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Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell
activation, the immune system uses different checkpoint pathways to maintain co-
inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints
(ICs) is one of the most important manifestations, in addition to lymphopenia and
inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy
whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or
activation. This review summarizes the available studies that investigated IC receptors and
ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors
and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4,
NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in
COVID-19 patients. Based on the available studies, there is a possible relationship
between disease severity and increased expression of IC receptors and ligands.
Overall, the upregulation of some ICs could be used as a prognostic biomarker for
disease severity.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a pandemic disease from December 2019 (1). Since the
initial wave of cases appeared in Wuhan, China, over 260 million individuals worldwide have been
infected with COVID-19, resulting in about six million deaths until now. Most infected patients are
without any symptoms or have mild symptoms, but some patients become severely ill and need to
be admitted to the hospitals (1, 2). This unexpected outbreak has highlighted the necessity to
develop new vaccinations and different therapies to combat COVID-19 (3). Importantly, there are
Abbreviations: BALF, bronchoalveolar lavage fluid; BTLA, B- and T-lymphocyte attenuator; COVID-19, Coronavirus disease
2019; CTLA-4, cytotoxic T lymphocyte-associated antigen; DCs, dendritic cells; FDA, Food and Drug Administration; Gal-1,
Galectin-1; Gal-3, Galectin-3; Gal-9, Galectin-9; HVEM, herpesvirus entry mediator; IC, immune checkpoint; ICU, intensive
care unit; IL-6, Interleukin 6; IL8, Interleukin 8; LAG-3, lymphocyte-activation gene 3; NK, natural killer; NKT, natural killer
T; OPN, Osteopontin; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; PD-L2, programmed death
ligand 2; RdRp, RNA-dependent RNA polymerase; TGF-b1, transforming growth factor-b1; Th1, T helper; TIGIT, T-cell
immunoreceptor with immunoglobulin; ITIM domain, TIM-3 T-cell immunoglobulin and mucin domain-containing protein
3; TLT-2, TREM-like transcript 2; TNFR, tumor necrosis factor receptor; TNF-a, tumor necrosis factor alpha; Treg, regulatory
T cells; VISTA, V-domain Ig suppressor of T-cell activation; VSIG-3, V-set and immunoglobulin domain-containing 3.
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new approved direct antiviral medications for COVID-19
patients (4). For example, remdesivir, a nucleoside analog, is
incorporated into the SARS-CoV-2 viral RNA-dependent RNA
polymerase (RdRp) complex and prevents its translocation (5).
The US Food and Drug Administration (FDA) has authorized it
for the treatment of hospitalized COVID-19 patients (5, 6).
Furthermore, molnupiravir, a nucleoside analogue, is the first
orally taken direct-acting antiviral drug that has been shown to
be effective in the eradication of viral RNA, while maintaining
high safety and tolerability profiles (4, 7).

COVID-19 could be an immune-related disorder, characterized
by lymphopenia, increased proinflammatory cytokines, and
abnormal T-cell responses (3, 8, 9). It can stimulate both innate
and adaptive immune responses. Later, this causes severe
inflammatory reactions leading to systemic cellular damaging
(10). However, the transition from innate to adaptive immune
responses is crucial in defining the clinical implications of
COVID-19 infections. First responses are often protective,
whereas later leads to a reduction in viral clearance and a low
survival rate (8, 11). Tissue injury observed in acute COVID-19
infections is mediated primarily by the hyperreactivity of
lymphocyte responses (8).
T CELLS IN COVID-19 PATIENTS

Lymphopenia is a general characteristic of many respiratory viral
diseases such as human rhinovirus and influenza (12).
COVID-19-associated lymphopenia could be more severe and
persistent, compared with other respiratory infections (12, 13).
Although lymphopenia is not fully understood in COVID-19, the
decline in T-cell numbers is a common symptom among patients
with severe diseases (14). Recent studies showed a decline in the
total number of T cells, as well as a negative relationship between
T-cell depletion and prognosis, particularly in COVID-19 patients
who require admission to the ICU (15, 16). Moreover, COVID-19
can be more severe in patients who arrive at the hospital with low
CD4+ and CD8+ T cell numbers, which can lead to worse clinical
outcomes (17). Clearly, these patients should bemonitored for any
changes in levels of T cells (18). In severe cases of COVID-19, it
has been shown that CD8+ T cells and natural killer (NK) cells
were reduced in numbers, but they were hyperactive (19). The
number and immunological status of GrA+CD8+ T cells and NK
cells were recovered after the patients’ condition improved (19).
According to this study, perforin+ NK cells and GrA+CD8+ T
cells could be useful for the diagnosis of COVID-19 patients.
Memory T cells are essentially important to fight against SARS-
CoV-2 reinfection and to determine the duration of vaccine
protection (20). A study demonstrated that virus-specific T cells
induced by betacoronaviruses are long-lasting, suggesting that
COVID-19 patients will develop a long-term T-cell immunity,
which may be able to protect against SARS-CoV-2 (21). In
addition, Odak et al. found that hospitalized COVID-19 patients
showed altered effector/effector memory and naïve T-cell
frequencies, compared with healthy controls (22). Also, they
found that T regulatory cells were significantly lower in both
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severe and mild COVID-19 patients, compared with healthy
controls (22). Moreover, they observed increased levels of
effector and memory T-cell populations in mild disease but not
in severe disease (22).
INHIBITORY IMMUNE CHECKPOINTS
IN COVID-19

During T-cell activation, the immune system uses checkpoint
pathways to maintain co-stimulatory and co-inhibitory signals. As
a result, a disturbance in the function of ICs may lead to
autoimmune diseases. Some cytokines regulate the expression of
immune checkpoint proteins. As an example, transforming growth
factor-b1 (TGF-b1) increases the expression of the programmed cell
death-1 (PD-1) receptor by enhancing antigen-driven PD-1 gene
transcription through Smad3 transcriptional activation in T cells
in vitro and in tumor-infiltrating lymphocytes in vivo (23).
Moreover, Schlichtner et al. found that VISTA upregulation is
regulated by the TGF-b1-Smad3 signaling pathway (24).
However, in T cells, TGF-b regulate the expression of VISTA
only on T cells lacking granzyme B expression (24). Indeed, they
also reported that TGF-bmay regulate galectin-9 (Gal-9) expression
by the Smad3 pathway in tumor cells (24).

Many pathogens are able to induce overexpression of these
checkpoint molecules in different immune cells, leading to
increases in IC inhibitory signals and immune evasion (25, 26).
As a consequence of IC expression, T cells are exhausted, leading
to viral escape from immune monitoring (26, 27). Table 1
summarizes IC receptors and ligands covered in this review.

Programmed Cell Death-1
PD-1 works by inhibiting innate and adaptive immune responses
(28, 29). It is expressed on B cells, T cells, activated monocytes,
natural killer T (NKT) cells, natural killer cells (NK), and
dendritic cells (DCs) (28, 30–33). PD-1 modulates T-cell
function and tolerance, as well as immune-mediated tissue
injury (34, 35). There are two known ligands for the PD-1
receptor: PD-L1 and PD-L2. In normal circumstances, the PD-
1/PD-L1 pathway plays a crucial role in the modulation of
immune function and preventing autoimmunity by inhibiting
T-cell activation (34, 36, 37). PD-1 is elevated during acute and
chronic viral diseases, such as HCV, HBV, or HIV (31, 38). T-cell
depletion and disease progression are linked to PD-1 expression
in HIV-specific CD4+ and CD8+ T cells (31, 32, 38, 39).

In COVID patients, PD-1 was shown to be overexpressed on
both peripheral blood CD4+ and CD8+ T cells, compared with
healthy controls (40). Some studies indicate that PD-1 is thought
to have a role in T-cell exhaustion and disease progression (31,
39, 41, 42). The observed PD-1 expression was higher in
peripheral blood CD4+ and CD8+ T lymphocytes in COVID-
19 patients of all ages, compared with healthy controls (26, 39,
43). PD-1 was found to be upregulated on both peripheral blood
CD8+ and CD4+ T cells in severe compared with mild and
moderate diseases (Figure 1) (40, 43). Moreover, Kong et al.
observed a significant increase in serum levels of soluble PD-1
March 2022 | Volume 13 | Article 870283
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(sPD-1) in severe COVID-19 patients, compared with mild
disease (44). Jeannet et al. reported that the expression of PD-1
was increased exponentially with the period of illness in COVID-
19 patients in the ICU, thus reducing the effectiveness of immune
responses to viral infections (45). However, according to Rha et
Frontiers in Immunology | www.frontiersin.org 3
al., peripheral blood CD8+ T cells expressing PD-1 during
COVID-19 infection are not exhausted but rather functional
(46). In line with these findings, Shahbaz et al. found that the
overexpression of PD-1 in peripheral blood was not associated
with exhaustion and impairment of T-cell function (40).
TABLE 1 | Summary of immune checkpoint receptors (A) and ligands (B) covered in this review.

A B

IC receptors Cellular expression pattern Ligand Cellular expression pattern

PD-1 T cells, NKT, NK, B cells, activated monocytes, DCs. PD-L1 Hematopoietic and non-hematopoietic cells.
CTLA-4 T cells PD-L2 DCs, macrophages, peritoneal B1 cells, helper T cells, bone marrow-derived mast cells.
LAG-3 T cells, NK, B cells. Galectin-9 T cells, B cells, macrophages, mast cells.
TIM-3 T cells, DCs, macrophages, monocytes. CD112 DCs, monocytes.
TIGIT T cells, NK, Tregs. CD155 DCs, monocytes.
BTLA T cells, B cells, DCs, monocytes. B7-H3 DCs, monocytes, T cells, B cells, NK.
VISTA T cells, myeloid cells. LSECtin Myeloid cells.
2B4 T cells, NK, DCs, monocytes. Galectin-3 Macrophages, monocytes, DCs, eosinophils, mast cells, NK, activated T and B cells.
NKG2A T cells, NK.
CD160 T cells, NK, NKT.
FIGURE 1 | Expression of immune checkpoint receptors on T cells and their respective ligands on APCs and/or cancer cells in severe COVID-19 patients. Some
ICs including PD-1, TIGIT, TIM-3, VISTA, LAG-3, and CTLA-4 are upregulated on both CD4+ and CD8+ T cells in severe COVID-19 patients, compared with mild/
moderate patients. Various IC ligands including PD-L1, PD-L2, CD155, CD112, Gal-9, Gal-3, and LSECtin are upregulated on APCs in severe COVID-19 patients.
March 2022 | Volume 13 | Article 870283
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Cytotoxic T Lymphocyte-Associated
Antigen-4
Cytotoxic T lymphocyte-associated antigen (CTLA-4) works by
suppression of T-cell stimulatory signals (47–49). It binds both
B7 family members (B7-1 and B7-2) with considerably higher
affinity than CD28 (50). As a result, the CD28 receptor is
excluded from the immunological synapse (50). This receptor
also sends inhibitory signals to T cells, limiting their activation
and finally leading to the depletion of its ligands via endocytosis
on antigen-presenting cells (51, 52). CTLA-4 is hypothesized to
control T-cell proliferation early in the immune responses,
mainly in lymph nodes, while PD-1 inhibits T cells later,
mainly in the peripheral tissues (53, 54).

Zheng et al. showed that the increased expression of CTLA-4 in
severe symptomatic COVID-19 patients leads to CD8+ T-cell
exhaustion in peripheral blood and impairs their specific immune
activity (43). Moreover, Kong et al. found a significant increase in
serum levels of soluble CTLA-4 (sCTLA-4) in severe COVID-19
patients compared with mild disease (44). Another study found that
the upregulation of CTLA-4 in blood and bronchoalveolar lavage
fluid (BALF) CD8+ and CD4+ T cells is due to viral invasion and
excessive immune responses (55). Some recent studies reported that
CTLA-4 is upregulated in peripheral blood CD8+ T cells in severe
disease, compared with mild and moderate diseases (Figure 1) (40).
Moreover, a specific upregulation of CTLA-4 was seen in BALF
CD8+ T cells isolated from severe COVID-19 patients (56). Hou et
al. showed that the expression of CTLA-4 on CD4+ T cells was
dramatically elevated in patients with COVID-19 after 1 year of
recovery (57). A study indicated that the presence of CTLA-4 and
PD-1 on T cells was not associated with a T-cell inhibition, but
rather with a strong activation (40). Other studies demonstrated
that the presence of CTLA-4 and PD-1 on T cells may modulate the
immune response and protect the vital organ from an excessive
inflammatory environment in severe COVID-19 patients (51, 58).

T-Cell Immunoglobulin and Mucin
Domain-Containing Protein 3 and
Lymphocyte-Activation Gene 3
T-cell immunoglobulin and mucin domain-containing protein 3
(TIM-3) is expressed on CD8+ T cells and T helper 1 (Th1) cells,
serving as a potent immune inhibitor (35, 38, 49, 59). It is also
detected on monocytes, dendritic cells, and macrophages (38, 60,
61). Lymphocyte-activation gene 3 (LAG-3) expression is
increased on activated CD4+ T cells, CD8+ T cells, B cells, and
NK cells (35, 49, 62, 63). Some studies have shown that LAG-3
and TIM-3 are strongly upregulated on T cells in COVID-19
patients (62, 64, 65). Importantly, TIM-3 and LAG-3 could be
utilized to identify COVID-19 patients with bad prognoses (66–
68). Furthermore, Shahbaz et al. found significant upregulations
of TIM-3 on both peripheral blood CD4+ and CD8+ T cells in
COVID-19 patients, compared with healthy controls (40). Other
studies reported significant upregulations of TIM-3 and LAG-3
on both peripheral blood CD4+ and CD8+ T cells in severe
compared with mild and moderate diseases (Figure 1) (40, 62).
Another study observed significant elevations of soluble TIM-3
(sTIM-3) and soluble LAG-3 (sLAG-3) in severe COVID-19
Frontiers in Immunology | www.frontiersin.org 4
patients, compared with mild disease (44). Furthermore, Chen et
al. found that the plasma level of sTIM-3 was significantly higher
in severe COVID-19 patients, compared with healthy controls
(69). Moreover, Diao et al. showed a significant increase in TIM-
3 expression on peripheral blood CD4+ T cells in COVID-19
patients, which could contribute to the functional exhaustion of
these cells (67). Also, they found a correlation between TIM-3
expression and the severity of the disease in COVID-19 patients
(67). In line with these findings, Modabber et al. identified higher
TIM-3 expression on peripheral blood CD4+ T cells in critical
COVID-19 patients than in moderate and severe diseases (60).
Furthermore, some COVID-19 inpatients from Nanjing
Hospital/China were evaluated, and it was found that the
majority of exhausted T cells expressed LAG-3 (70). Another
study found that NK cells from the majority of COVID-19
patients appeared exhausted based on the expression of LAG-3
(71). Therefore, exhaustion of these cells could be associated with
serious illness and weak antiviral immune responses.

T-Cell Immunoreceptor With
Immunoglobulin and ITIM Domain
T-cell immunoreceptor with immunoglobulin and ITIM domain
(TIGIT) is expressed on activated T cells, as well as NK cells, and
Tregs (72–74). In severe viral diseases, the sustained expression of
TIGIT in response to persistent antigen can result in T-cell
exhaustion (8, 43). Shahbaz et al. found a significant upregulation
of TIGIT on peripheral blood CD8+ and CD4+ T cells in COVID-
19 patients, compared with controls (40). In line with these
observations, TIGIT expression on peripheral blood CD8+ T cells
was higher in severe compared withmild patients (Figure 1) (40, 43,
75). Conversely, Herrmann et al. observed no significant differences
in TIGIT expression in COVID-19 patients but substantially lower
than that of controls (62). In addition, Hsieh et al. found that higher
frequencies of NK cell subsets expressing TIGIT eliminated the
viruses faster than cells with lower levels of TIGIT in COVID-19
patients (76). Moreover, Shahbaz et al. indicated that
overexpressions of TIGIT, TIM-3, and CTLA-4 were not
associated with exhaustion and impairment of peripheral blood
T-cell functions. More accurately, these expressions on activated T
cells are to avoid harmful hyper-immune reactions (40).

V-Domain Ig Suppressor of
T-Cell Activation
V-domain Ig suppressor of T-cell activation (VISTA) is an
immune checkpoint receptor that regulates T-cell function
(77). It is expressed in significant levels on T cells and myeloid
cells (78). In contrast to other IC receptors that are expressed
after immune-cell activation, VISTA is expressed in stable
conditions on both T cells and myeloid cells (79).
Overexpression of VISTA leads to increase in T-cell exhaustion
and reduction in their proliferation (77, 80). Some studies found
that V-set and immunoglobulin domain-containing 3 (VSIG-3)
is a ligand of VISTA, and its interaction can inhibit T-cell
proliferation (79, 81, 82). Moreover, another study found that
VISTA interacts with Gal-9 secreted by tumor cells as a ligand in
acute myeloid leukemia (83).
March 2022 | Volume 13 | Article 870283
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In COVID-19, VISTA was highly expressed on peripheral
blood T cells (40, 84). Shahbaz et al. reported a significant
upregulation of VISTA on peripheral blood CD8+ and CD4+
T cells in COVID-19 patients, compared with controls (40).
Furthermore, VISTA expression levels on T cells were found to
be considerably greater in severe COVID-19 patients versus
those with mild diseases (Figure 1) (40). Another study found
that overexpression of VISTA on exhausted T cells can occur in
chronic viral illnesses like COVID-19 (85). As a result, viral
multiplication is likely to be uncontrollable (85).

B- and T-Lymphocyte Attenuator
B- and T-lymphocyte attenuator (BTLA), a member of the CD28
Ig-superfamily, is structurally and functionally similar to CTLA-
4 and PD-1 (86–89). BTLA is mostly expressed on B cells and
both CD4+ and CD8+ T cells (90–93). Also, it can be expressed
on DCs and monocytes (88). BTLA expression is reduced rapidly
upon T-cell activation (89). BTLA differs from the rest of the Ig
superfamily because it can bind to the herpesvirus entry
mediator (HVEM), one of the TNFR superfamily members
(35, 86–88). In COVID-19 patients, the BTLA was significantly
elevated on peripheral blood CD4+ and CD8+ T cells, when
compared to the normal group (90). This elevation of BTLA
serves to counteract the initial activation of T cells (94). Another
study observed a significant elevation of soluble BTLA (sBTLA)
in severe COVID-19 patients, compared with mild disease (44).
Moreover, Sharif-Askari et al. found a link between BTLA
upregulation and COVID-19 severity (56). Moreover,
Schultheiß et al. reported a significant upregulation of BTLA
on both CD8+ and CD4+ T cells in COVID-19 patients,
compared with healthy controls (90). In an in vitro study,
Sumida et al. found that production of IFN-b during viral
infection suppresses the expression of CD160, TIGIT, and
BTLA on CD8+ and CD4+ T cells (95).

Other Immune Checkpoints
CD244 (2B4) is expressed on T cells, as well as NK cells, DCs,
and monocytes (96). Also, CD160 is expressed on T cells, NK
cells, and NKT cells (96, 97). In addition, NKG2A is expressed on
T cells and NK cells (98). The expression of these ICs might lead
to exhaustion of CD4+ and CD8+ T cells (99–101). Some studies
have linked the increased expression of these inhibitory receptors
to CD8+ T-cell exhaustion in chronic viral infections such as
influenza, HIV, and HCV (31, 96, 100). In COVID-19 patients,
Shahbaz et al. found an overexpression of 2B4 on peripheral
blood CD4+ and CD8+ T cells; however, CD160 was upregulated
on CD4+ T cells but not on CD8+ T cells, compared with
controls (40). Additionally, NKG2A was upregulated on
peripheral blood CD4+ and not on CD8+ T cells in severe
COVID-19 patients, compared with mild and moderate diseases
(Figure 1) (40). Despite previously reported associations
between T-cell dysfunction and overexpression of these
inhibitory receptors in viral infections (96, 98, 100), Shahbaz et
al. showed that such overexpression was associated with
functional T cells against SARS-CoV-2 (40). Furthermore,
Zhang et al. showed that the expression of CD160 on NKT
cells was increased significantly in moderate COVID-19 patients,
Frontiers in Immunology | www.frontiersin.org 5
compared with severe illness (97). This might imply that the
presence of CD160 on NKT cells improves disease control
through direct cytotoxicity (97, 102). On the other hand,
Zheng et al. observed an overexpression of NKG2A on
exhausted NK cells and CD8+ T cells in severe COVID-19
patients (98). Therefore, the upregulation of NKG2A could be
associated with functional exhaustion of cytotoxic lymphocytes
at the early stage, which could result in progression of the
disease (98).

Cross Talks Between
Immune Checkpoints
Some of T-cell inhibitory receptors appear to be co-expressed
during exhausted T-cell differentiation. Interestingly, Yang et al.
showed that PD-1 binds to the TIM-3 ligand Gal-9, which
attenuates Gal-9/TIM-3-induced cell death (103). Moreover,
Baitsch et al. found that naive T cells are primarily controlled
by BTLA and TIM-3 receptors, whereas effector cells interact via
larger amounts of inhibitory receptors (104). Furthermore,
Okazaki et al. demonstrated that a synergistic effect was found
between LAG-3 and PD-1 in the regulation of T-cell function
(105). Indeed, Koyama et al. observed an upregulation of TIM-3
in tumor tissues following anti-PD-1 treatment. Consequently,
adaptive resistance to anti-PD-1 therapy was acquired (106). It is
possible that blocking several immune checkpoints with
particular monoclonal antibodies may lead to improvements in
the outcomes of various chronic viral infections, as well as in
several types of cancer (107).
IMMUNE CHECKPOINT LIGANDS
IN COVID-19

Binding of IC receptors with their ligands suppresses T-cell
activity and function, helping in the regulation of immunity
(108). Viral infections induce the overexpression of some IC
ligands in different immune cells, resulting in a decrease of the
viral clearance and increased mortality (109, 110). Herein, we
present the few available studies that investigated IC ligands in
COVID-19 patients.

PD-L1 and PD-L2
PD-L1 is broadly expressed on hematopoietic and non-
hematopoietic cells (111). PD-L2 (also known as B7-DC) is
mostly expressed in macrophages, activated DCs, Th2 cells, bone
marrow-derived mast cells, and peritoneal B1 cells (112).
Importantly, PD-1 and its ligands PD-L1 and PD-L2 were
elevated during acute viral infections and after sustained viral
infections (111). The expression of PD-L1 on basophils and
eosinophils was associated with COVID-19 severity (Figure 1)
(113). In COVID-19, dendritic cells and monocytes lack
maturation markers and have elevated levels of PD-L1 (114).
Moreover, Monaghan et al. reported a significant overexpression
of PD-L1 and PD-L2 in peripheral blood of patients who died from
COVID-19 (115). SARS-CoV-2 induced an overexpression of PD-
L1 in epithelial cells, and it was dysregulated in a variety of immune
cells including neutrophils, gamma delta T cells, monocytes, and
March 2022 | Volume 13 | Article 870283
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CD4+ T cells of COVID-19 patients (116). These results indicate
that PD-L1 has a prognostic role in COVID-19 patients (116).
Blood levels of pro-inflammatory cytokines IL-6, IL-17, and IL-8
were markedly elevated in severe COVID-19 patients, together with
elevated macrophage and neutrophil activity (117, 118). Therefore,
overexpression of PD-L1 on the surface of immune cells in COVID-
19 patients could be due to the presence of these pro-inflammatory
cytokines (118). In other studies, it has been reported that PD-L1
was overexpressed on monocytes, and the plasma of COVID-19
patients contains higher levels of soluble PD-L1 (sPD-L1),
compared with healthy controls (119, 120). Moreover, another
study found that the serum level of sPD-L1, but not sPD-L2, was
significantly higher in severe COVID-19 patients (44).

Galectin-9
Galectin-9 (Gal-9) is a galactoside-binding protein expressed by
different types of immune cells including T cells, B cells,
macrophages, and mast cells, and it is involved in the regulation
of overactive immune responses (121). Gal-9 is a ligand for TIM-3,
and their interactions induce apoptosis and reduce T-cell activity
(121). Gal-9 is significantly expressed on immune cells in viral
infections, and autoimmune and malignant diseases (109). Soluble
Gal-9 (sGal-9) was increased in the plasma during chronic viral
disease, and it may suppress the immune activity against the viral
infection (109). A recent investigation reported that circulating Gal-
9 levels were elevated in humans infected with various viruses (122).
These findings imply that viral infections induce Gal-9
overexpression. Schultheiß et al. reported that sGal-9 was
significantly increased in severe COVID-19 patients, compared
with patients after recovery and healthy controls (90). Moreover,
Bozorgmehr et al. found that plasma Gal-9 concentrations were
significantly greater in patients with severe COVID-19, compared
with those with mild/moderate disease (Figure 1) (123). Plasma
levels of the full-length and truncated forms of Gal-9 and
Osteopontin (OPN) could serve as representative inflammatory
biomarkers. In severe patients, cleavage of Gal-9 and OPN was
found to be related to lung function and inflammation, but not the
full length of Gal-9 and OPN (124). Therefore, the cleaved forms of
OPN and Gal-9 could be useful in monitoring inflammation in
COVID-19 patients with pneumonia (124, 125). In another study,
COVID-19 patients were shown to have higher levels of Gal-9, Gal-
3, and Gal-1, compared with healthy controls (120). Another study
reported that Gal-9 was overexpressed on T cells in severe patients,
compared with healthy controls (40). Gal-9 has been associated with
a cytokine storm in COVID-19 (123). Furthermore, it has a positive
correlation with pro-inflammatory cytokines such as IL-6 and
tumor necrosis factor-a (TNF-a), suggesting that Gal-9 inhibition
could be a potential therapeutic approach in COVID-19
patients (123).

Galectin-3
Galectin-3 (Gal-3) is a galactoside-binding protein expressed by
all types of immune cells (126). Gal-3 has been related to several
inflammatory diseases (126). A recent study reported that Gal-3
levels in macrophages, monocytes, and dendritic cells were
increased in patients with severe COVID-19, compared with
mild diseases (Figure 1) (127). Moreover, the serum level of
Frontiers in Immunology | www.frontiersin.org 6
Gal-3 was significantly higher in severe COVID-19 patients,
compared with healthy controls (69, 128). It has been reported
that Gal-3 was upregulated in proliferating T cells in severe cases
of COVID-19, and frequently the hyperinflammation phase
involves the overexpression of Gal-3, TNF-a, and IL-6 (129).
Therefore, inhibition of Gal-3 could be a helpful approach in the
treatment of COVID-19 by lowering the inflammatory reaction
and preventing viral adherence to host cells (126, 127, 130).
Additionally, a recent study reported higher levels of Gal-3, and
Gal-1 in COVID-19 patients, compared with healthy controls,
implying that Gal-3 could be a useful biomarker for disease
prognosis (131). Another study reported that COVID-19
patients with serum levels of Gal-3 more than 35.3 ng/ml were
associated with higher mortality, ICU hospitalization, and severe
acute respiratory syndrome, implying its importance as a
prognostic biomarker for mortality and disease severity (132).

B7-H3 (CD276)
B7-H3 (CD276) has both co-stimulatory and co-inhibitory roles
(133). It interacts with the TLT-2 receptor to enhance T-cell
activation, whereas binding to unknown receptors results in co-
inhibition of T cells (133, 134). It is expressed on activated DCs,
NK cells, T cells, B cells, and monocytes (135). There are very
limited studies investigating B7-H3 in COVID-19 patients. A
recent study reported that CD276 was upregulated in the lung
during COVID-19 (136).

CD155 and CD112
CD155 (PVR) and CD112 (PVRL2, nectin-2) have both co-
stimulatory and co-inhibitory roles. Both are expressed on
monocytes, and DCs (137, 138), and they are recognized by a
different group of receptors expressed on T cells and NK cells,
namely, DNAM-1 (CD226), TIGIT, and TACTILE (CD96) (139,
140). During the activation process, CD155 and CD112 interact
with DNAM-1 to enhance NK- and T-cell activity (141). On the
other hand, TIGIT interacts with these ligands to inhibit the
activation of NK and T cells (72, 140–142). With regard to
COVID-19, Hsieh et al. reported that SARS-CoV-2 induced the
overexpression of CD155 on infected cells, which binds to its
receptor TIGIT on NK cells, resulting in decreased immune
responses and viral clearance (76). Additionally, Wilk et al.
reported a significant expression of CD112 on monocytes of
hospitalized COVID-19 patients, compared with mild disease
and healthy controls (Figure 1) (143).

LSECtin
Lectin (LSECtin), also known as CLEC4G, is a co-inhibitor of
human T-cell immunity (144). A recent study showed that LSECtin
suppresses human T-cell activation and proliferation via the
butyrophilin family receptor BTN3A1 (144). Lu et al. reported
that analysis of pulmonary cells from COVID-19 patients showed
an overexpression of different C-type lectins such as L-SIGN,
LSECtin, DC-SIGN, ASGR1, and CLEC10A on myeloid cells
(145). Although these receptors do not promote active
multiplication of SARS-CoV-2, they generate pro-inflammatory
responses in myeloid cells, which are associated with COVID-19
severity (145).
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PERSPECTIVE

The expression of ICs in COVID-19 patients is an important
manifestation, contributing to worse clinical outcomes. Most
available studies evaluated IC receptors/ligands individually or in
small combinations. Comprehensive co-expression and cross talk
investigations of multiple IC receptors or ligands on specific
immune-cell subpopulations in COVID-19 patients are lacking.
Identification of the specific immune-cell subpopulations expressing
IC receptors or ligands in severe versus mild/asymptomatic
COVID-19 patients is critical for prognostic purposes and
therapeutic targeting. Overall, few studies investigated different
receptors/ligands in the same COVID-19 patients. Based on these
studies, there are some evidence supporting the use of a panel of IC
receptors/ligands as prognostic biomarkers in severe COVID-19
patients; this panel could include upregulations of PD-1, CTLA-4,
TIM-3, PD-L1, Gal-3, and Gal-9. Further and well-designed studies
are still needed to investigate expression profiles and functions of IC
receptors and ligands in severe, compared to mild and
asymptomatic COVID-19 patients.
CONCLUSION

COVID-19 is a pandemic disease that is impacting people all
over the world. The severity of the disease is determined by the
signs and symptoms that individuals exhibit. An enhanced
expression of immune checkpoint molecules can result in
stimulation of the apoptosis of T cells, decline in the number
of T cells, and lymphopenia. Some studies reported a relationship
between upregulation of IC receptors on T cells and the severity
of COVID-19. Specifically, when immune cells are overactivated,
ICs are upregulated and inflammatory cytokines are produced in
excessive amounts, which increases the disease severity.
Therefore, IC overexpression in COVID-19 patients might not
be due to T-cell exhaustion with impaired antiviral responses.
Some studies found that the overexpression of IC receptors on T
cells may modulate the immune response and protect vital
organs from an excessive inflammatory response in severe
COVID-19 patients. Overexpression of some of these IC
receptors can be used as prognostic biomarkers for COVID
severity. Clearly, targeting inhibitory ICs should be carefully
considered because the efficacy and safety of blocking inhibitory
ICs in COVID-19 patients have not yet been fully elucidated.

Few studies have investigated the expression level of IC
ligands in COVID-19 patients. Based on the few available
studies, there is a relationship between disease severity and
increased expression of IC ligands. However, there are no
available studies investigating the expression levels of some IC
Frontiers in Immunology | www.frontiersin.org 7
ligands including B7-H4, B7-H5, and B7-H6 in COVID-19
patients, and it would be interesting to do that.

Cancer patients receiving immune checkpoint inhibitors (ICI)
may have greater immunological competence as a consequence of
their reactivated T cells. However, this may lead to an increase in the
risk of cytokine release syndrome (CRS), a vital manifestation in
COVID-19 patients (146, 147). Few studies found a high percentage
of ICI-related CRS cases following ICI administration in cancer
patients (147, 148). However, other studies found that there were no
associations between administration of ICI with mortality in cancer
patients with COVID-19 (149, 150). Recently, ICI could be used as a
potential therapeutic approach against COVID-19 in non-cancer
patients (26). The majority of the concerns regarding ICI
administration are related to an increase in inflammatory
cytokine secretion as a consequence of reactivated of exhausted T
cells, which might lead to organ damage (147). However, another
study found that organ damage in COVID-19 patients is caused by
virus infection itself rather than cytokine storm (151). Additionally,
Yatim et al. demonstrated that ICI therapy was not associated with
severe COVID-19, rather it increases specific anti–SARS-CoV-2
T-cell immunity (152). Furthermore, another study found that the
PD-1 inhibitor is able to enhance the specific T-cell immune
response to SARS-CoV-2 antigens (153). In addition, TGF-b and
IL-6 were upregulated in COVID-19 patients, suggesting that
targeting these cytokines may improve COVID-19 outcomes
(154–156).

Most of the available studies on COVID-19 patients who have
undertaken ICI are concentrated on PD-1 inhibition. Other ICIs in this
setting should be studied as well. More studies are needed to evaluate
the safety of ICI in cancer and non-cancer COVID-19 patients.

Currently, there are different COVID-19 vaccinations including
BNT162b2 (BioNTech, Pfizer), AZD1222 (Oxford, AstraZeneca),
Ad26.CoV2.S (Janssen), mRNA-1273 (Moderna), BBIBP-CorV
(Sinopharm), Sinovac-CoronaVac, BBV152 COVAXIN (Bharat
Biotech), and NVX-CoV2373 (Covovax). Unfortunately, there are
no available studies investigating IC receptors and/or ligands in
individuals following any of the different COVID-19 vaccinations.
Comprehensive studies are required on patients receiving COVID-
19 vaccines to determine any changes in the expression and
function of IC receptors and ligands on different immune cells
following these vaccinations.
AUTHOR CONTRIBUTIONS

MA-M and AA wrote the article and prepared the figure/table. EE
conceived the concept, acquired the funds, and supervised and
performed the writing of the review and the editing. All authors
contributed to the article and approved the submitted version.
REFERENCES
1. Wang K, Qiu Z, Liu J, Fan T, Liu C, Tian P, et al. Analysis of the Clinical

Characteristics of 77 Covid-19 Deaths. Sci Rep (2020) 10(1):16384.
doi: 10.1038/s41598-020-73136-7

2. Zavascki AP, Falci DR. Clinical Characteristics of Covid-19 in China. N Engl
J Med (2020) 382(19):1859. doi: 10.1056/NEJMc2005203
3. Paces J, Strizova Z, Smrz D, Cerny J. Covid-19 and the Immune System.
Physiol Res (2020) 69(3):379–88. doi: 10.33549/physiolres.934492

4. Fischer WA, Eron JJ Jr, Holman W, Cohen MS, Fang L, Szewczyk LJ,
et al. A Phase 2a Clinical Trial of Molnupiravir in Patients with Covid-
19 Shows Accelerated SARS-CoV-2 RNA Clearance and Elimination of
Infectious Virus. Sci Transl Med (2022) 14(628):eabl7430. doi: 10.1126/
scitranslmed.abl7430
March 2022 | Volume 13 | Article 870283

https://doi.org/10.1038/s41598-020-73136-7
https://doi.org/10.1056/NEJMc2005203
https://doi.org/10.33549/physiolres.934492
https://doi.org/10.1126/scitranslmed.abl7430
https://doi.org/10.1126/scitranslmed.abl7430
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Al-Mterin et al. Inhibitory Immune Checkpoints in COVID-19
5. Frediansyah A, Nainu F, Dhama K, Mudatsir M, Harapan H. Remdesivir
and Its Antiviral Activity Against Covid-19: A Systematic Review. Clin
Epidemiol Global Health (2021) 9:123–7. doi: 10.1016/j.cegh.2020.07.011

6. Lamb YN. Remdesivir: First Approval. Drugs (2020) 80(13):1355–63.
doi: 10.1007/s40265-020-01378-w
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