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Abstract

Background: The promise of modern personalized medicine is to use molecular and clinical information to better diagnose,
manage, and treat disease, on an individual patient basis. These functions are predominantly enabled by molecular
signatures, which are computational models for predicting phenotypes and other responses of interest from high-
throughput assay data. Data-analytics is a central component of molecular signature development and can jeopardize the
entire process if conducted incorrectly. While exploratory data analysis may tolerate suboptimal protocols, clinical-grade
molecular signatures are subject to vastly stricter requirements. Closing the gap between standards for exploratory versus
clinically successful molecular signatures entails a thorough understanding of possible biases in the data analysis phase and
developing strategies to avoid them.

Methodology and Principal Findings: Using a recently introduced data-analytic protocol as a case study, we provide an in-
depth examination of the poorly studied biases of the data-analytic protocols related to signature multiplicity, biomarker
redundancy, data preprocessing, and validation of signature reproducibility. The methodology and results presented in this
work are aimed at expanding the understanding of these data-analytic biases that affect development of clinically robust
molecular signatures.

Conclusions and Significance: Several recommendations follow from the current study. First, all molecular signatures of a
phenotype should be extracted to the extent possible, in order to provide comprehensive and accurate grounds for
understanding disease pathogenesis. Second, redundant genes should generally be removed from final signatures to
facilitate reproducibility and decrease manufacturing costs. Third, data preprocessing procedures should be designed so as
not to bias biomarker selection. Finally, molecular signatures developed and applied on different phenotypes and
populations of patients should be treated with great caution.
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Introduction

The promise of personalized medicine is to use molecular and

clinical information to better diagnose, manage, and treat disease

on an individual patient basis. These functions are predominantly

enabled by molecular signatures that are computational models for

predicting phenotypes and other responses of interest from high-

throughput assay data. Many molecular signatures have been

developed to date from high-throughput data, and some of them

have passed regulatory approval and are currently used in clinical

practice [1,2]. However, data-analytics for development of

clinically robust molecular signatures is challenging and can

undermine the entire effort, if it is not conducted correctly [3].

Whereas substantial tolerance to suboptimal data-analytic proto-

cols (e.g., not perfectly unbiased, slightly underpowered, leading to

redundant biomarkers, etc.) exists for exploratory research, extra

care has to be taken for development of molecular signatures for

clinical use. Clinical-grade molecular signatures are subject to vastly

more stringent operating quality requirements since such signa-

tures may guide life-and-death decisions. Clinical-grade signatures

must also satisfy higher cost-effectiveness and accessibility

requirements. In addition, succumbing to data analysis biases

can prevent otherwise promising molecular signatures from

reaching the market by not meeting requirements for the
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regulatory approval. In short, design of data-analytic protocols for

development of clinical-grade molecular signatures is a very

important problem with characteristics distinctively different from

those of exploratory data-analytics.

Closing the gap between standards for exploratory versus

clinically successful molecular signatures entails a thorough

understanding of possible biases in the data analysis phase and

developing strategies to avoid them. Previous research has

identified several biases of data-analytics for molecular signature

development which include: using unsupervised methods (e.g.,

clustering) for development of molecular signatures [4]; biasing

signature accuracy estimation by conducting supervised gene

selection both on training and testing data [4,5]; biasing selection

of biomarkers by inappropriately using clinical covariates [6]; and

failing to identify predictive signal by using underpowered data-

analytic protocols [7] or conducting gene selection for a different

phenotype [8].

In the present work we aim to expand the understanding of

data-analytic biases that critically affect development of clinically

robust molecular signatures. As a case study, we use a recently

introduced data-analytic protocol that led to development of a 30-

gene ‘‘acute respiratory viral response’’ molecular signature for

distinguishing individuals with symptomatic acute respiratory viral

infections from uninfected individuals [9]. In a preliminary work

we briefly mentioned possible biases of the prior data-analytic

protocol related to estimation of signature predictive accuracy,

validation of signature in independent data, biomarker redundan-

cy, and signature multiplicity [10]. Here we provide an in-depth

technical treatment of these and other biases with an emphasis on

what created them and how to avoid them in similar future

research. We demonstrate our findings using three datasets that

have been recently used for development of molecular signatures

of infectious diseases [9,11,12]. The conclusions of the present

study extend well beyond the development of gene expression-

based molecular signature of acute respiratory viral infections; the

results readily generalize to other protocols, phenotypes, and assay

platforms.

Materials and Methods

Microarray gene expression datasets
As the main dataset for development of molecular signatures in

this work we used the microarray gene expression dataset of Zaas

et al. [9] that was downloaded from the Gene Expression Omnibus

(GEO) under the accession number GSE17156. This dataset

contained 113 normalized gene expression profiles of peripheral

blood samples collected from subjects at two time points: (i) prior

to inoculation with one of three respiratory viruses (HRV, RSV

and influenza A) and (ii) at the peak time of symptoms. The pre-

inoculation samples are referred to as baseline or unexposed samples.

The post-inoculation samples are referred to as peak time or exposed.

One of the 113 samples (GSM429232) did not have a matching

baseline gene expression profile and was excluded from analysis.

Thus, the dataset used in this work contained in total 112 gene

expression profiles. Their break down by virus type and time of

collection (baseline or peak) is shown in Table 1. All subjects were

healthy and uninfected at baseline with some remaining

asymptomatic after the viral exposure, while others developed

symptoms of a viral infection as shown in Table 1. Exposed

subjects were considered asymptomatic if their modified Jackson

score [13] was below 6 over the 5 days of observation and if the

viral shedding was not detected after the first 24 hours post

inoculation [9]. Thus, following Zaas et al. [9], we also consider

asymptomatic subjects to be uninfected.

The dataset of Ramilo et al. [12] was used for an independent

validation of panviral molecular signatures developed in the

present work and was also obtained from GEO (accession number

GSE6269). This dataset contained gene expression profiles

obtained from peripheral blood leukocytes of mostly pediatric

patients with acute infections caused by either influenza A, or one

of three bacterial pathogens: (i) Staphylococcus aureus, (ii) Streptococcus

pneumoniae, both Gram-positive bacteria, and (iii) Escherichia coli, a

Gram-negative bacterium. The data of Ramilo et al. [12] also

contained gene expression profiles of 6 healthy controls.

Distribution of the number of gene expression profiles for each

group of patients is shown in Table 1.

Finally, a third dataset was used to demonstrate that the overall

conclusions of the present paper pertaining to data-analytic

protocols, generalize beyond the domain of acute respiratory viral

infections. This dataset originated from a recent study aimed at

development of molecular signatures for diagnosis of invasive

Candidemia, one of the most common bloodstream infections in

the U.S. [11]. The dataset contained 72 normalized gene

expression profiles of peripheral blood samples from mice and

was downloaded from GEO (accession number GSE20524). Out

of 72 samples, 46 were infected with C. albicans, 9 were infected

with S. aureus bacteremia (the most common bloodstream infection

occurring in patients at risk for Candidemia), and 17 were healthy

controls.

Simulated data used for evaluation of methods for
development of molecular signatures under the
condition of signature multiplicity

In order to compare, in a controlled setting, methods for

developing molecular signatures considered in this work, we use a

simulated dataset TIED with exactly known causal relationships

between variables [14,15] and which was previously used in an

international causality challenge [16]. The data generating graph

is shown in Figure S1 and its parameterization is provided in

[14,15]. The dataset contains 750 observations and 1,000 variables

(999 genes and a phenotypic response variable). There are 72

distinct molecular signatures of the phenotype (i.e., sets of non-

redundant genes that carry maximal predictive information about

the phenotype and render it statistically independent of all other

genes). Each of these signatures carries equivalent information

about the phenotype and spans over 5 genes: gene X10 and one

gene from each of the four subsets {X1,X2,X3,X11}, {X5,X9},

{X12,X13,X14} and {X19,X20,X21}.

Table 1. Number of gene expression profiles corresponding
to each category of samples from the data of Zaas et al. [9]
and Ramilo et al. [12].

Infection type Zaas et al.
Ramilo
et al.

Asymptomatic Symptomatic

Rhinovirus (HRV) 10 9 N/A

Respiratory Syncytial Virus (RSV) 11 9 N/A

Influenza A 9 8 18

Bacterial (Staphylococcus aureus,
Streptococcus pneumoniae,
Escherichia coli)

N/A N/A 73

Unexposed (healthy uninfected) 56 6

doi:10.1371/journal.pone.0020662.t001
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Method for developing multiple molecular signatures of
the same phenotype

A perplexing phenomenon that characterizes high-throughput

data analysis is the ubiquitous multiplicity of molecular signatures

[17,18]. This phenomenon has far-reaching implications for

biological discovery and development of next generation patient

diagnostics and personalized treatments [15]. Therefore, it is

informative not only to show the existence of a single signature for

a given phenotype variable, but also to seek all possible maximally

predictive signatures that do not contain redundant genes. Such

analysis allows to improve discovery of the underlying biological

mechanisms by not missing genes that are implicated mechanis-

tically in the disease processes. Furthermore this analysis facilitates

separation of statistical instability from intrinsic information

equivalency [15].

To extract multiple molecular signatures, we apply a recently

introduced and provably correct algorithm TIE* that outputs the

complete set of maximally predictive and non-redundant signa-

tures independent of the data distribution [15]. TIE* is based on

Markov boundary induction which enables probabilistic modeling

of multiple signatures and formally connects them with the causal

graph (pathway) of the data generating process even when this

pathway is not known a priori [19–22]. TIE* has been shown to

have excellent sample and computational efficiency and to extract

signatures reproducible in independent datasets [15].

In this work, we use Generalized Local Learning (abbreviated as

GLL; specific instantiation: semi-interleaved HITON-PC without

symmetry correction) as the base Markov boundary algorithm in

TIE* [23,24]. This choice of the base algorithm was motivated by

its empirical performance in microarray gene expression and other

high-throughput data as well as its theoretical properties [23,24].

Under broad assumptions, GLL provably discovers non-redun-

dant genes that are located in the local pathway of the phenotype

variable [23,24]. GLL was run with the Fisher’s Z-test for

vanishing partial correlations at significance level a~5%, and with

max-k = 1. The maximum cardinality of a subset of genes to be

excluded from the entire set of genes within each iteration in TIE*

was set to 5. Fisher’s Z-test was also used for evaluation of

candidate Markov boundaries in TIE* [15].

Once genes were selected, we completed the development of

molecular signatures by applying Support Vector Machine (SVM)

classifiers [25] implemented in LibSVM version 2.89 (http://

www.csie.ntu.edu.tw/,cjlin/libsvm). SVMs were applied with the

linear kernel and the cost parameter C = 100.

Method for assessing redundancy of genes in a
molecular signature

A gene is considered to be redundant with respect to the

phenotype if its removal from the molecular signature does not

decrease the signature’s predictive accuracy. Thus, in principle,

redundancy can be assessed using so-called wrapper algorithms

[26]. However, wrapping techniques are prone to overfitting due

to a very large number of comparisons, and in small-sample

settings they can falsely conclude that different sets of biomarkers

have the same predictive accuracy when in reality they do not

[23]. Thus we test the redundancy of genes using a more

conservative approach with the following two steps. First, we find

genes that do not carry any association with the phenotype

conditioned on another gene from the signature using Fisher’s Z-

test [27] at significance level a~5%. Once we identify such genes,

we do not readily exclude them from the molecular signature but

do so only if their removal does not lead to decrease in predictive

accuracy of the signature (as measured by the area under ROC

curve and compared using statistical test of Delong et al. [28]). The

assessment of redundancy is performed by repeated cross-

validation [29] in training data only. The resulting non-redundant

signature is subsequently validated in an independent data and its

predictive accuracy is compared to the accuracy of the original

signature (which contains both redundant and non-redundant

genes).

Method for assessing biases of data preprocessing after
standard microarray data normalization

In order to study the effects on gene selection of different data

preprocessing schemes (discussed below) following the standard

microarray data normalization (e.g., by the RMA method

[30,31]), we employ permutation testing with 10,000 permutations

of the phenotype variable under the null hypothesis of no

association between genes and the phenotype. On each permu-

tation, we apply a given data preprocessing method and then

perform gene selection using a two-sample t-test with the false

discovery rate (FDR) correction at level 0.2 [32,33]. This

procedure allows us to quantify the extent to which different

preprocessing methods may bias gene selection. Under the

assumption that the null hypothesis holds in the data and if a

preprocessing method does not bias gene selection, we would

expect none of the genes to be selected as significantly associated

with the phenotype. However, since we are simulating the null

hypothesis by permuting the phenotype variable in a real dataset

where expression of different genes may not be independent of

others and where small sample effects may be present, a small

number of genes may be deemed significantly associated with the

phenotype even under an unbiased preprocessing method.

Because such effects are expected to be minimal when no

preprocessing is performed, we use it as a baseline against which

all other preprocessing methods can be evaluated. If after some

preprocessing, the number of significantly associated genes

increases relative to no preprocessing, this signals that the applied

preprocessing method may bias gene selection by potentially

increasing the number of false positives.

Data preprocessing methods
We consider six different data preprocessing methods that are

applied in the current study after the standard microarray data

normalization by RMA. The first method establishes a baseline

and consists of no preprocessing. The second method was used in

the protocol of Zaas et al. [9] and consists of centering the data by

subtracting the grand mean from the entire gene expression

dataset. The third method standardizes each gene expression

variable to have zero mean and standard deviation of one. The

fourth method rescales each gene expression variable to lie in the

interval [0,1]. These four methods are commonly used in gene

expression analysis and are unsupervised in a sense that they do

not take into account the phenotype information, and thus are

unlikely to introduce gene selection biases.

The fifth preprocessing method considered here was imple-

mented in the supplementary software of Zaas et al. [9] and was

aimed at correcting differences between gene expression profiles of

the uninfected subjects from different experimental cohorts (i.e.,

HRV, RSV and Influenza A). This correction was performed

using all subjects within each cohort by first computing the mean

gene expression profile of the uninfected subjects within the cohort

and then subtracting this mean profile from all gene expression

profiles (i.e., infected and uninfected) in the cohort. The key

assumptions underlying this preprocessing method are that all

uninfected subjects should have similar gene expression profiles

and that the observed differences are entirely due to the so-called

Biases in Development of Molecular Signatures
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‘‘batching effect’’ arising from technical variation when assaying

biological samples. An illustration of the effects of this preprocess-

ing method is given in the Text S1.

The sixth preprocessing method considered here is ComBat

[34], which also aims to alleviate the influence of batch effects on

the analysis of gene expression data [35]. ComBat relies on two

assumptions: (i) that all uninfected subjects should have similar

gene expression profiles and (ii) that batch effects affect gene

expression measurements in a similar way across many genes. In

ComBat, batch effects are first modeled as additive (i.e., location)

and multiplicative (i.e., scale) components of the observed gene

expression levels for each gene. These estimates are then updated

in a Bayesian framework that pools information on batch effect

estimates from all the genes in the dataset. We chose ComBat for

our evaluation due to this method’s computational efficiency and

lack of ad-hoc parameters, which makes ComBat appropriate for

application in a permutation-based framework. When applying

ComBat, the phenotype was supplied as a covariate in addition to

the cohort incidence variable. This was done in order to allow

ComBat to retain the variation in gene expression profiles that was

due to biological responses to pathogens.

Results and Discussion

A simulation study demonstrating data-analytic biases
related to signature multiplicity and biomarker
redundancy

Evaluation of data-analytic protocols in real data is challenging

due to absence of a biological gold standard describing true

interactions between genes and the phenotype. For this reason and

in order to illustrate in a controlled environment, the behavior of

the factor analysis-based gene selection method from the protocol

of Zaas et al. [9], we conducted experiments in a simulated dataset

TIED with exactly known causal relationships between variables

[14,15]. This dataset allows us to evaluate the considered data-

analytic protocol in terms of its effectiveness in extracting the

complete set of relationships between genes and the phenotype.

Identification of these relationships is essential for constructing a

comprehensive view of the underlying biological process.

When applied to TIED, factor analysis-based method extracted

only a single signature containing 30 genes, 4 of which were

causally relevant and non-redundant (X5, X10, X12 and X20),

4 were redundant given the previous set of genes (X8, X13, X14 and

X21), and 22 were irrelevant and without association with the

phenotype. (see Figure S1 for an illustration of the complete data-

generating graph of causal relationships that produced TIED

dataset). In particular, the factor analysis-based technique missed

all genes from the subset {X1,X2,X3,X11} that are causally directly

related to the phenotype. In contrast, TIE* correctly identified all

and only the 72 non-redundant molecular signatures of the

phenotype in TIED dataset. These results indicate that the factor

analysis-based protocol leads to selection of false positive and false

negative genes.

There exist many different and equally accurate
molecular signatures of the panviral phenotype

Using the TIE* algorithm, we identified 3,473 novel non-

redundant and maximally predictive signatures of acute respira-

tory viral infections in the dataset of Zaas et al., while the prior

data-analytic protocol yielded only one signature of the phenotype

[9]. On average each identified novel signature contained 11

genes, and together all signatures spanned over 60 distinct

oligonucleotide probes corresponding to 57 genes. The average

phenotype classification performance of these signatures in the

independent data of Ramilo et al. [12] was 0.92 area under the

ROC curve (AUC) with a standard deviation of 0.06 AUC.

Notably, 3,308 (or 95%) of the signatures discovered by TIE*

achieved classification performance comparable to the panviral

signature of Zaas et al. Genes that appeared in more than 20% of

the signatures are shown in Table 2. Out of these genes, only three

genes (RSAD2, IFI44L and IFI44) were present in the panviral

signature of Zaas et al. In contrast, all 12 genes comprising the

panviral signature that we previously developed [10] were among

genes listed in Table 2 (highlighted in bold). The complete list of

molecular signatures discovered by TIE* and the genes comprising

those signatures can be found in the Dataset S1 and Table S1,

respectively.

Since the phenotype is characterized by multiple molecular

signatures, focusing on a single arbitrarily chosen signature may not

yield causative biomarkers of the disease nor provide accurate

grounds for understanding pathogenesis [15]. In general, genes

comprising a single molecular signature may not be the only

determinants of the phenotype. There may exist multiple equally

informative and non-redundant gene sets that when taken together

would provide a comprehensive view of the underlying biological

process. Therefore, data-analytic protocols should extract, to the

extent possible, all molecular signatures of the phenotype.

Many genes in the previously developed ‘‘acute
respiratory viral response’’ signature are redundant

Our redundancy analysis showed that only 20 gene probes from

the 30-gene panviral signature (corresponding to 32 gene probes)

identified by the factor analysis-based gene selection method from

the data-analytic protocol of Zaas et al. [9] were non-redundant.

The following gene probes were found to be redundant (gene

names are provided in parentheses): 202672_s_at (ATF3),

218943_s_at (DDX58), 219863_at (HERC5), 214059_at (IFI44),

214453_s_at (IFI44), 204439_at (IFI44L), 204415_at (IFI6),

204747_at (IFIT3), 205483_s_at (ISG15), 205569_at (LAMP3),

202145_at (LY6E), and 202086_at (MX1). A panviral signature

constructed on the basis of the 20 remaining non-redundant genes

achieved the same predictive accuracy (1.0 AUC) in the

independent validation data of Ramilo et al. [12] as the original

signature.

It should be noted, however, that redundancy is not always

equivalent to biological irrelevance of the genes, but only implies

that the redundant genes do not carry any additional predictive

information about the phenotype beyond what’s conveyed by the

non-redundant genes. While presence of redundant genes in a

signature could potentially worsen its reproducibility and would

surely increase its manufacturing costs, in some cases it may be

desirable to explicitly engineer redundancy into a molecular

signature in order to improve its robustness for a specific

phenotype. We would argue, however, that such redundancy

should arise from a careful methodological design rather than

being an unintended consequence of applying a certain data

analytic technique.

Data preprocessing methods may bias gene selection
While the topic of microarray gene expression data normaliza-

tion has been extensively studied in prior work [31,36], the effects

on gene selection of data preprocessing after normalization remain

unclear. Below, we present a comparison of six different data

preprocessing methods using gene expression dataset of Zaas et al.

[9]. Since it is not known which genes are truly associated with the

panviral phenotype, we conducted phenotype label permutation

experiments under the null hypothesis of no association between

genes and the phenotype. The results are shown in Table 3 and

Biases in Development of Molecular Signatures
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demonstrate that no preprocessing, centering, standardization and

[0,1] scaling did not bias gene selection. The average number of

significantly associated genes under each of these preprocessing

methods was 0.3 with standard error 0.091 over 10,000

permutations. However, the batch correcting procedure from

the supplementary software of Zaas et al. biased gene selection and

resulted in an average of 55.6 genes being deemed significant with

standard error 4.407. Similarly, application of the ComBat batch

correction method produced 71.3 (standard error 5.051) signifi-

cant genes on average.

We note that these results were obtained in simulated conditions

of no biological signal in the data. A study of behavior of the

considered batch correction methods under the alternative

hypothesis of presence of a biologically meaningful signal remains

an open research direction that would have to rely on biological

validation of genes selected on preprocessed data. Preliminary

results reported here suggest that the two batch correction

methods may potentially lead to an increase in the number of

false positives in the output of statistical methods for gene

selection. We hypothesize that the increased number of statistically

significant genes came as a result of decreases in within-group

variance in expression of genes in the infected and uninfected

groups of subjects after correcting for batch effects. When not

offset by a comparable decrease in differences between the groups’

mean gene expression profiles, this decrease in variance may cause

an appearance of statistically significant associations between the

phenotype and genes that were not significantly differentially

expressed before data preprocessing. We further illustrate this

behavior in Figure S2 that shows distributions of variance of gene

expression in the original (i.e., non-permuted) infected and

uninfected subjects as well as differences between mean expression

of genes in the two groups of subjects before and after

preprocessing by the supplementary software of Zaas et al. As

made evident by Figure S2, preprocessing reduced within-group

variances of gene expression while leaving differences between

group means largely unchanged. Data preprocessing by ComBat

had a very similar effect and the corresponding histograms are

shown in Figure S3.

A specific example illustrating the above effects of preprocessing

in the original (non-permuted) data is shown in Figure 1. As can be

seen in that figure, within-class variances decreased roughly five-

fold for gene RIBC2 as a result of batch correction using the

supplementary software of Zaas et al. Consequently, the p-value

produced by a two-sample t-test for differential expression

decreased from roughly 0.5 to below 1023 causing an appearance

of a statistically significant association between gene RIBC2 and

the panviral phenotype. Although the two classes of gene

expression profiles could not be separated without errors using

only gene RIBC2 in the preprocessed data, in general, such

preprocessing may force classes to become perfectly separable as

shown using simulated data in Figure S4.

Similar effects of preprocessing were observed in a large portion

of genes in the data of Zaas et al. [9]. We applied a two-sample t-

test with FDR 0.2 [33] to identify genes statistically significantly

associated with the panviral phenotype, either before or after

preprocessing. While only 1,759 genes were significantly associ-

ated with the phenotype in the original data, the number of

significant genes in the preprocessed data was four times higher,

Table 2. Genes that appeared in more than 20% of non-redundant and maximally predictive signatures identified by TIE* for
discriminating between symptomatic and uninfected samples.

Probe ID Gene symbol Gene name Percentage of signatures participated in

201065_s_at GTF2I general transcription factor IIi 73%

213674_x_at IGHD immunoglobulin heavy constant delta 73%

214511_x_at FCGR1B Fc fragment of IgG, high affinity Ib, receptor (CD64) 72%

207826_s_at ID3 inhibitor of DNA binding 3, dominant negative
helix-loop-helix protein

71%

213797_at RSAD2 radical S-adenosyl methionine domain containing 2 71%

217418_x_at MS4A1 membrane-spanning 4-domains, subfamily A, member 1 70%

219471_at C13orf18 chromosome 13 open reading frame 18 69%

219112_at RAPGEF6 Rap guanine nucleotide exchange factor (GEF) 6 63%

219073_s_at OSBPL10 oxysterol binding protein-like 10 59%

219313_at GRAMD1C GRAM domain containing 1C 56%

204439_at IFI44L interferon-induced protein 44-like 42%

221234_s_at BACH2 BTB and CNC homology 1, basic leucine zipper
transcription factor 2

29%

216950_s_at FCGR1A, FCGR1C Fc fragment of IgG, high affinity Ia, receptor (CD64);
Fc fragment of IgG, high affinity Ic, receptor (CD64)

28%

207431_s_at DEGS1 degenerative spermatocyte homolog 1, lipid desaturase
(Drosophila)

25%

205049_s_at CD79A CD79a molecule, immunoglobulin-associated alpha 24%

202723_s_at FOXO1 forkhead box O1 22%

44790_s_at C13orf18 chromosome 13 open reading frame 18 22%

203413_at NELL2 NEL-like 2 (chicken) 20%

214059_at IFI44 Interferon-induced protein 44 20%

Genes highlighted in bold are those that also comprised the 12-gene panviral signature developed by applying GLL on the entire set of samples [10].
doi:10.1371/journal.pone.0020662.t002

Biases in Development of Molecular Signatures
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amounting to 7,347 genes when the data was preprocessed using

the supplementary software of Zaas et al. and 7,557 genes when

using ComBat. Notably, all genes that were significantly associated

with the phenotype before preprocessing remained significant after

preprocessing. Therefore, none of the genes lost their association

and 5,588 (5,798 for ComBat) genes gained association with the

phenotype as a result of preprocessing.

These findings indicate that special care has to be taken when

applying preprocessing methods for gene expression analysis.

Batch effect correction methods may be appropriate for

application in cases when significant biological differences between

samples can be ruled out. However, the cohort recruitment

protocol of Zaas et al. does not allow such biological differences to

be ruled out without additional validation. According to Zaas et al.,

the HRV cohort was recruited through an active screening

protocol at the University of Virginia, so these subjects may be a

younger, healthier group mostly composed of college students, and

are more likely to be middle to upper-middle class. The RSV

cohort was recruited and infected through Retroscreen Virology,

London, a company that specializes in clinical trials on viruses. It is

likely that the ages of the subjects are more diverse than the HRV

cohort, and perhaps the racial make-up is more diverse as well

since London has a more ethnically diverse population than

Charlottesville, Virginia. The influenza cohort was recruited and

infected through Retroscreen Virology, Brentwood, UK. Brent-

wood is 20 miles outside of London, a suburban setting. It is likely

that volunteers are more diverse in age and less racially diverse

than the London (RSV) cohort.

Given the above stated observations on the effects of batch

correction methods and due to a lack of information regarding the

causes of differences between the unexposed samples from

different viral cohorts in the data of Zaas et al. [9], we used only

the RMA normalization in our data analysis.

Molecular signatures should be developed and applied
to the same phenotype and population of subjects

The 30-gene panviral molecular signature introduced by Zaas

et al. [9] was developed specifically for differentiating between

uninfected (healthy) subjects and subjects who developed symp-

toms following a viral inoculation with either HRV, RSV, or

influenza A. In an attempt to demonstrate specificity of this

molecular signature to viral infections, Zaas et al. applied this

signature for classification of subjects with bacterial and viral

(Influenza A) infections in the data of Ramilo et al. [12] and

reported a predictive accuracy of roughly 0.94 AUC [9]. This

interesting result raises the following question that we address

below: Why a molecular signature developed for one task

(differentiating between uninfected subjects and subjects with viral infections)

was successful in performing another task (differentiating between

subjects with bacterial and viral infections)?

Table 3. Effects of preprocessing methods on gene selection
under the null hypothesis of no association between genes
and the panviral phenotype in the acute respiratory viral
infections dataset [9].

Preprocessing Number of significant probes

Mean St. Dev. 95% Interval

No preprocessing 0.3 9.1 0.0 0.0

Center (subtract global mean) 0.3 9.1 0.0 0.0

Standardize (subtract global
mean and divide by stdev)

0.3 9.1 0.0 0.0

Scale each probe to [0,1] 0.3 9.1 0.0 0.0

Batch correction from the
supplementary software of
Zaas et al. [9]

55.6 440.7 0.0 287.5

ComBat 71.3 505.1 0.0 707.0

The phenotype variable was randomly permuted 10,000 times. On each
permutation, we applied a given preprocessing method and then performed
gene selection using a two-sample t-test with the false discovery rate (FDR)
correction at level 0.2 [32,33].
doi:10.1371/journal.pone.0020662.t003

Figure 1. Effects of preprocessing by the supplementary software of Zaas et al. [9] on real gene expression data. Gene expression
profiles of the uninfected subjects are shown in blue staggered on top of the profiles of the infected subjects highlighted with red. The blue and red
vertical line segments denote locations of the mean expression in the uninfected and infected groups, respectively. Likewise, blue and red horizontal
line segments emanating in both directions from the means denote one standard deviation within the uninfected and infected groups, respectively.
P-values produced by a two-sample t-test with unequal variances are shown in parenthesis.
doi:10.1371/journal.pone.0020662.g001
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Figure 2 graphically depicts subjects from the dataset of Ramilo

et al. in the space of the first two principal components obtained

from genes that constituted the panviral signature of Zaas et al.

The solid line is an approximation of the molecular signature

(classifier) of Zaas et al. This signature would classify subjects to the

left of the line as uninfected (healthy) whereas subjects to the right

of the line would be classified as virally infected. Figure 2 also

demonstrates that the same molecular signature can incidentally

be used to accurately differentiate between subjects with bacterial

and viral infections from the dataset of Ramilo et al., thus

confirming the finding of Zaas et al. However, this result is due to a

lucky choice of genes in the molecular signature of Zaas et al. that

was either helped by redundant genes for the viral phenotype

(recall that only 20 gene probes were non-redundant) and/or

could have been informed by other criteria and procedures not

reported in the original publication. When we substituted factor

analysis-based gene selection in the protocol of Zaas et al. with

GLL, which by design yields only non-redundant genes for the

viral phenotype, predictive accuracy for the bacterial vs. viral

classification task was reduced to 0.60 AUC. This indicates that

the finding of Zaas et al. is method-dependent. Moreover, the

following subsection shows that the methodology employed by

Zaas et al. for evaluating the specificity of their molecular signature

to viral infections does not generalize to other datasets.

These results demonstrate that molecular signatures developed

for one phenotype and population of subjects and applied to

another phenotype and/or population are highly problematic.

There is no reason to undertake this risk when one can apply

supervised techniques to data for the same phenotype and

population of subjects. Specifically, in case of performing

classification of virally and bacterially infected subjects, one would

need to develop a new molecular signature using gene expression

profiles of patients with viral and bacterial infections. Although

this recommendation may seem obvious, current practices in

clinical research suggest otherwise. For instance, extrapolation of

results obtained using animal models to humans has been a de-

facto methodology underlying much of translational clinical and

biomedical research. However, animal models are often not

representative of the effects an intervention may have in humans

[37–39]. Therefore, in cases when applications of a model in a

different organism or phenotype cannot be justified biologically,

data-analytic protocols should be applied to construct organism-

and phenotype-specific models.

Conclusions of this case study generalize beyond the
domain of acute respiratory viral infections

Below we demonstrate that the major findings of this case study

pertaining to data analytic protocols generalize to other domains

and datasets. We analyze a microarray gene expression dataset

that was used for development of molecular signatures for

diagnosis of Candidemia [11]. We chose this dataset because it

has been previously analyzed with a protocol that is very similar to

the one applied for development of acute respiratory viral infection

signatures [9]. Note that since the Candidemia dataset was

collected from a different organism than the acute respiratory viral

response dataset and because Candidemia is a drastically different

disease than respiratory infections, we do not draw comparisons

between genes comprising molecular signatures of Candidemia

and genes comprising molecular signatures of the panviral

Figure 2. Visualization of subjects in the dataset from [12] in the space of the first two principal components of the panviral
signature of Zaas et al. The solid line is an approximation of the molecular signature (classifier) of Zaas et al.; subjects to the left of this line are
classified as uninfected (healthy) and subjects to the right are classified as virally infected (Influenza A). Blue and red gradient highlighting
corresponds to the regions where the majority of bacterial and viral profiles belong, respectively. Green highlighting shows the area with uninfected
(healthy) profiles.
doi:10.1371/journal.pone.0020662.g002
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phenotype discussed earlier. In what follows, we only compare

molecular signatures developed in the Candidemia dataset.

By employing factor analysis, the original study showed the

existence of a single 82-gene signature that accurately classified

Candidemia-infected samples versus healthy controls [11]. Using the

TIE* algorithm, we identified 2,922 novel non-redundant and

maximally predictive signatures of Candidemia in the same set of

training samples. On average, each novel signature contained 14

genes, and together all signatures spanned over 65 distinct genes. The

average phenotype classification performance of these signatures in

the testing set of samples was 0.996 AUC with a standard deviation of

0.01 AUC. Notably, 2,513 (or 86%) of the signatures discovered by

TIE* achieved AUC = 1.0. The complete list of molecular signatures

discovered by TIE* and the genes comprising those signatures can be

found in Dataset S2 and Table S2, respectively. Interestingly, there

were no genes in common between the Candidemia signature of

Zaas et al. [11] and multiple signatures indentified by TIE*.

We have further assessed redundancy within the 82-gene

signature and found 79 redundant and only 3 non-redundant gene

probes: 1449453_at (Bst1), 1424254_at (Ifitm1), 1421304_at

(Klra2). A molecular signature developed on the basis of these

three non-redundant genes achieved predictive accuracy of 1.0

AUC in the independent validation data, which is the same as the

accuracy of the original 82-gene signature.

Next, we observed that the effects of batch correction methods on

gene selection extend beyond the acute respiratory viral infections

dataset and that such preprocessing also biases gene selection in the

Candidemia dataset. In this case, there were two experimental

batches corresponding to samples from the C. albicans and S. aureus

cohorts, respectively. Each batch contained samples from infected

and uninfected mice. The phenotype variable differentiated

between infected and uninfected samples. Experiments conducted

under the null hypothesis of no association between the genes and

the phenotype produced results consistent with the ones obtained in

the acute respiratory viral infections dataset. As can be seen in

Table 4, the average number of significantly associated genes under

no preprocessing, centering, standardization and [0,1] scaling was

82.6 with standard error 6.407 over 10,000 permutations. The

number of significantly associated genes increased to an average of

221.8 with standard error 10.98 when preprocessing from the

supplementary software of Zaas et al. was applied. Similarly,

preprocessing by ComBat resulted in 253.2 (standard error 11.743)

significant genes on average.

Application of the two-sample t-test with FDR 0.2 to the

original Candidemia dataset [11] (i.e., raw probe data after RMA

normalization) produced 11,256 genes that were significantly

associated with the phenotype differentiating between bacterially

infected and uninfected samples. However, the same experiment

in the data after preprocessing resulted in 13,590 significantly

associated genes when using the supplementary software of Zaas

et al. and 13,850 genes after preprocessing with ComBat. Similarly

to the results obtained in the acute respiratory viral infections

dataset, none of the genes in the Candidemia dataset lost their

association and 2,334 and 2,594 genes gained association with the

phenotype as a result of preprocessing with the two batch

correction methods.

Finally, we applied the 82-gene molecular signature of

Candidemia to classify S. aureus bacteremia and C. albicans in the

independent set of 27 samples (18 C. albicans and 9 S. aureus) [11].

This experiment was designed to mimic the signature specificity

validation step from the original data-analytic protocol of Zaas

et al. [9]. In this case, however, performance of the Candidemia

signature did not generalize to the different phenotype, resulting in

classification accuracy statistically indistinguishable from that of a

signature with no predictive power (0.5 AUC). In addition, the

study [11] has reported the ability to accurately classify the two

bloodstream infections using a new molecular signature that was

specifically designed for that classification task. Taken together

with the results of our analysis, this further accentuates the need to

develop and apply molecular signatures to the same phenotype

and population of subjects.

Conclusion and operational recommendations
The science and technology of molecular signatures is

positioned to play a crucial role in the advancement of

personalized medicine and clinical diagnostics. Data-analytics is

a central component of molecular signature development. On the

basis of many recent meta-analyses and re-analyses of prior

experiments it becomes evident that biased data analytics are

emerging as a major obstacle for progress in personalized medicine

[3–7,40]. Improving data-analytics for development of clinical-

grade molecular signatures requires detailed understanding of the

data analysis biases and development of strategies to avoid them.

In this work, we presented a case study evaluating a data-analytic

protocol that has recently led to development of an important 30-

gene signature of acute respiratory viral infections [9] and also

informed the development of the 82-gene signature of Candidemia

[11]. Conclusions of this study, however, are not specific to the

analysis of acute respiratory viral infections and generalize to other

domains as was made evident by validation of our results in

additional data. Below we summarize our key findings and

operational recommendations to data analysts based on empirical

results reported in this paper.

First, we showed the existence of many different and equally

accurate molecular signatures of the phenotypes. Therefore, in

order to obtain comprehensive and accurate grounds for under-

standing pathogenesis, data-analytic protocols should extract, to the

extent possible, all molecular signatures of a phenotype rather than

focusing on an arbitrarily chosen single signature. Whenever

possible, analysis that separates statistical instability from intrinsic

information equivalency should be undertaken [15]. Second, our

results demonstrate the presence of redundant genes in prior

molecular signatures and highlight the need for routine assessment

Table 4. Effects of preprocessing methods on gene selection
under the null hypothesis of no association between genes
and the bacterial phenotype in the Candidemia dataset [11].

Preprocessing Number of significant probes

Mean St. Dev. 95% Interval

No preprocessing 82.6 640.7 0.0 607.0

Center (subtract global mean) 82.6 640.7 0.0 607.0

Standardize (subtract global
mean and divide by stdev)

82.6 640.7 0.0 607.0

Scale each probe to [0,1] 82.6 640.7 0.0 607.0

Batch correction from the
supplementary software of
Zaas et al. [9]

221.8 1098.0 0.0 3543.5

ComBat 253.2 1174.3 0.0 3991.5

The phenotype variable was randomly permuted 10,000 times. On each
permutation, we applied a given preprocessing method and then performed
gene selection using a two-sample t-test with the false discovery rate (FDR)
correction at level 0.2 [32,33].
doi:10.1371/journal.pone.0020662.t004
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of molecular signatures for redundancy with respect to the

phenotype. Generally, if some genes are found to be redundant,

they can be excluded from the molecular signature, because such

genes do not contribute additional predictive information about the

phenotype and have the potential to worsen signature reproduc-

ibility and increase its manufacturing costs. In certain cases,

however, it may be necessary to explicitly engineer redundancy

into a molecular signature in order to improve its robustness for a

specific phenotype. Such redundancy should arise from a careful

methodological design rather than being an unintended conse-

quence of applying a certain data analytic technique. Third, we

showed that data preprocessing may bias gene selection. It is

therefore necessary to assess the effects of any preprocessing and

other steps of data-analytic protocols on selection of genes.

Furthermore, subsequent analyses should not assume that the same

preprocessing would be appropriate in a different setting. Finally,

molecular signatures should be developed and applied to the same

phenotype and population of subjects. Failure to do so may result in

spurious findings and non-reproducible data-analytic protocols, as

was demonstrated in the present study. The methodology and

results presented in this work combined with previously established

bias avoidance strategies aim to further advance the process of

development of clinically successful molecular signatures by

improving the associated data-analytic protocols.

Supporting Information

Figure S1 Data generating graph that was used for
evaluation of methods for development of molecular
signatures under the condition of signature multiplicity.
There are 1,000 variables in the graph (999 genes and a

phenotypic response variable T). Genes that contain exactly the

same information about T are highlighted with the same color, e.g.

genes X12, X13, and X14 provide exactly the same information

about T and are thus interchangeable for prediction of T. There

are 72 distinct molecular signatures of the phenotype T (i.e., sets

of non-redundant genes that carry maximal predictive informa-

tion about the phenotype and render it statistically independent

of all other genes). Each of these signatures carries equivalent

information about the phenotype and spans over 5 genes: gene

X10 and one gene from each of the four subsets {X1,X2,X3,X11},

{X5,X9}, {X12,X13,X14} and {X19,X20,X21}.

(TIF)

Figure S2 Distributions of variance in the infected and
uninfected subjects (top two figures) and differences
between means of their gene expression profiles (bottom)
before and after preprocessing by the supplementary
software of Zaas et al. [9]. The distribution of variance is

shifted to the left (i.e., to smaller values) as a result of

preprocessing, while the distribution of differences between means

is largely unaffected.

(TIF)

Figure S3 Distributions of variance in the infected and
uninfected subjects (top two figures) and differences
between means of their gene expression profiles

(bottom) before and after preprocessing by ComBat
[34]. The distribution of variance is shifted to the left (i.e., to

smaller values) as a result of preprocessing, while the distribution

of differences between means is largely unaffected.

(TIF)

Figure S4 Effects of preprocessing method from the
supplementary software of Zaas et al. [9] on simulated
data. Gene expression profiles of the uninfected subjects are

shown in blue staggered on top of the profiles of the infected

subjects highlighted with red. The blue and red vertical line

segments denote locations of the mean expression in the unin-

fected and infected groups, respectively. Likewise, blue and red

horizontal line segments emanating in both directions from the

means denote one standard deviation within the uninfected and

infected groups, respectively. P-values produced by a two-sample t-

test with unequal variances are shown in parenthesis.

(TIF)

Table S1 The complete list of genes participating in the 3,473

non-redundant and maximally predictive molecular signatures

discovered by the TIE* algorithm in the data of Zaas et al. [9] for

discriminating symptomatic from uninfected samples. Genes

highlighted in bold are those that also comprised the 12-gene

panviral signature developed by Statnikov et al. [10] by applying

GLL on the entire set of samples.

(PDF)

Table S2 The complete list of genes participating in the 2,922

non-redundant and maximally predictive molecular signatures

discovered by TIE* in the data of Zaas et al. [11] for discriminating

between Candidemia-infected samples and healthy controls.

Genes highlighted in bold are those that also comprised a 14-

gene signature developed by applying GLL in the same data.

(PDF)

Dataset S1 The complete list of molecular signatures discovered

by TIE* for the panviral phenotype from the data of Zaas et al. [9].

(CSV)

Dataset S2 The complete list of molecular signatures of Candi-

demia discovered by TIE* in the data of Zaas et al. [11].

(CSV)

Text S1 An illustration of the effects of a preprocessing proce-

dure from the supplementary software of Zaas et al. [9].

(PDF)
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