOS has been 
shown to improve endothelial function and reduce superoxide 
production.111 Supplementation of antioxidant superoxide dis-
mutase has also been shown to improve endothelium dependent 
vasodilatation of coronary arteries.112 Treatment with L-arginine, 
precursor of intracellular NOS, has been found to improve 

of Jun proteins.89 However a number of antioxidants such as 
cysteine based redox regulators of glutathione and thioredoxin 
pathways have also been shown to stimulate DNA binding and 
transcriptional activity of AP-1.90 Therefore the regulation of 
AP-1 by oxidative free radicals is complex and requires further 
elucidation.

ROS signaling via peroxisome proliferators activated recep-
tors (PPAR). The dimerisation of PPAR with retinoid X receptor-
beta (RXRbeta) occurs in response to various metabolic stimuli. 
PPAR/RXRbeta transcription factor is responsible for induc-
ing acetyl coenzyme A oxidase, an enzyme that transfers elec-
trons to oxygen to produce H

2
O

2
.91 PPAR transcription factor 

has been implicated in the inflammatory processes involved in 
pathogenesis of atherosclerosis.92 Oxidized LDL has been shown 
to increase expression of PPAR in foam cells of atherosclerotic 
lesions.93 However PPAR does not have a sole role in mediation of 
inflammation. Activation of PPARalpha and PPARgamma iso-
forms results in anti-inflammatory responses in blood vessel wall. 
Specific agonists of PPARgamma has been shown to suppress 
pro-inflammatory gene expression in monocytes.94 Activators 
of PPAR alpha has also been shown to block inflammatory 
responses in aortic smooth muscle cells and PPARgamma activa-
tion was recently shown to mitigate the inflammation associated 
with chronic and acute neurological insults.93

Reactive Oxidant Species Formation and  
Cardiovascular Disease

Oxidative/nitrosative and endothelial dysfunction in ateroscle-
rosis. One of the key concepts of free radical mediated pathogen-
esis of cardiovascular disease is endothelial dysfunction, whereby 
the regulation of vascular wall microenvironment is disrupted. 
An important element in this concept is that vascular endothe-
lium is an active component of the vasculature, which plays a 
part in the regulation of vascular tone, platelet activity, throm-
bosis, inflammation and atherosclerosis. Endothelium vasoactive 
tone is maintained by the release of substances like prostacyclins, 
endothelins and the endothelium-derived relaxation factor nitric 
oxide (NO) or a related compound.95

Reduction in endothelium-dependent vasorelaxation caused 
by the reduction in NO bioavailability plays a significant role in 
endothelial dysfunction. Decreased NO bioavailability disrupts 
the non-thrombogenic intimal surface and promotes platelet 
adhesion and aggregation as well as deposition of platelets on the 
abnormal endothelial surface.

Thrombus formation during acute coronary syndromes 
results in the release of various vasoactive substances such as 
thrombin and serotonin.96-98 In normal endothelium these sub-
stances mediate vasodilatation.99 In the setting of endothelial 
vasodilator dysfunction vasoconstriction occurs.100 This is poten-
tiated by the presence of endothelins, whose concentrations are 
elevated concentration in plaques of patients with acute coronary 
syndrome.101

The impairment of vasodilatation in response to vasodilator 
acetylcholine is a measurement of endothelial dysfunction and 
it correlates with increased local ROS production and reduced 
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an increase in free radical production in cardiac tissues and are 
principal causes of reperfusion injury. ROS produced through 
reoxygenation lead to direct oxidative damage to cellular com-
ponents and also through indirect injury via activation of local-
ized inflammation.1 ROS can also act as signaling messenger in 
activating biochemical pathways responsible for altering cellular 
function.128 For instance, Akt activation in VSMC induced by 
exogenous angiotensin II, which leads to VSMC hypertrophy, 
has also been shown to be mediated by H

2
O

2
 and can be abro-

gated by overexpression of catalase.54 Hypoxia/reoxygenation in 
cardiac myocytes also leads to induction of p38 MAPK and JNK 
pathways and that the activity of these pathways can be attenu-
ated by pre-incubation with antioxidants and tyrosine kinase 
inhibitors.57

ROS mediated effect in cardiovascular disease is also reflected 
in nuclear transcription factor activity. The nuclear transcription 
factor NFκB activity has been found in myocardial biopsies of 
patients with unstable angina.129 Nuclear translocation of RelA 
has also been found to be increased in human coronary artery 
plaques.130

The pathogenesis of atherosclerosis has been thought of as an 
inflammation-mediated process.131 Atherosclerosis is associated 
with increased levels of inflammatory markers including CRP, 
IL-6, ESR, TNF, homocysteine.132 Hormones and cytokines 
such as angiotensin II, PDGF and TNFalpha may increase ROS 
in atherosclerotic lesions by stimulating local vascular myocytes 
to produce ROS.133 Mitochondrial dysfunction and increase ROS 
production has also been shown to associate with early athero-
sclerotic lesion formation.134 Multiple cell populations in the vas-
cular wall have been shown to both produce and be regulated 
by ROS signaling.135 Free oxygen radicals lead to increase vascu-
lar oxidizes LDL and increase adhesion molecule expression in 
endothelial cells, which result in inflammatory cell infiltration 
and activate matrix metalloproteinases and vascular remodel-
ling.136 Reactive oxygen species (O

2
.- and H

2
O

2
) regulate growth 

and migration of vascular smooth muscle cells in the plaque 
structure.42 ROS also trigger extracellular matrix remodelling 
through regulation of collagen resorption resulting in compro-
mised plaque stability.136,137

Oxidative/nitrosative stress and heart failure. Xanthine oxy-
genase is an important cardiovascular source of ROS. Increase 
in xanthine oxygenase level and activity has been shown in heart 
failure.138 Upregulation of xanthine oxygenase in patients with 
heart failure is thought to contribute to mechano-energetic 
uncoupling.139

NAD(P)H activity is also increased in cardiovascular disease 
with increased levels found in myocardial cells from humans 
with heart failure and in ischaemia-reperfusion models.140 This 
increase is due in part by elevated levels of angiotensin II which 
causes neurohormonal dysregulation of oxidative/nitrosative 
disequilibrium.141 In rabbit model of early atherosclerosis, where 
hypercholesterolemia was induced by defect in LDL-receptor, it 
was shown that NAD(P)H-induced ROS production increased 
by 2 fold in the disease group compared with controls.142

Nitrosative stress caused by nitrogen free radicals also plays 
a role in cardiovascular disease. In acute ischaemia, sepsis or 

endothelium dependent vasodilation in patients with cardiac risk 
factors.113,114 In addition, calorie restrictions for 3–12 months lead 
to enhanced eNOS expression and cGMP formation in various 
tissues in mice.112 This was accompanied by mitochondrial bio-
genesis, increased oxygen consumption and ATP production and 
enhanced expression of sirtuin-1.112 These effects were abrogated 
in eNOS null mutant mice.112

Furthermore NO generated by vascular endothelium has 
traditionally been thought to have a purely paracrine role. 
Interestingly, recent evidence show that NO display hormonal 
function by reacting with haemoglobin to form stable metabo-
lites, which can be transported through the blood stream and 
subsequently release NO at sites distant to the site of produc-
tion.115 During oxygenation in the lung some NO transfers to 
the highly conserved beta chain Cys93 residue of haemoglobin to 
produce S-nitrosyl haemoglobin (SNO-Hb). Following deoxy-
genation in peripheral circulation, SNO-Hb is able to then release 
NO bioactivity. The significance of this mode of NO activity is 
still under investigation.

Oxidative/nitrosative stress and hypertension. Clinical stud-
ies have demonstrated that there is increased ROS production in 
patients with essential hypertension, renovascular hypertension, 
malignant hypertension and pre-eclampsia.116-119 Vascular ROS 
are produced in endothelial, adventitial and vascular smooth 
muscle cells (VSMCs) and derived primarily from NAD(P)H 
oxidase, a multi-subunit enzyme catalyzing O

2
.- production by 

the 1 electron reduction of oxygen using NAD(P)H as the elec-
tron donor:120

2O
2
 + NAD(P)H → 2O

2
- + NAD(P) + H+

Interestingly, all major trials on antioxidant supplementation 
have failed to show significant cardiovascular benefits and anti-
oxidants are not recommended for the prevention or treatment of 
hypertension. In contrast, dietary approaches are highly recom-
mended, supported by evidence from a trial which demonstrated 
that subjects consuming high fruit and vegetable diets had sig-
nificantly reduced blood pressure.121 On the other hand, direct 
cardiovascular effects of some pharmaceutical agents have been 
attributed to direct inhibition of NAD(P)H oxidase activity, as 
shown for angiotensin 1 (AT

1
) receptor blockers, and to intrinsic 

antioxidant properties of the agents. Classical antihypertensive 
agents such as β-adrenergic blockers (carvedilol), ACE inhibi-
tors, AT

1
 receptor antagonists, and Ca2+ channel blockers may be 

mediated, in part, by decreasing vascular oxidative stress.122-124

Oxidative/nitrosative stress and cardiovascular disease out-
comes. Oxidative stress is linked with negative outcomes in car-
diovascular disease.88 As discussed above, free radical stress can 
lead to cardiovascular disease by influencing the endothelial func-
tion.125 ROS can cause direct cardiac injury by oxidizing cellular 
constituents, disruption of proteins critical for excitation-con-
traction (E-C) coupling and by diminishing NO bioactivity.126 
Blood sample from patients with ischaemic heart disease has been 
shown to contain evidence of oxidative/nitrosative stress.127

Oxidative/nitrosative stress and cardiovascular ischemia. 
In myocardial ischaemia, hypoxia and reoxygenation induces 
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heart failure, nitrosative stress is increased due to an increase 
in the amount of iNOS (NOS2), leading to increased levels of 
S-nitrosylated proteins.143 The accumulation of heme NO in heart 
failure is correlated with venous desaturation.144 Oxidative stress 
leads to partial uncoupling of eNOS, resulting in the increased 
production of superoxide and peroxynitrite species.145 However, 
the role of NOS activity in cardiovascular disease is not fully 
understood in that, although NOS gene therapy in carotid arter-
ies of a rabbit model of hypercholesterolemia has been shown to 
rapidly reduce adhesion molecule expression and inflammatory 
cell infiltrations,146 in contrast, eNOS-deficient mice are known 
to develop smaller aortic lesions than corresponding wild-type 
control animals fed on an atherogenic diet. It is suggested that 
superoxide production by eNOS is important in oxidation of 
LDL during the formation of atherosclerosis in the setting of 
hyperlipidemia.147

The “Vascular Interaction With Age in Myocardial 
Infarction” (VINTAGE MI) Trial showed that supplementation 
of L-arginine (precursor of NO) in patients with first ST-segment 

research with a clearer focus on the devel-
opment of disease-specific therapeutic tar-
gets is required.

elevation myocardial infarction did not improve vascular dynam-
ics or cardiac function and may be associated with higher post-
infarction mortality.144

In addition to direct injury, NO/redox disequilibrium may 
also impair ion channels within the heart by S-nitrosylation, 
resulting in functional cardiac impairment.143 Different NOS iso-
forms exert varying effects on cardiac physiology. For instance, 
NOS3 exert its effect on signal transduction at plasmalemmal 
membrane, inhibiting L-type calcium channel and thus attenuat-
ing the beta-adrenergic mediated myocardial contractility.148 On 
the other hand, NOS1 isoform exerts its effect on sarcoplasmic 
reticulum, which facilitates calcium cycling and enhancing myo-
cardial contractility stimulated by catecholamines.149

Oxidative/nitrosative stress and postoperative arrhythmias. 
Atrial fibrillation (AF) is a frequent complication of most types 
of coronary artery surgery.150 The incidence of post-operative AF 
(PAF) in patients undergoing cardiac surgery is between 20–50%, 
and has been reported up to 65%.150 It usually occurs within 5 
days especially on the second or third day.151,152 The incidence 
may in fact be higher in patients with combined coronary artery 
bypass graft (CABG) and valve surgery than CABG alone.152,153 
There is now a new focus on cardiac specific ROS production, 
rather than supplementing a systemic antioxidant response with 
evidence suggesting that myocardial specific-oxidative stress may 
be the main trigger for PAF.154 Recent evidence suggests that pre-
operative angiotensin converting enzyme inhibitor or angiotensin 
receptor blocker use has a significant impact on the frequency of 
atrial fibrillation after cardiac surgery,155 most likely by targeting 
cardiovascular specific ROS production.

Concluding Remarks

In recent times, important milestones have been reached with the 
availability of more overt evidence that shows that cardiovascular 
disease mechanisms are strongly linked to the production of reac-
tive oxidant species and the dysregulation of oxidant-antioxidants 
pathways. In this regard, the oxidation and nitration of cellular 
proteins, lipids and nucleic acids, and formation of aggregates 
of oxidised molecules underlie the loss of cellular function, cel-
lular ageing and the inability of cells to withstand physiological 
stresses. In addition, reactive oxidants species modulate signal 
transduction processes and energy metabolism in response to 
conditions of oxidative/nitrosative stress. Evidence shows that 
sources of reactive oxidant species, physiological and pathophysi-
ological conditions, and cellular oxidant targets determine the 
characteristic nature of a disease process and resultant outcomes. 
Although much information on the relationship between oxida-
tive stress and the disease process is now available (Fig. 4), further 

Figure 4. Recent emerging work supports with more overt evidence 
thus showing the strong relation of human disease mechanisms to the 
production of reactive oxidant species and the dysregulation of oxidant-
antioxidants pathways. These pathways as discussed in this review dem-
onstrate the modulation of signal transduction processes and energy 
metabolism in response to conditions of oxidative/nitrosative stress.
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