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Abstract: Carbon dots (CDs) demonstrate very poor fluorescence quantum yield (QY). In this study,
with the help of a hydrothermal method, we combined CDs with nitrogen and phosphorus elements
belonging to the VA group (in the periodic table) to form heteroatom co-doped CDs, i.e., nitrogen and
phosphorus co-doped carbon dots (NPCDs). These displayed a significant improvement in the QY
(up to 84%), which was as much as four times than that of CDs synthesized by the same method.
The as-prepared NPCDs could be used as an “off-on” fluorescence detector for the rapid and effective
sensing of ferric ions (Fe3+) and catecholamine neurotransmitters (CNs) such as dopamine (DA),
adrenaline (AD), and noradrenaline (NAD). The fluorescence of NPCDs was “turned off” and the
emission wavelength was slightly red-shifted upon increasing the Fe3+ concentration. However,
when CNs were incorporated, the fluorescence of NPCDs was recovered in a short response time;
this indicated that CN concentration could be monitored, relying on enhancing the fluorescence signal
of NPCDs. As a result, NPCDs are considered as a potential fluorescent bi-sensor for Fe3+ and CN
detection. Particularly, in this research, we selected DA as the representative neurotransmitter of the
CN group along with Fe3+ to study the sensing system based on NPCDs. The results exhibited good
linear ranges with a limit of detection (LOD) of 0.2 and 0.1 µM for Fe3+ and DA, respectively.

Keywords: off-on fluorescence detector; bi-sensor; co-doped carbon dots; improved quantum yield

1. Introduction

Carbon dot (CD) is a new class of fluorescence carbon material that has been attracting
considerable interest owing to their outstanding properties such as good water solubility, low toxicity,
favorable biocompatibility, good photo-stability, tunable surface functionalities, and cell membrane
permeability [1,2]. However, CDs have low quantum yields (QY) and few active sites, which limits
their wider applications in fluorescent bioimaging [3–5], biosensing [6,7], ions and molecules
detection [8,9], novel photoscience [10–13], and electrocatalysis [14]. Therefore, developing the methods
to improve the fluorescent properties of CDs is extremely important. Previous studies proved that
heteroatom doping is an effective and smart strategy to enhance their fluorescent performance [15].
Heteroatom doping provides available sites for target sensing [16,17] and can effectively control the
band gap, electron density, leading to the QY enhancement of the CDs [18]. In addition, CDs doped
with heteroatoms present distinctive photoluminescence (PL) behavior for application in various
fields [19,20]. It is known that because nitrogen possesses a similar atomic size to carbon and has five
strong valence bonds, it is considered to be a prominent chemical doping element for tailoring the
electronic properties of CDs and can also bond strongly with the carbon atoms [21,22]. After doping with
N atoms, CDs become n-type semiconductors. In the case where CDs act as n-type semiconductors,
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they may form substitution defects in sp3-bonded diamond thin films [23]. Hence, nitrogen and
phosphorus co-doping would change the electronic characteristics of CDs, as well as control their
physical and chemical properties, leading to higher QY.

Ferric ions (Fe3+) play vital roles in several biochemical and biophysical processes including DNA
replication, cell proliferation, oxygen transport, enzyme catalysis, etc [24]. Consequently, the deficiency
or excess of Fe3+ leads to various diseases. A disproportion in the number of Fe3+ may result in liver and
kidney damage, megaloblastic, hemolytic anemia, and heart failure [25,26]. Moreover, determining Fe3+

levels is an important factor for evaluating the quality of drinking water [27]. Hence, detecting Fe3+ is
extremely important in environmental and biomedical domains.

Similarly, catecholamine neurotransmitters (CNs) such as dopamine (DA), adrenaline (AD),
and noradrenaline (NAD) play roles as messengers of neurological information [28]. Abnormal levels
of CNs are related to various diseases including Parkinson’s, Alzheimer’s, schizophrenia,
Huntington’s chorea, severe head trauma, neuroblastoma, pituitary adenoma, adrenocortical carcinoma,
pheochromocytoma, various cancerous tumors, and depression [29,30]. Therefore, the growth of a
selective and sensitive technique for detecting CN is crucial.

In this study, we used a hydrothermal approach to prepare nitrogen and phosphorus co-doped
CDs with excellent fluorescent properties with independent emission behavior and stability over a
wide pH range. Then, the as-prepared NPCDs were used in simple and rapid fluorescent bi-sensor
for detecting both Fe3+ and CNs (in particular, we chose DA as the representative of CN group),
which is based on an “off-on” fluorescence mechanism (Scheme 1). First, the fluorescence intensity
of NPCDs was quenched in the presence of Fe3+. Then by adding CNs to the solution, the intensity
of the NPCDs/Fe3+ probe was improved. In fact, CNs can reduce Fe3+ to Fe2+, which cannot cause
the fluorescence quenching effect. Besides, the catechol group of CNs can interact with Fe3+ and then
remove Fe3+ from the surface of NPCDs [31,32], therefore, the quenched fluorescence is recovered. It is
clear to see that the fluorescent bi-sensor opens a new potential technique for the detection of Fe3+ and
CNs because of its easy preparation, simple-operation, high efficiency, and in-expensive cost when
compared with other sensing methods, which require expensive instruments and complex operating
processes [28,33].
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2. Experimental Details

2.1. Materials

All chemicals were purchased from Sigma–Aldrich and were used without further purification.
Chemicals consist of citric acid monohydrate, (NH4)2HPO4, FeCl3, DA, AD, NAD, glucose, fructose,
H2O2, urea, glycine, alanine, and phosphate buffer saline (PBS) (pH = 7.4). Deionized (DI) water was
utilized in all the processes.
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2.2. Instruments and Measurements

Transmission electron microscopy (TEM) was conducted using TEM (FEI, Tecnai, F30S-Twin).
The UV-Vis spectra and photoluminescence (PL) were obtained using a G1103A UV-Vis spectrophotometer
from Agilent, USA and a QuantaMaster TM 50 PTI spectrofluorometer from Photon Technology
International, USA. QY was conducted on FLUORO Q2100. Zeta potential measurements were measured
by electrophoretic light scattering (Photal Otsuka Electronics, ELS 8000). X-ray photoelectron spectroscope
(XPS) spectra were obtained with an X-ray photoelectron spectrometer (PHI 5000, Japan). Fourier transform
infrared (FTIR) spectroscopy measurements were carried out using a Nicolet 6700 spectrometer from
Thermo Scientific.

2.3. Synthesis of NPCDs

A hydrothermal method was used to synthesize the NPCDs. In particular, 2 g citric acid
monohydrate and 5 g (NH4)2HPO4 (molar ratio of 1:4) were mixed with 30 mL water. Next, the mixture
was transferred into a Teflon-lined stainless steel autoclave with a capacity of 50 mL. Subsequently,
the mixture was heated at 180 ◦C for 4 h. After cooling the autoclave to room temperature, a dark
brown colored solution was obtained. First, this product solution was filtered through a 0.22 µm
polyethersulfone membrane, then further dialyzed using a dialysis bag (MWCO: 1000 Da). After 48 h
of dialyzing, the obtained light violet-colored solution was finally lyophilized to acquire a powdery
substance for later characterization. Undoped CDs were prepared following the above method without
adding (NH4)2HPO4.

2.4. Quantum Yield Measurement

The QY of NPCDs was measured by a comparative method using quinine sulfate in 0.1M H2SO4

as the standard (std) solution (QYstd = 0.54 at excitation wavelength of 360 nm, nstd = 1.33). The QY of
NPCDs was calculated by Equation (1):

QNPCDs = Qstd
INPCDs·Astd·(nNPCDs)

2

Istd·ANPCDs·(nstd)
2 (1)

where Q, I, A, and n represent fluorescence quantum yield, integrated emission intensity, the refractive
index of solvent, and absorbance, which is measured by UV-Vis spectrophotometer, respectively.

2.5. Procedure for Detecting Fe3+

The Fe3+ detecting process was conducted at room temperature. First, 60 µL of NPCDs were
added to 3 mL DI water. Next, varying volumes of Fe3+ solution were dropped into the NPCDs solution
to obtain different concentrations (0, 0.2, 0.5, 1, 3, 5, 10, 15, 20, 25, 30, 40, and 50 µM). The solution was
further diluted to the mark using DI water and then was equilibrated for 1 min before fluorescence
measurement under an excitation wavelength of 390 nm. This testing for each concentration was
repeated three times.

2.6. Diagnosis of CNs

As mentioned in the Introduction, we choose DA as the representative of the CN group for
investigation. In a specific test, 60 µL NPCDs were dropped into 3 mL of PBS (pH = 7.4) first. In order
to form an NPCDs/Fe3+ probe, a fixed amount of Fe3+ was added to the solution. Then, to study the
sensitivity of the NPCDs/Fe3+ probe towards DA, varying concentrations of DA (0, 2, 5, 10, 20, 50, 70,
90, 100, 120, 150, 200, 250, and 300 µM) were adjusted by adding different amount of DA solution to
the mixture. The solution was further diluted to the point with DI water. After 10 min of incubation at
room temperature, the fluorescence restore spectra were measured with an excitation wavelength of
390 nm. Measurements were taken in triplicate for each concentration.
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In addition, to determine the selectivity of the NPCDs/Fe3+ probe towards DA, the effect and
interferences of other reducing molecules were investigated.

3. Results and Discussions

Characterization of the NPCDs

Fluorescence and UV-Vis absorption spectroscopy were used to characterize the optical properties
of NPCDs. The UV-Vis spectrum (Figure S1) shows that a small peak appears at 234 nm that lies
next to a strong peak at 334 nm, which originated owing to trapped excited-state energy from surface
states [1,18,34].

It can be seen from Figure 1A, the CDs fluorescence emission reached the maximum peak at
452 nm under an excitation wavelength of 402 nm, whereas the maximum fluorescence emission peak
of the NPCDs was observed at a shorter wavelength of 440 nm when the excitation wavelength was
390 nm. In addition to the change in the location of the emission peaks, the fluorescence intensity of
the NPCDs was sharply increased compared to that of the CDs alone. Moreover, NPCDs exhibited a
QY of 84% that was four times greater than that of undoped CDs. In the Introduction, we explained
the reason why N and P doping can enhance the fluorescence properties of CDs. Table 1 shows the QY
comparison of our NPCDs with NPCDs prepared using different methods and CDs co-doped with
other elements. It is clear to see that the NPCDs synthesized by our method have an excellent QY
when compared to the others.
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Figure 1. (A) Excitation (a1, a2) and emission (b1, b2) fluorescence spectra of the CDs and NPCDs (inset:
enlarge fluorescence spectrum of CDs), (B) fluorescence spectra of the NPCDs in the range of excitation
wavelength from 280 to 390 nm.

Table 1. Comparison of QY of co-doped CDs synthesized using different methods.

Doped Carbon Dots Material Method Quantum Yield Reference

N,P-CDs Citric acid,
O-phosphorylethanolamine Hydrothermal 8.17% [22]

N,P-CDs Ethylenediamine, H3PO4 Hydrothermal 25.47% [21]

N,P-CDs Sodium citrate, (NH4)2HPO4 Hydrothermal 53.8% [35]

N,P-CDs Glucose, ammonia, H3PO4 Hydrothermal 54% [24]

N,P-CDs Citric acid, (NH4)2HPO4 Hydrothermal 84% Our method

P,Cl-CDs Maltose, H3PO4, HCl Hydrothermal 15% [18]

Si,N-CDs Ethylenediamine, APTES Hydrothermal 29.7% [15]

S,N-CDs Citric acid, N-acetyl-L-Cysteine Hydrothermal 49% [36]

S,N-CDs Sodium citrate, sulfamide Hydrothermal 55% [37]

S,N-CDs Citric acid, L-Cysteine Hydrothermal 73% [38]
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In addition, we investigated excitation-dependent fluorescence emissions of CDs and NPCDs
solutions. As for CDs, when the value of the excitation wavelength was increased, the fluorescence
intensity went up along with a red-shift (Figure S2). As for the NPCDs, Figure 1B shows that there was
an enhancement in fluorescence intensity; however, there was no shift of emission peaks in the range
of excitation wavelengths from 280 to 390 nm. The excitation-independence of the NPCDs indicates
that the NPCDs had narrow size distributions and homogeneous surface structures; this was further
confirmed using TEM results.

The morphologies of the NPCDs are displayed via TEM images. Moreover, particle size statistics
were calculated by measuring 151 particles and the result displayed a narrow size distribution
ranging from 2.3 to 5.3 nm. Monodisperse NPCDs were synthesized with an average size of 4.1 nm
(standard deviation of 0.6 nm). In the high-resolution (HR) TEM image (inset of Figure 2B), the crystal
structure of the CDs was visible and the lattice parameter was 0.157 nm, which was associated with
graphitic diffraction planes [39,40].
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Figure 2. TEM images of NPCDs (inset (A) size distribution (B) HRTEM image of NPCDs).

The XPS spectrum (Figure 3A) presents five typical peaks at 280.5, 399.5, 529.5, 187.6, and 132.3 eV,
corresponding to C1s, N1s, O1s, P2s, and P2p, respectively. The atomic percentages of C, N, O, and P
were analyzed to be 41.4%, 10.11%, 41.18%, and 5.83%, respectively, which confirmed that the CDs
were incorporated with N and P. In Figure 3B, C1s peak can be parsed to four peaks placed at 284.2,
285, 286, and 288.4 eV, being suitable for C–C/C=C, C–N/C–P, C–O, and C=O bonds, respectively,
originating from the sp2 graphitic structure [35] and several carboxyl, hydroxyl, amine, phosphate,
etc. groups on the surface of the NPCDs; this can be further confirmed from the P2p and N1s spectra.
The P2p spectrum (Figure 3D) presents two characteristic peaks, corresponding to P–O at 133.5 eV and
P–C at 133.8 eV. With reference to the N1s spectrum (Figure 3C), N1s peak can be de-convoluted to
a peak position at 399 eV in accord with the N–H bond of an amine group or pyridinic N and one
located at 401.5 eV assigned to graphitic N [41,42].
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Figure 3. (A) XPS survey spectra of NPCDs. High-resolution XPS spectra of (B) C1s, (C) N1s, and (D)
P2p, respectively.

Moreover, we characterized CDs and NPCDs by FTIR spectra. It can be seen from Figure 4 that
the spectrum of CDs shows main characteristic peaks, including a broad absorption band at 3300
to 2500 cm−1 that owe to O–H stretching of the carboxylic and hydroxyl groups; peaks at 1702 and
1211 cm−1, that result from the C=O bonding and C–O vibrations, respectively; and peaks at 1379 cm−1,
which is due to the bending vibrations of the CH2 and CH3 groups. The spectrum of the NPCDs not
only includes all the peaks belonging to the CDs, but further contains specific peaks indicating the
existence of N and P elements. A broad peak in the range of 3000 to 2800 cm−1 is a consequence of N–H
stretching whereas the peak at 1600 cm−1 is caused by C=N stretching vibration. The peaks appearing
at 2332 cm−1 and 874 cm−1 are results of P–H stretching and bending, respectively. Moreover, P=O and
P–O stretching vibrations lead to the appearance of peaks at 1259 cm−1 and 1047 cm−1, respectively.
Consequently, the XPS result and FTIR spectra are consistent, confirming that N and P elements were
successfully co-doped into the CDs.
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4. Bi-Sensing of Fe3+ and CNs

4.1. Fe3+ Detection Based on NPCDs

First, we investigated the pH influence that is important to NPCDs fluorescence intensity as well
as NPCDs fluorescence response to Fe3+. Figure 5A displayed a very low fluorescence intensity of
NPCDs in strongly acidic solutions. It reached to the maximum and kept stable in the range of pH
from 7 to 10. In the presence of Fe3+ (Figure 5B), the quenching effect on NPCDs fluorescence intensity
occurred strongly when the pH changed from 4 to 10. As for strongly alkaline conditions, Fe3+ ions are
easily precipitated owing to the formation of a Fe–OH complex [43], which may affect the quenching
phenomenon. From these results, we realized that a value of pH belonging in the range of 7 to 10 is
suitable for Fe3+ detection. In particular, we chose PBS buffer (pH = 7.4) for this Fe3+ sensing.
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Figure 5. (A) Fluorescence intensity of NPCDs and (B) quenching effect of Fe3+ on the fluorescence of
NPCDs in a variety of pH values.

Figure 6 clearly shows the quenching impact of Fe3+ on the fluorescence intensity of the NPCDs.
The NPCDs fluorescence intensity went down steadily along with a very slight red-shift corresponding
to the increase in Fe3+ concentration from 0.2 to 70 µM (Figure 6A). When the level of Fe3+ was
within the range of 0 to 40 µM, the calibration curve between the relative NPCD fluorescence
intensity and Fe3+ concentration displayed a good linear relationship with the quenching equation,
i.e., INPCDs+Fe

3+//INPCDs = 0.97994–0.01351 CM(Fe3+) and a correlation coefficient (R2) value of 0.99058.
The experiment was repeated three times and data were expressed as the near ± standard deviation.
Moreover, the LOD was determined to be approximately 0.2 µM, which is both considerably lower
than the Fe3+ limitation amount in drinking water (5.4 µM) [44] and other previous methods [15,27,45].
Table 2 shows the comparison of our fluorescence probe results with others that have been developed
for Fe3+ detection. It is clear that the present method provided excellent results for linear range and
LOD. In addition, when investigating fluorescence responses of the NPCD probe to different metal
cations, the NPCDs show high selectivity to Fe3+ (Figure S3).
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Table 2. Comparison of different fluorescence probes for Fe3+ detection.

Materials Linear Range (µM) LOD (µM) Reference

CDs 0−6.0 0.4 [46]

CDs 0−20 0.32 [47]

CDs 0−30 0.015 [48]

N-CDs 0−500 0.15 [49]

N,S-CDs 6−200 0.8 [50]

P,Cl-CDs 0.1−8.0 0.06 [18]

N,P-CDs 0−40 0.2 Our work

4.2. NPCDs/Fe3+ as Fluorescence Probe for CN Detection

Figure 7A clearly shows that the fluorescence intensity of NPCDs/Fe3+ was recovered dramatically
after a certain incubation period on adding CNs such as DA, AD, and NAD with the same concentrations
of 5 µM. This confirms that we can use this fluorescence “turn on” phenomenon for the sensing of CNs.
In particular, we chose DA—the most important neurotransmitter of the CN group as a representative
to investigate further.

As mentioned above, NPCDs keep high fluorescence intensity in solutions with a pH of 7 to
10. In addition, according to previous reports, in alkaline solutions, adherent polydopamine will be
produced through the self-polymerization process of DA [51,52], which is a drawback in the accurate
detection of DA. Therefore, we used PBS (pH = 7.4) as a medium for DA determination. Moreover,
time is an important factor affecting the fluorescence responses. After studying the fluorescence
enhancement of NPCDs/Fe3+ probe towards DA by controlling time-dependent variations (Figure 7B),
we observed that the optimized time required for detection is 10 min. The short time of incubation is a
remarkable feature of this method.
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of 5 µM DA.

Figure 8A shows that fluorescence of the NPCDs/Fe3+ gradually increased in the existence of
varying concentrations of DA from 0 to 20 µM. Thereafter, an increase in the level of DA did not
enhance fluorescence intensity any further. Indeed, the fluorescence-enhanced efficiency showed a
superb linear response to DA concentration from 4 to 15 µM with equation IProbe+DA/IProbe = 2.22411 +

0.0632 CM (DA) and R2 value of 0.9892. The experiment was repeated in triplicate and the data were
expressed as mean ± standard deviations. A LOD of 0.1 µM is an acceptable value.

To verify the specificity of NPCDs/Fe3+ probe towards DA, the fluorescent responses of the
probe in the presence of potentially interfering substances were investigated. As shown in Figure 8B,
other analogs did not produce variations in the fluorescence intensity of NPCDs/Fe3+; however,
on adding DA the fluorescence of the system enhanced significantly. It may be inferred that the
enhancement effect did not occur with other substances and they did not have any effect on DA to
turn on the fluorescence of the system, which showed that the NPCDs/Fe3+ probe exhibited excellent
selectivity for CN detection.
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4.3. “Off-On” Effect of Fe3+ and CNs on NPCDs Fluorescence

There are certain reasons for the quenching effect of Fe3+ on NPCDs fluorescence. First, Fe3+ may
combine with amino and phosphoric acid groups belonging to the NPCDs surface, therefore, electrons
may transfer from excited state S1 of the NPCDs to 3d half-filled orbits of Fe3+, result in quenching
in fluorescence intensity [53]. This is confirmed by measuring the zeta potential value. After adding
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Fe3+, the zeta potential of NPCDs solution varied from −15.92 mV to −5.75 mV. Hence, there was an
electrostatic interaction (electron exchange) between NPCDs and Fe3+. This was further supported by
the dependence of Fe3+ detecting the performance of NPCDs over a wide pH range. Secondly, Fe3+ may
coordinate with substantial phenol (Ar-OH) groups of NPCDs to form Fe–OAr complexes that work as
absorbers to quench NPCD fluorescence and cause slightly red-shifted emission wavelengths [54,55].
Finally, there was a change in the average fluorescence lifetime of NPCDs from 2.47 ns (τ1 = 3.298 ns
(74.33%), τ2 = 0.104 ns (25.67%)) to 1.86 ns (τ1 = 2.794 ns (63.72%), τ2 = 0.206 ns (36.28%)) in the
existence of Fe3+; this confirmed that dynamic quenching occurred during this process [56].

In the case of adding CNs to NPCDs/Fe3+ solution, there is an assumption that CNs can reduce Fe3+

to Fe2+ that cannot cause a fluorescence quenching effect leading to fluorophore formation. The main
reason is that the catechol group of CNs can interact with Fe3+ and then remove Fe3+ from the surface
of NPCDs [31,32] such that they can inhibit electron movement and fluorescence absorption process
between them; therefore, the quenched fluorescence is recovered. This is the reason why, in particular
when adding DA, the value of the zeta potential and average fluorescence lifetime was recovered to
−12.05 mV and 2.094 ns (τ1 = 3.264 ns (63.05%), τ2 = 0.1001 ns (36.95%)), respectively. The mechanism
is clearly described in Scheme 2.
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Scheme 2. “Off-on” mechanism of Fe3+ and CNs on NPCDs fluorescence.

5. Conclusions

We successfully synthesized nitrogen and phosphorus co-doped CDs comprising outstanding
fluorescence properties compared to those of traditional undoped CDs. We applied NPCDs to design
a bi-sensor for the detection of Fe3+ and CNs relying on an “off-on” mechanism. The fluorescence
of NPCDs was quenched with an increase in Fe3+ concentration, and a linear range of 0 to 40 µM
with a LOD value of 0.2 µM was obtained. After adding Fe3+, the NPCDs/Fe3+ system was formed,
which acted as a fluorescence probe to determine CNs. The fluorescence of NPCDs/Fe3+ was recovered
in the presence of CNs. We selected DA—the most important neurotransmitter of the CN group
in our study—and the results displayed a superb linear range of 4 to 15 µM with an LOD value of
0.1 µM. With remarkable features such as simple design, speed, sensitivity, and selectivity, the sensor
developed in this study establishes a strategy for successful application in the sensing of Fe3+ and CNs
in real samples and furthers the development of simple, low cost, and sensitive sensors for potential
applications in biomedical systems and environments.
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