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Abstract: Crohn’s disease is a consequence of dysregulated inflammatory response to the host’s
microbiota. Although anti-TNF treatment improves the quality of the patient’s life, a large proportion
of patients lose response to the treatment. The past decade of research has led to a continuum of
studies showcasing the heterogeneity of anti-TNF response; thus, the aim of the present study was to
dissect transcriptome-wide findings to transcript isoform specific levels and combine the analyses
with refined information of immune cell landscapes in colon tissue, and subsequently select promising
candidates using gene ontology and genomic integration. We enrolled Slovenian Crohn’s disease
patients who were naïve with respect to adalimumab treatment. We performed colon tissue RNA
sequencing and peripheral blood mononuclear cell DNA genotyping with a subsequent contemporary
integrative approach to combine immune cell deconvoluted isoform transcript specific transcriptome
analysis, gene ontology layering and genomic data. We identified nine genes (MACF1, CTSE, HDLBP,
HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts and 16 variants involved
in the adalimumab response. Our study identified loci, some of which were previously shown
to contribute to inflammatory bowel disease susceptibility, as novel loci involved in adalimumab
response in Crohn’s disease patients.

Keywords: Crohn’s disease; adalimumab; transcriptome; isoforms; deconvolution

1. Introduction

A dysregulated inflammatory response to the host’s microbiota is a key etiology of
Crohn’s disease and ulcerative colitis, and leads to chronic inflammation [1–3]. Crohn’s
disease incidence in Europe is as high as 12.7 per 100,000 persons per year, or 322 per
100,000 persons, making this disease far from rare [4]. Established explanatory concepts
of Crohn’s disease have shown a greater role for genetic predisposition as opposed to
environmental factors (cigarette smoking and antibiotic use) in comparison to ulcerative
colitis [5,6]. The basis of the chronic inflammatory process is now assumed to be commensal
microbiota and dysbiosis [7–9]. In addition to mucosal barrier disorder, various defects of
bacterial recognition, autophagy, endoplasmatic reticulum stress and immune cells exert
an effect on antimicrobial defense and alter the microbiome [9,10]. Subsequently invading
bacteria induce the inflammatory response, which is thought to be dysregulated [11].
With tumor necrosis factor alpha (TNF-α) being a key cytokine of inflammation, anti-TNF
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therapies such as infliximab and adalimumab have started to dominate the treatment of
Crohn’s disease [12,13]. Anti-TNF therapy significantly improves the quality of patients’
lives, but a large proportion of patients do not respond to anti-TNF therapy or lose the
response after the initial benefit [12,14–16]. In recent years, novel biological agents such
as vedolizumab, ustekinumab and risankizumab in the treatment of Crohn’s disease have
emerged [17–20]. Even after the advent of novel biological drugs targeting other cytokines,
adalimumab and its biosimilars remain widely used biological therapy in inflammatory
bowel disease [21]. Recently it was also shown that treatment choices for Crohn’s disease
must be individualized for each patient, starting with either infliximab with azathioprine
or adalimumab as a first-line therapy for the induction of clinical remission [22].

Almost a decade of research has led to a continuum of studies showcasing the het-
erogeneity of the anti-TNF response [23–32]. However, most genomic markers for anti-
TNF response in Crohn’s disease do not reach sufficient thresholds and, therefore, no
reproducibility between genetic and expression data exists [33]. Recent approaches have
identified new anti-TNF candidates using integrative transcriptomic-genomic analyses
while accounting for deconvoluted immune cell composition in bulk RNA samples from
peripheral blood monocytes [30]. Moreover, it was recently shown that deconvolution of
whole-tissue gene expression data yields refined information concerning the immune cell
landscape in inflammatory bowel disease [34]. Nevertheless, to date, genetic studies of
anti-TNF research in Crohn’s disease focused merely on genes, with disregard to specific
isoforms; therefore, the aim of the present study was to:

1. Perform isoform-level transcriptome profiling of colon tissue.
2. Combine transcriptome profiling with refined information concerning immune cell

landscapes in colon tissue.
3. Stringently select promising gene candidates based on gene ontology analysis.
4. Integrate and functionally annotate the findings from genome profiling data.

2. Materials and Methods
2.1. Enrolled Subjects

We enrolled 84 Slovenian patients of Caucasian Central European ethnicity with
Crohn’s disease (55 responders and 29 non-responders) who were naïve in respect to
treatment with adalimumab and fulfilled the criteria for adalimumab (Humira, Abbott
Laboratories, Chicago, IL, USA) therapy initiation. Crohn’s disease diagnosis was made
based on a combination of endoscopic, histological, clinical, biochemical, stool and imaging
investigations based on ECCO-ESGAR guidelines [35]. Baseline demographics of the
enrolled patients is available in previous study [30]. Inclusion criteria consisted of adverse
effects to corticosteroids, refractoriness to corticosteroids and previous loss of response to
infliximab, with a mandatory minimum eight-week wash-out period [24]. Exclusion criteria
were defined as the presence of stenosis, abscesses, total colectomy, history of murine
proteins allergy, active tuberculosis or a serious infection in the previous three months,
pregnancy, lactation or malignancy, history of Listeria infection, HIV, demyelinating disease,
chronic viral hepatitis, uncontrolled diabetes mellitus, unstable ischemic heart disease
or congestive heart failure, cerebrovascular accidents, history of drug or alcohol abuse,
previous treatment with natalizumab or any other conditions which would put the patient
at risk based on clinician’s opinion [36]. Initiation of adalimumab treatment consisted of a
loading dose of 160 mg followed by 80 mg after two weeks and then a maintenance dose of
40 mg every other week. If the dosage of adalimumab was stable in the last three months,
concomitant treatment with azathioprine, 5-amisalycylates, corticosteroids or antibiotics
was allowed. Response to the treatment was measured using an IBD questionnaire (IBDQ)
after 12 weeks of initiation of the therapy, and response was defined as an increase of
the IBDQ score of >22 points after baseline score or a total score of >170 points [37,38].
Healthy (N = 11) and inflamed (N = 11) colon tissue biopsies were also collected for
subsequent genetic analyses from 22 enrolled individuals who were followed up 12, 20
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and 30 weeks after initiation of the adalimumab therapy and were consistent responders or
non-responders.

2.2. Extraction of Nucleic Acids

DNA was extracted from peripheral blood mononuclear cells using TRI-reagent
(Merck, Darmstadt, Germany) according to manufacturer’s instructions. Before RNA
was extracted from colon tissue biopsies, the tissue was first homogenized using a Bullet
Blender homogenizer (Next Advance Inc., Troy, NY, USA) followed by immediate extraction
of RNA using TRI-reagent (Merck) according to manufacturer’s instructions. Concentration,
purity and integrity of nucleic acids were estimated using a Synergy 2 spectrophotometer
(Biotek, Winooski, VT, USA) and a 2100 Bioanalyzer Instrument (Agilent, Santa Clara, CA,
USA) with an RNA 6000 Nanochip.

2.3. Transcript Specific Tissue RNA-Seq Analysis

RNA sequencing was performed on 22 samples with estimated an RIN number >9.0
and a 28S/18S ratio between 1.5 and 2.0. Paired-end RNA sequencing was performed
at BGI China (BGI, Shenzhen, China) using a DNBSEQ-G400 apparatus and 2 × 100 bp
MGIEasy rRNA depletion kit (MGITech, Shenzen, China) and MGIEasy RNA library prep
set (MGITech).

Raw fastq files were first assessed for quality using FastQC software (version 0.11.9,
Babraham Bioinformatics, Cambridge, UK) with subsequent trimming of technical se-
quences using the Trimmomatic tool (version 0.39, USADEL LAB, Aachen, Germany) [39,40].
Transcript specific RNA-seq analysis was performed using a Kallisto pseudoalignment
program (Pachter Lab, Berkeley, CA, USA) with GRCh37 reference genome [41]. Estimated
counts and tpms were further processed using the R 4.2.1 environment (R Core Team 2020,
Vienna, Austria) and using a pipeline described elsewhere [30]. Additional conventional
alignment of raw reads to the GRCh37 reference genome was performed to obtain estimated
meta-feature raw counts and tpms for deconvolution of immune cells in the bulk RNA
from tissue biopsies, as described previously [30,42]. CIBERSORTx (Alizadeh & Newman
Lab, Stanford, CA, USA) and an LM22 signature matrix were used to correct for immune
cell infiltration in the colon tissue [43].

Transcript specific RNA-seq data analysis was independently performed on healthy tis-
sue samples (four non-responders relative to seven responders) and inflamed tissue samples
(seven non-responders relative to four responders). A linear regression model and empiri-
cal bayes were fitted and covariate-corrected using four different approaches: (I) corrected
for sex, age at diagnosis, corticosteroid use, azathioprine use and aminosalicylates use; (II)
corrected for sex, age at diagnosis, corticosteroid use, azathioprine use and deconvolution
abundance fraction of T cells; (III) corrected for sex, age at diagnosis, corticosteroid use,
azathioprine use and deconvolution abundance fraction of monocytes/macrophages; (IV)
corrected for sex, age at diagnosis, corticosteroid use, azathioprine use and deconvolution
abundance fraction of dendritic cells.

Results from separate healthy and inflamed tissue analyses were subsequently com-
bined using the MetaVolcanoR R package (version 1.2.0, Cesar Prada, São Paulo, Brasil) to
obtain meta-statistically significant differentially expressed transcripts showing the same
direction of expression and consistence of perturbation [44]. Additionally, statistically
significant differentially expressed transcripts showing opposite direction of expression
in healthy and inflamed were also retained for further analyses. Statistically significant
differential expression was considered for transcripts with p value < 0.05 and Log2FC > 2
or < −2.

2.4. Gene Ontology Analysis

Gene ontology (GO) analysis was carried out using the clusterProfiler R package (ver-
sion 4.4, Guangchuang Yu, Guangzhou, China) [45]. Enrichment of terms was performed
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for biological processes, cellular components and molecular functions. Thresholds were set
as p value < 0.01 and q value < 0.05.

2.5. Genome-Wide Association Analysis

DNA obtained from 84 enrolled patients was genotyped using the genotyping microar-
ray Infinium Global Screening Array (GSA_24v1) (Illumina, San Diego, CA, USA). Quality
control, genotype imputation, subsequent association analysis of the obtained genotype
data and subsequent integration with transcriptomic data were performed as described
previously [30]. Binary logistic Wald regression with adalimumab response at week 12 set
as the dependent variable was carried out corrected to age at diagnosis, sex, azathioprine
use, use of aminosalycylates, use of corticosteroids and the first four principal components.
A statistically significant signal was considered for variants with adjusted p value < 0.05.
Where more than one variant was present at the same locus, variants were pruned using
the SNPclip tool from LDlink software (version 5.4, NIH, Bethesda, MD, USA) with R2 set
to 0.5 r to obtain independent genomic signals [46]. Regional manhattan plots for gene
regions were constructed using LocusZoom [47].

2.6. Functional Annotation and eQTL Estimation

Functional annotation was carried out using the HaploReg v4.1 database (accessed
on 25 July 2022) [48]. Tissue eQTLs were estimated using the GTExPortal and ENSEMBL
database (accessed on 25 July 2022) [49,50]. Transcript-wise eQTLs in our data were
calculated using the Kruskal-Wallis H test and were calculated independently for all tissues,
healthy tissue and inflamed tissue. A p value < 0.05 was considered as a statistically
significant eQTL observation.

2.7. Construction of Gene Interaction Network and Visualization

Interaction grids of genes of interest were generated and illustrated using the soft-
ware package CytoScape (version 3.8.2, CytoScape Team) with the integrated application
ClueGO (version 2.5.8, Laboratory of Integrative Cancer Immunology (Team 15), Paris,
France) [51,52]. To obtain curated data of gene interaction, we expanded our list of genes
of interest by adding genes interacting with at least two investigated genes (i.e., genes
associated with response to adalimumab) which we obtained from the BIOGRID database
(accessed on 28 July 2022) using the biogridR R package (github.com/npjc, Vancouver, BC,
Canada) [53,54].

2.8. Machine Learning Validation

Validation of identified transcripts and variants was further assessed using machine
learning random forest algorithm using the randomForest R package (version 4.6–14,
Merck Research Laboratories, Kenilworth, NJ, USA) [55]. Machine learning validation
was done using all 15 identified transcripts, transcripts of LGMN and ACP5 genes and
three transcripts of the HLA-DMB gene. Additionally, validation was made for variants
where eQTL association was observed. Results are presented as probabilities after receiver
operating characteristics (ROC) analysis using pROC R package (version 1.18.0, Swiss
Institute of Bioinformatics, Geneva, Switzerland) [56].

3. Results
3.1. Transcript Specific RNA-Seq Analysis

Transcript specific RNA-seq data analysis was independently performed on healthy
tissue and inflamed tissue. A regression model was fitted and corrected using four differ-
ent approaches as aforementioned. Deconvolution fractions used in the approaches are
presented in Figure S1.

Using the first approach, we first combined the datasets of the two separate analyses
(differentially expressed isoforms (DEIs) between non-responders and responders identified
in normal tissue and DEIs between non-responders and responders identified in inflamed
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tissue) in order to obtain meta-statistically significant DEIs showing the same direction
of expression and consistence of perturbation. The analysis identified 62 statistically
significant DEIs (Table S1) as evident from Figure 1. Additionally, 26 statistically significant
DEIs between non-responders and responders showing the opposite direction in healthy
and inflamed tissue were also retained from the two separate analyses (Table S2 and
Figure S2).
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Figure 1. Volcano plots of RNA-seq transcript specific analyses. (a) First approach; (b) approach
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deconvolution fraction; (d) approach corrected for dendritic cells deconvolution fraction. Red dashed
lines indicate borders for statistically significant differentially expressed transcripts.
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Using correction for the T cell deconvolution fraction, we observed 52 meta-statistically
significant DEIs with conserved perturbation in healthy and inflamed tissues (Table S3) as
shown in Figure 1. Thirty-six statistically significant DEIs showing the opposite direction
in healthy and inflamed tissue were also observed using the model with correction for T
cell fraction (Table S4 and Figure S3).

For determination of meta-statistically DEIs using the regression model with correc-
tion for the monocytes/macrophages deconvolution fraction, we used a more stringent
threshold (p value < 0.005 and Log2FC > 2 or < −2), and identified 134 transcripts with a
conserved perturbation in healthy and inflamed tissue as shown in Figure 1 (Table S5). Ad-
ditionally, four transcripts showed statistically significant differential opposite expression
in healthy and inflamed tissue (Table S6 and Figure S4).

Using the deconvoluted dendritic cell fraction for correction of the regression model,
we observed 98 meta-statistically significant DEIs with conserved perturbation in healthy
and inflamed tissue as evident from Figure 1 (Table S7). We additionally observed
157 isoform transcripts with statistically significant differential expression in the oppo-
site directions in healthy and inflamed tissue (Table S8 and Figure S5).

3.2. Gene Ontology Enrichment Analysis

Using the results obtained from approaches of isoform specific RNA-seq data analysis,
we performed GO analysis for each set of identified isoform transcripts, and their corre-
sponding genes, separately. GO analysis was performed for biological processes, cellular
components and molecular function. The most significant enriched terms for each approach
are presented in Table 1, and all enriched terms with corresponding gene ratios and gene
IDs are presented in Table S9. Enriched terms are mostly correlated to antigen preprocess-
ing and peptide antigen presentation in relation to MHC class I complexes. Furthermore,
cytoplasmic translation, lumenal side of endoplasmatic reticulum membrane, ribosome and
endocytic vesicle, are also most enriched terms. Altogether, using all statistically significant
enriched terms, there are 111 unique gene IDs presented in Table S10.

3.3. GWAs Integration, Gene Selection and Functional Annotation

Genomic regions of ± 100 kbp from 111 genes identified in transcriptomics and
subsequent GO analyses were further used to integrate transcriptomic and genomic data
for stringent gene selection. Integration revealed 54 statistically significant signals in 9
(MACF1, CTSE, HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) out of 111
selected gene regions after application of empirical autocorrelation adjustment (Table S11,
Figures S6–S14). All nine genes were represented with altogether 15 isoform transcripts.

Where more variants at the same loci were present, they were additionally pruned
by linkage disequilibrium (R2 > 0.5) to obtain independent genomic signals presented in
Table 2. Independent variants were further functionally annotated to identify possible
function on gene expression through epigenetic modifications, chromatin remodeling or
protein/motif binding alternations. It was shown that protein binding and motif changes
are listed for variants rs10888633, rs35441329, rs28396806, rs28386947, rs10132165 and
rs28454947. For variant rs7761882 identified in HLA-DMB and TAP2 gene regions and
rs2229531 in the ACP5 gene region, enhancer histone marks in immune cells from peripheral
blood and motif changes are listed. Moreover, variant rs2229531 is a missense variant and
flagged as constrained by GERP and SiPhy-omega algorithms. In the variant rs144948822
DNase experiments, motif changes are listed. Variants in the gene region of LGMN were
the most annotated variants and are listed at promoter and enhancer histone marks in
peripheral blood immune cells, intestinal or colon tissue. In DNase experiments, binding
of various proteins and motif changes are listed at these variants. Detailed annotation is
available in Table S12.



Pharmaceutics 2022, 14, 1893 7 of 16

Table 1. Gene ontology most significantly enriched terms.

Approach GO ID Description q Value

Biological Process

I consistent * GO:0002474 Antigen processing and presentation of peptide antigen via MHC class I 9.27 × 10−6

I opposite ** NA NA NA
II consistent GO:0048002 Antigen processing and presentation of peptide antigen 0.00018
II opposite NA NA NA

III consistent GO:0002181 Cytoplasmic translation 4.16 × 10−17

III opposite GO:0019885 Antigen processing and presentation of endogenous peptide antigen via MHC class I 0.00014
IV consistent GO:0019885 Antigen processing and presentation of endogenous peptide antigen via MHC class I 1.13 × 10−05

IV opposite GO:0039531 Regulation of viral-induced cytoplasmic pattern recognition receptor signaling pathway 0.0019

Cellular Component

I consistent GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane 2.91 × 10−05

I opposite GO:0030139 Endocytic vesicle 0.0057
II consistent GO:0042611 MHC protein complex 0.0015
II opposite NA NA NA

III consistent GO:0022626 Cytosolic ribosome 2.15 × 10−16

III opposite GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane 3.25 × 10−05

IV consistent GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane 0.00049
IV opposite NA NA NA

Molecular Function

I consistent GO:0003823 Antigen binding 4.39 × 10−08

I opposite NA NA NA
II consistent NA NA NA
II opposite NA NA NA

III consistent GO:0003735 Structural constituent of ribosome 2.24 × 10−13

III opposite GO:0042605 Peptide antigen binding 9.90 × 10−05

IV consistent GO:0042605 Peptide antigen binding 9.83 × 10−05

IV opposite GO:0045296 Cadherin binding 3.44 × 10−05

NA: Enriched terms not applicable; * same direction of isoform gene expression change in non-responders
vs. responders in healthy and inflamed tissue; ** opposite direction of isoform gene expression change in
non-responders vs. responders in healthy and inflamed tissue.

Table 2. Independent statistically significant variants.

LOCUS dbSNP CHR BP p Value q Value β SE AF.RESP AF.NON

MACF1 rs10888633 1 39487164 0.0081 0.0398 1.0167 0.38416 0.44545 0.22414
MACF1 rs35441329 1 39537291 0.0030 0.0148 −1.4006 0.47237 0.12727 0.31034
CTSE rs28396806 1 206256869 0.0060 0.0360 −1.3133 0.47774 0.11818 0.31034
HDLBP rs75590598 2 242185654 0.0002 0.0496 −2.3973 0.65155 0.054545 0.24138
HSPA9 rs6891007 5 137966643 0.0054 0.0294 −1.0835 0.38979 0.25455 0.46552
HSPA9 rs28386947 5 137978163 0.0021 0.0115 −1.4205 0.46251 0.18182 0.41379
HSPA9 rs58914268 5 137987814 0.0057 0.0306 −1.0578 0.38237 0.19091 0.39655
HLA-DMB rs7761882 6 32859137 0.0019 0.0443 −1.7556 0.56605 0.1 0.2931
TAP2 * rs7761882 6 32859137 0.0019 0.0297 −1.7556 0.56605 0.1 0.2931
LGMN rs58531216 14 93071325 0.0017 0.0158 −1.6627 0.52838 0.072727 0.25862
LGMN rs10132165 14 93091829 0.0036 0.0347 1.4152 0.48635 0.88182 0.7069
LGMN rs11621843 14 93116124 0.0007 0.0071 −1.9507 0.57841 0.054545 0.25862
LGMN rs3814830 14 93118198 0.0042 0.0399 −1.3242 0.46212 0.1 0.2931
LGMN rs10137934 14 93193912 0.0035 0.0339 2.3774 0.81496 0.22727 0.034483
ANAPC11 rs144948822 17 79766520 0.0068 0.0136 −3.2032 1.1837 0.0090909 0.12069
ANAPC11 rs28454947 17 79769466 0.0214 0.0428 −1.1223 0.48779 0.10909 0.24138
ACP5 rs2229531 19 11687195 0.0011 0.0392 −1.96 0.60067 0.081818 0.24138

BP: Base pair location on DNA; β: Beta was calculated for minor allele and response; SE: Standard error; AF.RESP:
Minor allele frequency responders; AF.NON: Minor allele frequency non-responders; * Same variant present
as above.

Variants were further analyzed using the eQTL database (accessed on 25 July 2022).
Using the genotype-tissue expression GTEx portal database (accessed on 25 July 2022), only
rs10137934 (LGMN) and rs2229531 (ACP5) were listed as significant eQTLs for identified



Pharmaceutics 2022, 14, 1893 8 of 16

genes in whole blood, small intestines and colon tissue. All other identified variants were
listed as significant eQTLs for other neighboring genes in identified gene regions (Table S13).
Interestingly, none of these neighboring genes were statistically significant differentially
expressed in transcript specific RNA-seq analyses. To assess the eQTLs transcript-wise in
our data, we statistically calculated genotype-transcript expression association separately
in all tissues, healthy tissue and inflamed tissue (Table 3). Despite the small sample size,
we were able to observe statistically significant eQTL for LGMN gene (ENST00000555169.1)
and rs58531216 in all tissues (p = 0.004) and tendency for association in healthy (p = 0.053)
and inflamed tissue (p = 0.052). Tendency for eQTL association was also observed for the
LGMN gene (ENST000005551669.1) and rs11621843 in inflamed tissue (p = 0.052).

Table 3. Estimated and calculated transcript eQTLs.

GENE TRANSCRIPT dbSNP eQTL p Value ALL eQTL p Value H eQTL p Value D

MACF1 ENST00000372925.2 rs10888633 0.084 0.485 0.099
MACF1 ENST00000372925.2 rs35441329 1 0.134 0.119
CTSE ENST00000360218.2 rs28396806 0.315 0.439 0.142
CTSE ENST00000581049.1 rs28396806 0.315 0.439 0.142

HDLBP ENST00000310931.4 rs75590598 0.115 1 0.197
HSPA9 ENST00000501917.2 rs6891007 0.805 0.319 0.887
HSPA9 ENST00000501917.2 rs28386947 0.065 0.102 0.331
HSPA9 ENST00000501917.2 rs58914268 0.422 0.077 0.187

HLA-DMB ENST00000383231.2 rs7761882 0.462 0.299 0.339
HLA-DMB ENST00000428420.2 rs7761882 0.462 0.299 0.339
HLA-DMB ENST00000440078.2 rs7761882 0.462 0.299 0.339

TAP2 ENST00000443713.2 rs7761882 0.068 0.235 0.218
TAP2 ENST00000452371.2 rs7761882 0.181 0.325 0.441
TAP2 ENST00000455842.2 rs7761882 0.181 0.325 0.441
TAP2 ENST00000457634.2 rs7761882 0.083 0.325 0.339

LGMN ENST00000555169.1 rs58531216 0.004 0.053 0.052
LGMN ENST00000555169.1 rs10132165 0.345 0.134 0.769
LGMN ENST00000555169.1 rs11621843 0.211 0.699 0.052
LGMN ENST00000555169.1 rs3814830 0.355 0.699 0.065
LGMN ENST00000555169.1 rs10137934 0.637 0.617 0.462

ANAPC11 ENST00000583839.1 rs144948822 0.501 0.134 0.883
ANAPC11 ENST00000583839.1 rs28454947 0.395 1 0.378

ACP5 ENST00000218758.5 rs2229531 0.515 0.121 0.624

H: healthy tissue; D: inflamed tissue.

3.4. Interactions and Machine Learning Validation of Selected Genes

The aforementioned nine genes were also assessed for interplay using BioGRID
database and visualization of interactions. It was shown that all genes except HLA-DMB
indirectly interact with each other through a network of auxiliary gene nodes. Interestingly
the distance of indirect interactions between target genes is not more than one auxiliary
node, as evident from Figure 2.

Association of gene expression of the selected transcripts with response to adalimumab
was additionally assessed using a Random Forest machine learning algorithm. Assessment
was made using the information of tissue state (healthy/inflamed) and expression of: (I) all
15 identified transcripts corresponding to the nine genes; (II) transcripts of LGMN and ACP5
genes with proven eQTLs, and (III) transcripts of HLA-DMB gene (ENST00000383231.2,
ENST00000428420.2, ENST00000440078.2), which was left out of the BioGRID interactions.
All three assessments yielded an AUC of 1 in ROC analyses, thus further confirming the
involvement of selected genes in response to adalimumab treatment. Moreover, genotypes
from selected variants for which eQTL association was proven (rs58531216, rs10137934,
rs2229531) were also assessed for involvement in adalimumab response and yielding AUC
of 0.827 (CI95: 0.740–0.913), which further supports the involvement of LGMN and ACP5
genes in the adalimumab response (Figure 3).
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4. Discussion

The present study investigated colon tissue isoform transcript specific association
with response to adalimumab treatment in Slovenian Crohn’s disease patients who were
naïve with respect to adalimumab treatment. Using an integrative approach (Figure S15)
to combine immune cell deconvoluted isoform transcript specific transcriptome analy-
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sis, gene ontology layering and genomic data, we identified nine genes (MACF1, CTSE,
HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts involved
in adalimumab response. Additional genomic integration identified 16 variants residing in
aforementioned gene regions associated with adalimumab response. It has been recently
shown that deconvolution of whole-tissue gene expression data yields refined informa-
tion of the immune cell landscape in inflammatory bowel disease [34]. The latter is also
supported by previous findings where increased robustness of analyses was shown when
deconvolution information was used in regression models [29,42].

Gene MACF1 was identified as oppositely expressed with one transcript ENST0000037-
2925.2 corresponding to MACF1 transcript variant 3. The isoform was up-regulated in non-
responders relative to responders in healthy tissue, and down-regulated in non-responders
relative to responders in inflamed tissue. MACF1 is also known as ACF7 and belongs
to the spectraplakin family of proteins, which are evolutionarily conserved and are in-
volved in cytoskeletal organization, cell/cell junctions and integrin-mediated epidermal
attachments [57]. It was also proven that MACF1 regulates the molecular mechanism of
cytoskeletal coordination and subsequent cell adhesion regulation in intestinal wound
repair, and contributes to the development of inflammatory bowel disease [58]. The oppo-
site direction of the expression of MACF1 transcript between non-responders relative to
responders in healthy and inflamed colon tissue additionally suggests an important role of
this gene in anti-TNF response in Crohn’s disease.

Two transcripts of the CTSE gene corresponding to CTSE transcript variant 2 (ENST000-
00360218.2, ENST00000581049.1-alternate locus) were both up-regulated in non-responders
relative to responders. CTSE is cathepsin E and belongs to the A1 family of peptidases.
CTSE was previously identified among the genes, which are uniquely expressed in ulcera-
tive colitis phenotype of the inflammatory bowel disease [59]. Moreover, CTSE was also
identified in a cluster of the REG4 regulatory network [60]. CTSE was also associated with
intestinal fibrosis in persistent Salmonella infections [61].

Transcript ENST00000310931.4 corresponding to HDLBP (high-density lipoprotein
binding protein) gene transcript variant 3 was found to be up-regulated in non-responders
relative to responders in healthy tissue, and down-regulated in non-responders relative to
responders in inflamed tissue. Protein encoded by HDLBP binds high-density lipoproteins
and regulate excess cholesterol levels in the cells. HDLBP is also known as Vigilin, and has a
general function in endoplasmatic reticulum translation and in tumor progression [62]. Fur-
thermore, HDLBP was also shown to interact with TCS2 and thus regulates the formation
of stress granules [63].

The HSPA9 gene belongs to the heat shock protein family A. Transcript ENST00000501-
917.2 belonging to HSPA9 processed transcript variant 12 was observed to be down-
regulated in non-responders relative to responders. It was shown that HSPA9 plays a
role in major up-regulated metabolic pathway during endoplasmatic reticulum stress in
colonic goblet cells in a Winnie murine model [64]. Interestingly, HSPA9 was found to
be differentially expressed between steroid responders and non-responders in ulcerative
colitis, but did not reach sufficient predictive power to be highlighted [65].

For the HLA-DMB gene, three MHC haplotype-specific transcripts corresponding to
transcript variant 1 (ENST00000383231.2 MHC haplotype QBL, ENST00000428420.2 MHC
haplotype MANN, and ENST00000440078.2 MHC haplotype DBB) were observed to be up-
regulated in non-responders relative to responders. HLA-DMB is major histocompatibility
complex class II beta chain paralogue. This gene is known to be involved in pathways
for presentation of viral and self-antigens to T cells and these pathways were found to be
unique to the Crohn’s disease phenotype when compared to ulcerative colitis by colon
transcriptome [66]. It is also one of the known inflammatory bowel disease genes found
to be associated with autoimmune diseases [59]. A previous study also observed that
variations within HLA genes had a predominant effect in disease susceptibility as opposed
to other genes in MHC gene region [67].
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The TAP2 gene, the neighbor of HLA-DMB, was present with four MHC haplotype
specific transcripts corresponding to transcript variant 1. Transcript ENST00000443713.2
MCH haplotype COX was found to be up-regulated in non-responders relative to respon-
ders, and other transcripts (ENST00000457634.2 MHC haplotype SSTO, ENST00000452371.2
MHC haplotype DBB and ENST00000455842.2 MHC haplotype APD) were found to be
down-regulated in non-responders relative to responders. The discrepancy between the
up-regulated and down-regulated state was observed between analyses with correction
to T cells and dendritic cell deconvolution fractions, respectively. Interestingly, the up-
regulated transcript ENST00000443713.2 MHC haplotype COX was observed only in T cell
fraction corrected analysis, and the other three transcripts were down-regulated only in
the dendritic cell fraction corrected analysis. The later further proves the complexity of
anti-TNF response heterogeneity. TAP2 is a transporter 2, ATP binding cassette subfamily
B member and is a mediator of viral and auto-antigen immunity by pumping cytosolic
peptides into the endoplasmatic reticulum for MHC-I-mediated antigen presentation [66].
It was also noted that the expression of TAP2 was elevated in inflammatory bowel disease
in comparison with the controls [66]. It was also shown that the TAP2 locus may play an
important role in Crohn’s disease heterogeneity and steroid responsiveness [68]. Addition-
ally, the TAP2 gene was identified as a member of whole blood gene panel to distinguish
Crohn’s disease and ulcerative colitis [69]. On the other hand, TAP2 was also identified as a
tissue-related common gene for ulcerative colitis in an integrative study of transcriptome-
wide association analysis and mRNA expression profiles [70]. Moreover, TAP2 was one
of the identified differentially expressed genes between biopsies from ulcerative colitis
patients who were naïve with respect to the treatment and healthy biopsy samples [71].

Legumain (LGMN) gene transcript variant 20 ENST00000555169.1 was found to be
down-regulated in non-responders relative to responders. LGMN encodes a cysteine
protease with strict specificity for hydrolysis of asparaginyl bonds, and is involved in
processing of the bacterial peptides and endogenous proteins for MHC class II presentation
in the lysosome and endosome. Expression of LGMN occurs after monocytes differentiate
into dendritic cells. In relation to Crohn’s disease, the LGMN gene was previously men-
tioned in a group of highly variable genes between resident and inflammatory macrophage
clusters in a study in which the authors identified a cellular module named GIMATS,
which consisted of activated dendritic cells, inflammatory macrophages, activated T cells,
IgG plasma cells, activated fibroblasts and endothelial cells [32]. GIMATS module was
associated with failure to achieve durable remission without corticosteroid use upon initi-
ation of any anti-TNF therapy [32]. To further strengthen the role of macrophages in the
response to anti-TNF therapy, it was shown that CD14+ macrophages play a significant
role in anti-TNF refractory patients through heightened IL-23 production, which, in turn,
leads to binding to the IL23R bearing on TNFR2+ gut CD4+ T cells and results in subse-
quent STAT3 activation induction leading to expansion of apoptosis resistant intestinal T
cells [31]. However, in contrary to our findings, in the present study we did not observe
any statistically significant differentially expression of TNFR2 or IL23R genes. Furthermore,
the monocyte to macrophage differentiation-associated gene was previously identified as a
key player in the adalimumab response [30]. These findings further support the LGMN
gene as an important gene in the anti-TNF response, as it plays a role in a cell subtype
associated with the anti-TNF response. Additionally, concerning the findings that both
MHC classes I and II contribute to the Crohn’s disease risk, the present study identified
both antigen presentation mechanisms to be important in anti-TNF response [67].

Transcript ENST00000583839.1 corresponding to ANAPC11 gene transcript variant 19
was identified as down-regulated in non-responders relative to responders. ANAPC11 is
anaphase promoting complex subunit 11 and, to the best of our knowledge, was never be-
fore mentioned in relation to inflammatory bowel disease or anti-TNF response. ANAPC11
is a ubiquitination process gene and is associated with dysregulation in innate immunity
in malaria [72]. Moreover, ANAPC11 has been found to be a new independent predictive
biomarker for colorectal cancer [73].
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Transcript ENST00000218758.5 of ACP5 gene transcript variant 2 was also down-
regulated in non-responders relative to responders. ACP5 is acid phosphatase 5, tartrate
resistant and encodes an iron-containing glycoprotein that catalyzes orthophosphoric
monoester to alcohol and orthophosphate. It was identified in a cluster of inflammatory
macrophages as a macrophage marker in patients with the GIMATS module of the anti-
TNF non-response [32]. ACP5 also regulates cell cycle progression through mitosis and
G1, and global hypoacetylation observed in APC mutant yeasts likely leads to chromatin
remodeling that can repress expression of genes involved in genomic stability [74].

Integration with genomic data additionally identified 16 variants, which were further
functionally annotated and were shown to have a possible impact on gene expression
through epigenetic modifications, chromatin remodeling or protein/motif binding alter-
nations. Nevertheless, only three variants have a confirmed eQTL association with afore-
mentioned genes (LGMN and APC5), and others have a confirmed eQTL with neighboring
genes in identified gene regions. Thus, we hypothesize that the epigenetic impact of vari-
ants may be extended to the identified gene loci. Furthermore, rs2229531 is an evolutionary
conserved missense variant in ACP5 gene, which may play a role in chromatin remodeling.

It was also observed that the aforementioned genes, except HLA-DMB, indirectly
interacted with each other through a network of auxiliary gene nodes, where the distance
between target genes was not more than one node. To further validate these findings, we
applied machine learning probability modeling to obtained data, which further confirmed
the role of the aforementioned transcripts and the three eQTL variants in response to
anti-TNF therapy responsiveness.

The main limitation of the present study is that we did not have paired healthy-
inflamed colon tissues available for our analyses. On the other hand, we acknowledge the
homogenous cohort, which was naïve with respect to the anti-TNF treatment, and the use
of the only one anti-TNF agent, as strengths in our study.

5. Conclusions

Our study used isoform transcript-specific colon tissue transcriptome-wide analysis
with subsequent genomic integration, and identified loci, some of which were previously
identified to contribute to inflammatory bowel disease susceptibility, as novel loci involved
in the adalimumab response in Crohn’s disease patients. As adalimumab is still widely used
as a first-line biological treatment, results obtained in the present study may further extent
the knowledge of biomarkers for adalimumab treatment response and thus contribute to
individualized treatment plans in the evolving field of personalized medicine. Moreover,
identified genes aid in better understanding intersections in common molecular pathways
of anti-TNF treatment response, and thus may help to discover novel molecular targets for
the treatment of Crohn’s disease patients, particularly those who are non-responsive to
anti-TNF treatment.
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