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Abstract
Lung cancer is the leading cause of cancer death worldwide and cancer relapse ac-
counts for the majority of cancer mortality. The mechanism is still unknown, espe-
cially in hereditary lung cancer without known actionable mutations. To identify 
genetic alternations involved in hereditary lung cancer and relapse is urgently needed. 
We collected genetic materials from a unique hereditary lung cancer patient's blood, 
first cancer tissue (T1), adjacent normal tissue (N1), relapse cancer tissue (T2), and 
adjacent normal tissue (N2) for whole genome sequencing. We identified specific 
mutations in T1 and T2, and attributed them to tumorigenesis and recurrence. These 
tumor specific variants were enriched in antigen presentation pathway. In addition, a 
lung adenocarcinoma cohort from the TCGA dataset was used to confirm our find-
ings. Patients with high mutation burdens in tumor specific genes had decreased re-
lapse‐free survival (P = 0.017, n = 186). Our study may provide important insight 
for designing immunotherapeutic treatment for hereditary lung cancer.
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1  |   INTRODUCTION

Although the majority of lung cancer occurred in patients 
with the history of smoking, about 25% of the lung cancer 
cases in the world occur in never smokers.1 Lung cancer in 
never smokers is especially prominent in Asian.2,3 Full ge-
nomic analysis showed that the genetic variation of lung can-
cer in never smokers is significant different from smokers.4 
Oncogenic driver mutations such as EGFR and ALK were fre-
quently identified in never smoking lung adenocarincoma.5

The most effective way to cure lung cancer is early diag-
nosis for treatment by either surgery or local radiotherapy. 
However, cancer relapse is still the leading cause of cancer‐
related deaths in early stage lung cancer patients after sur-
gery. Many studies showed several genes were associated 
with cancer relapse but a global view of lung cancer relapse 
by whole genome analysis is lacking. Next‐generation se-
quencing analysis has become a common approach of discov-
ering mutations across the whole genome.4,6 Previous studies 
indicated genetic heterogeneity between primary tumors and 
locally recurrent or metastatic tumors.7-9 We identified a ger-
mlinem mutation in YAP1, a key component of the Hippo 
pathway, for hereditary lung adenocarcinoma.10 However, 
intratumor heterogeneity of normal‐tumor pairs with primary 
and relapse tumors in has not been systematically character-
ized by next‐generation sequencing in hereditary lung cancer. 
We applied whole genome sequencing to study multiple sam-
ples from blood, primary and relapse tumors in one lung ad-
enocarcinoma patient with germline YAP1 R331W missense 
mutation and family history. We investigated the genetic in-
tratumor heterogeneity and found that the immune‐associated 
gene somatic variants would predict the relapse‐free survival.

2  |   MATERIALS AND METHODS

2.1  |  Clinical and histopathological data
A 52‐year‐old woman without smoking history was diag-
nosed with stage IA lung adenocarcinoma over left upper 
lobe of lung after radical lobectomy initially. Two years 
later, the patient had disease relapse over left lower lobe of 
lung and the tumor lesion was removed by wedge resection 
with metastatic adenocarcinoma from lung proved. About 
3 months after the second resection, the patient developed 
multiple metastases over the contralateral lungs and brain. 
We collected the patient's blood, first cancer tissue (T1), ad-
jacent normal tissue (N1), relapse cancer tissue (T2), and ad-
jacent normal tissue (N2) for whole genome sequencing. The 
genomic DNA was extracted from the five samples followed 
by standard protocol, respectively. The study was approved 
by the Institutional Review Board of Taichung Veterans 
General Hospital (IRB no. N05160) and informed consent 
was signed by patient in person.

2.2  |  Identification of key driver mutations
Five oncogenic drivers, including EGFR, KRAS, BRAF, 
HER2, and EML4‐ALK, were tested. EGFR, KRAS, BRAF, 
and HER2 mutations were assessed by matrix‐assisted laser 
desorption ionization‐time of flight mass spectrometry 
(MALDI‐TOF MS). EML4‐ALK translocation was tested by 
Ventana method.11 The YAP1 R331W germline mutation 
was validated in blood DNA by MALDI‐TOF analysis.

2.3  |  Whole genome sequencing analysis
Next generation sequencing mate‐paired libraries were con-
structed according to the manufacturer's standard protocol 
(Life Technologies, Foster City, CA). In brief, genomic 
DNAs were fragmented into ~3 kb in length followed by end 
repair, adapter ligation and library amplification and the re-
sulting libraries were then used as the templates for emul-
sion PCR coupling to beads via an adapter sequence. The 
amplified beads were then processed to the 3’ end modifica-
tion to allow the beads to covalently attach to the sequenc-
ing slide. SOLiDTM sequencing primers were hybridized to 
the adapter sequence and four fluorescent labeled di‐base 
probes were used in ligation‐based sequencing. Each nucleo-
tide is sequenced twice in two sequential ligation reactions. 
Single end 50 bases were sequenced for and the sequencing 
data were mapped to the human genome reference sequence 
(hg19) using the SOLiDTM BioScopeTM software pipeline. 
The raw data were available at: http://ifg.stat.sinica.edu.tw/
lungcancer_solid/t1t2n1n2.

2.4  |  Bioinformatic analysis
The standard SOLiD software BioScope (Life Technologies, 
Foster City, CA) was carried out to analyze sequencing data 
including image analysis, mapping to human reference ge-
nome (UCSC Hg19). Alignment files were base quality 
score recalibrated and locally realigned around indels with 
GATK12 and marked for duplicates using PICARD tools 
(picard.sourceforge.net). Consensus genotype calls were 
generated using SAMtools13 and GATK 2.7‐2 annotated 
using the Annovar package.14 The somatic variants were 
distinguished by filtering the 1000 Genomes phase 1.15 We 
defined the novel SNVs were compared with NCBI dbSNP 
version 138 (http://www.ncbi.nlm.nih.gov/projects/SNP/) to 
annotate known SNP information. Visualizing genomic data 
used the Circos.16

2.5  |  Functional enrichment and 
phylogenetic analysis
Analysis for gene list enrichment was using the software 
package ingenuity pathway analysis (IPA). The functional 
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analysis tool identified the canonical pathways that were 
based on the genetic variant list. HLA regions were used to 
determine the best model by MEGA6 17 was used to con-
struct maximum‐likelihood phylogenetic trees.

2.6  |  Public lung cancer data set
The somatic mutation profile and clinical data of 230 lung 
adenocarcinoma patients (TCGA)18 were downloaded from 
cBioPortal (www.cbioportal.org).19,20

2.7  |  Statistical analysis
Paired t test was used to compare somatic mutations in T1 
and T2 groups. We calculated the patients’ mutation load 
from the tumor specific mutation genes and classified them 
into the high‐mutation or the low‐mutation groups with 
the median of mutation frequency as the threshold value. 
Kaplan‐Meier survival curves were obtained and compared 
by log‐rank tests. Statistical significance was defined as a 
P < 0.05. All statistical analyses were performed in the R 
language environment.

3  |   RESULTS

3.1  |  Whole genome sequencing analysis
In this study, we collect one blood sample and four frozen 
tissue samples from the 52‐year‐old female never smoking 
hereditary lung adenocarcinoma patient receiving opera-
tion twice. We defined 1665 mutations of all samples after 
1000 genomes filtering. Without any known actionable mu-
tations were detected in the five samples, such as EGFR, 
KRAS, BRAF, HER2, and EML4‐ALK in the tumor tissues. 
The next generation sequencer technology was applied to 
do whole genome sequence for the blood DNA, first cancer 
tissue (T1) and adjacent normal tissue (N1), relapse cancer 
tissue (T2), and adjacent normal tissue (N2) of this patient, 
respectively. The average coverage depth of five samples is 
~25X and number of detected mutations is around 3 million. 
They were mapped to the reference genome (NCBI build 
37, HG19) at an over 80% mapping rate for confident vari-
ant calling (Supplementary Table S1). Figure 1 showed the 
flowchart of tumor mutational burden (TMB) identification 
in this study. TMB was defined as the number of somatic 
mutation in coding region. Synonymous mutations could not 
be directly involved in creating neoantigens, and we focused 
on nonsynonymous mutation. Our approach for variants 
calling was intersection of the two vcf files (GATK + sam-
tools).The somatic variants calling were filtering based on 
1000G and our blood sample (germline mutation) to iden-
tify variants. Since our study was biased toward genes with 
functional mutations in cancer, we separated the variants on 

the coding regions (exons) for the step selection. The exonic 
alterations of each sample were presented as Circos plots in 
Figure 2. Previous studies indicated that the nonsilent muta-
tions derived in regulatory regions were believed to cause the 
phenotypic differences.21 The Supplementary Table S2 also 
showed the number of the exonic mutations in each sample. 
After comparing with germline background (blood DNA), 
and normal part tissues, the 215 tumor specific functional 
mutations (missense and nonsense mutations) were identi-
fied. TMB calculation was based on the tumor specific func-
tional mutations in the TCGA cohort.

3.2  |  Single‐nucleotide substitution pattern
Previous study showed that C:G>A:T transversions in the 
lung cancer tissues from never smokers is significantly lower 
than that of smokers.4 We also found that C:G>T:A (40%) 
and T:A>C:G (28%) base substitutions were predominated 
in the each sample. Thus, the relatively higher frequency of 
C:G>T:A and T:A>C:G transitions compared with C:G>A:T 
transversions in the nonsmoking patient. The single nucleo-
tide substitution pattern was similar in each sample (Figure 
3A). We used deconstructSigs to identify of mutational signa-
tures.22 Correlation with the 30 curated mutation signatures ac-
cording to Somatic Mutations in Cancer (COSMIC) database23 
indicated that a primarily C to T transition signature (Figure 
3B). The tumor mutation signature spectrums were different 
composition in primary and recurrent tumors (Supplementary 

F I G U R E  1   Whole genome sequencing analysis flowchart
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Figure S1). Three dominate signatures in primary tumor (T1) 
were signature 9, 3, and 15 and in recurrence tumor (T2) were 
signature 1, 5, and 6. The signature 9 was associated with 
somatic immunoglobulin gene hypermutation and other sig-
natures were involved in defective DNA repaired process.22 

Signature 3 exhibited in responders to platinum therapy and 
the patient had response with neoadjuvant chemotherapy (cis-
platin) before resection 24,25(Figure 4). We indicated signature 
6 associated with defective DNA mismatch repair in recurrent 
tumor tissues. Because of the patient received chemotherapy 

F I G U R E  2   The genomic variants of each sample. There are five circles, representing each sample
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after surgery, the higher ratio of defective DNA repair signa-
tures in the recurrent tissues could be attributed to the therapy.

3.3  |  Functional enrichment analysis of 
somatic SNVs
We used the IPA (Qiagen, Redwood City, CA), a web‐based 
computational platform designed for system biology, to con-
duct biological function enrichment analysis of exonic so-
matic SNVs. We input the set of 846 genes (1665 variants) 
and used the IPA with the default settings. The results show 
that somatic mutated genes were enriched in antigen pres-
entation pathway (Table 1). Table 1 list the top five signifi-
cantly enriched pathways (P < 0.001). The results indicate 
the Antigen Presentation Pathways, (P = 9.08E‐08, input/
total nodes = 11/38), which has a much higher ratio of root 
to total nodes and significant P‐value. The antigen presenta-
tion pathway leading to the association of the MHC (major 

F I G U R E  3   Somatic mutation pattern (A) in each sample and mutation signatures in tumor tissues (B) by WGS
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histocompatibility complex) molecule differs for class I and 
class II MHC. HLA is the major histocompatibility complex 
(MHC) specific to humans. Antigen presentation pathway 
played an important role in the immune system involves the 
processing of antigen, association of processed antigen with 
MHC molecules and cell surface presentation of the antigen 
in the context of MHC to T cells. Moreover, we determined 
the sequencing coverage of HLA regions were nearly 95% 
(Supplementary Table S3). This two paired normal tumor 
comparison could identify tumorigenesis and recurrent mu-
tations when compared with germline and normal part mu-
tation profiles. The most significant pathway of enrichment 
analysis using T1 specific somatic variants is protein kinase 
A (PKA) signaling (P = 7.39E‐03). There were four gene 
(CDC27, FLNB, PTPRC, and PTPRD) involved the pathway. 
The PKA signaling is the serine‐threonine protein kinase 
family, and is involved in the control of a variety of cellular 
processes. The pathway has been implicated in the initiation 
and progression of tumors,26-28 and PKA derived mammary 
tumorigenesis through Src activation.29 Additionally, Src 
activation enhanced YAP1 expression30 and modulated the 
initial EGFR TKI response in lung cancer.31 This has been 
suggested that T1 specific variants associated with tumo-
rigenesis pathway. T2 specific variants were enriched in the 
cancer metastasis signaling (P = 4.33E‐03) including the ma-
trix metalloproteases 11 (MMP11), low density lipoprotein 
receptor‐related protein 1(LRP1), mutS homolog 3 (MSH3), 
and son of sevenless homolog 2 (SOS2). This result showed 
that the tumor recurrence might be related with tumor metas-
tasis mechanism (Supplementary Table S4).

3.4  |  HLA profiles and phylogenetic 
applications of HLA‐A
The HLA region located on chromosome 6p21.31 with the 
class I and II region. HLA class I (A, B, and C) and class 
II (DRB1, DQB1, and DPB1) antigens are involved in the 
immune response. The studies of cancer immunology have 
moved forward to the identification of numerous tumor‐as-
sociated antigens.32,33 The function of the HLA complex 

involved the immune response such as the immune response 
to environmental pathogens and in autoimmune disease. 
HLA was originally identified in the organ transplant rejec-
tion.34 HLA has been reported in the etiology of diseases, 
including immune diseases,35 cancers,36,37 and infectious 
diseases.38,39 Phylogenetic analysis was based on the HLA 
sequencing data of the five samples. The maximum likeli-
hood approach was used to determine the phylogenetic re-
lationship among different samples. The phylogenetic tree 
generated the differences between HLA‐A allele frequencies 
in different samples (Figure 5). The edge lengths displayed in 
the phylogram indicated that the amount of change occurred 
along each branch. Overall, the phylogenetic tree exhibits a 
clearer picture showing distinct normal and tumor parts.

T A B L E  1   Top five pathway of enrichment analysis by functional 
ontology enrichment tool in ingenuity pathway analysis

Pathway name P Ratio

Antigen presentation pathway 9.08E‐08 11/38

Crosstalk between dendritic 
cells and natural killer cells

1.18E‐04 12/89

Calcium‐induced T lymphocyte 
apoptosis

1.62E‐04 10/66

Th1 pathway 1.66E‐04 15/153

B cell development 2.17E‐04 7/35

F I G U R E  5   Maximum‐likelihood phylogenetic relationships of 
samples using HLA regions
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3.5  |  Tumor mutation load
We identified the 215 tumor specific mutations in primary 
(T1) and recurrent (T2) tumor tissues. They were harbored 
by 162 genes. The sum of allele frequency in tumor spe-
cific somatic mutations was significantly higher in the re-
currence (T2) part than primary (T1) part (P = 0.04, paired 
t test, Figure 6). Then using TCGA‐LUAD data, we identi-
fied the mutations in these genes (Supplementary Figure 
S2). Furthermore, we demonstrated that patients with high 
allele frequency of missense and nonsense mutations in 
tumor specific parts had a significantly shorter relapse‐
free survival time than the low mutation frequency group 
for the EGFR wild‐type lung cancer patients (P = 0.017, 
Figure 7), though no significant difference present in 
overall survival (P = 0.67, Figure 7). In contrast, for the 
EGFR mutation patients, the mutation load difference did 
not correlate with patient overall and relapse‐free survival 
(Supplementary Figure S3). We conducted a multivariate 

Cox regression analysis to search for independent prog-
nostic factors associated with survival. The result showed 
that patients predicted to have higher mutation load had a 
significantly increased risk for poor survival. The adjusted 
hazard ratio (HR) is 1.86 (P = 0.01) for the mutation load 
signature (Table 2). Portraying the spectrum of tumor re-
currence mutations in the same patient without the onco-
genic lung cancer driver mutations such as EGFR, KRAS, 
and EML4‐ALK is an integrative step of understanding 
lung cancer tumor progression. But the literature is lack-
ing. Aiming to fill up the gap, we demonstrated that high 
tumor mutation load might mediate tumor progression and 
recurrence by activating the immune escape mechanism 
and that high mutation load in the EGFR wild‐type patients 
correlated with worse relapse‐free survival.

4  |   DISCUSSION

In this study we compared blood, normal‐tumor pairs with 
primary and relapse tumors from a hereditary lung adeno-
carcinoma patient, aiming to characterize the similarities and 
differences between these tissues. No mutations in EGFR, 
KRAS, HER2, BRAF, and EML4‐ALK were found by mass 
spectrometry, Ventana method and whole genome sequence. 
Interestingly, the whole genome sequence analysis indicated 
that this patient did not carry any known oncogenetic driver 
mutations beside germline Yap1 mutation in tumor tissues 
(Supplementary Table S2). Thus the tumor recurrence and 
progression in this patient might not be through the known 
oncogenetic pathway.

The concept of mutational burden was examined in our 
study. Previous investigations have explored the potential 
immunogenicity of tumor mutations.40,41 Antigen frequency 
of HLA class I alleles correlated with the prognosis and 
pathological factors in lung cancer patients. Incidence of 
HLA Class I and Class II alleles indicated tumor spreading 
to other organs or to lymph nodes in lung cancer patients.42 
HLA Class I alleles may affect postoperative prognosis.43 

F I G U R E  7   Kaplan‐Meier overall survival (A) and disease‐free 
(B) curves of tumor specific mutation load in EGFR wild type lung 
cancer cohorts from TCGA
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T A B L E  2   Multivariate Cox regression analysis of the mutation 
load signature for predicting relapse‐free survival in lung cancer 
patients

Variable
Hazard 
ratio 95% CI P

Lung cancer (n = 71)

Mutation load (Low vs High) 1.86 3.03‐1.13 0.01

Age (≦60 yr vs > 60 yr) 1.33 2.19‐0.81 0.26

Gender (Male vs Female) 1.33 0.48‐3.68 0.34

Stage (1,2 vs 3,4) 1.17 0.64‐2.13 0.62

Bold indicates significant results (P < 0.05).
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Our results supported the hypothesis that HLA alleles play a 
role in lung cancer relapse.

The findings of mutation burden enriched in Antigen 
Presentation Pathways by our study may offer new biolog-
ical insight to cancer relapse and immunotherapy targets. 
The process of tumorigenesis depends both on the genetic 
alterations of tumors and the interaction with their immu-
nological environment. HLA genes play an important role 
in tumor's immune escape.44,45 One meta‐analysis demon-
strated that the immune checkpoint inhibitors significantly 
prolonged survival in the EGFR wild‐type subgroup but not 
in the EGFR‐mutant subgroup.46 For the TCGA‐LUAD data 
the mean mutation load is 0.54 in EGFR mutation group 
(n = 24), and 0.76 in EGFR wild type group (N = 187) 
(P = 0.516). There may be a limitation to evaluating EGFR 
mutation from Caucasian specimens, but the patients with 
high recurrent tumor‐specific mutation burden had worse re-
lapse‐free survival. To our knowledge, it is the first study to 
describe the recurrent tumor‐specific mutation burden form 
the same patient tissue in hereditary lung cancer by whole 
genome sequencing. Limited by the genetic material avail-
ability, we only evaluated 1 patient with different part tissues. 
We demonstrated that patients with high mutation burdens in 
the genes with functional enrichment in immune response in-
versely correlated with relapse‐free survival. Further investi-
gation on the molecular mechanisms behind how tumor cells 
escape from immune surveillance will provide important in-
sight for designing immunotherapeutic strategies. Moreover, 
analysis of tumor mutational burden may be important for 
investigating not only etiology, but also therapy and progno-
sis. The mutation might inhibit immune recognition of this 
epitope by the well‐characterized escape mechanism involv-
ing impairment of peptide‐TCR‐HLA interactions.
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