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Abstract

At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular
endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade
involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the acti-
vated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are
activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm
leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the
endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions.
In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the
immune response in parts by facilitating leukocyte–endothelial interactions. Platelets have thereby been implicated in several inflamma-
tory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte–endothelial and leuko-
cyte–platelet interactions in inflammation.

Keywords: endothelial cells • adhesion • leukocytes • platelets • inflammation

J. Cell. Mol. Med. Vol 13, No 7, 2009 pp. 1211-1220

© 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
No claim to US government works

doi:10.1111/j.1582-4934.2009.00811.x

Guest Editor: F. Lupu

• Introduction
• Adhesion molecules
• Leukocyte margination, capture and cell rolling
• Activation and adhesion of leukocytes

• Transmigration
• Endogenous inhibitors of leukocyte adhesion
• Platelet–leukocyte crosstalk
• Conclusions

*Correspondence to: Dr. Harald F. LANGER and Dr. Triantafyllos CHAVAKIS,
10 Center Drive, 5B17, Bethesda, MD 20892, USA.

Tel.: +1 301 435 6407
E-mail: langerh@mail.nih.gov; chavakist@mail.nih.gov

Crossroads in Sepsis Research Review Series

Introduction

The characteristic steps taken by leukocytes to extravasate from
blood to the site of inflammation caused by either exogenous or
endogenous stimuli have been recognized and summarized for
about two decades as the ‘three-step’ paradigm of inflammatory
cell recruitment that involved rolling, activation and adhesion.
Extensive research in this field has resulted in the expansion of 
the three-step leukocyte adhesion cascade to include further adhe-
sive processes between leukocytes and the endothelium, such as
the slow rolling, the locomotion or crawling as well as the
transendothelial migration [1–10]. The interaction between 
the leukocytes and the endothelium comprises a variety of adhe-
sive and migratory molecular events including low affinity transient
and reversible rolling adhesions, integrin-dependent firm adhesive
interactions and migratory events of the leukocytes through the

endothelium and beyond that, such as the penetration of the base-
ment membrane, and migration in the interstitial space [5, 11].

Adhesion molecules

Leukocyte–endothelial adhesion molecules can be grouped into three
families (Table 1): (1) Selectins are a family of three carbohydrate-
recognizing molecules, of which E-selectin is expressed on the
activated endothelium, P-selectin is expressed on platelets and 
the endothelium, and L-selectin is constitutively expressed on
leukocytes [12]. Several studies engaging antibody blockade of
selectins demonstrated the participation of selectins in leukocyte
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rolling [13, 14]. Selectin ligands are glycoproteins that are rich in
glycosylation of O-linked and N-linked carbohydrates [15, 16]. (2)
Integrins are heterodimers comprising an �- and a �-chain and can
recognize multiple ligands including proteins of the extracellular
matrix, cell surface glycoproteins as well as complement factors and
soluble components of the haemostatic and fibrinolytic cascade
[17–19]. Leukocytes express integrins of the �2-family (CD11/CD18).
In addition, several leukocyte subpopulations express �1, �7 and
�4 integrins on their surface. Integrins require conformational
changes to gain full adhesive function [17, 20]. (3) The major 
integrin ligands involved in leukocyte adhesion belong to the
immunoglobulin superfamily [21] and include intercellular cell
adhesion molecules (ICAM) 1–5, vascular cell adhesion molecule-1
(VCAM-1), as well as the junctional adhesion molecules (JAMs)
[4, 5], that are expressed on endothelial and other cells. Further
important adhesion receptors of the immunoglobulin superfamily
involved in leukocyte recruitment are the platelet–endothelial cell
adhesion molecule-1 (PECAM-1) [22] and endothelial cell adhe-
sion molecule (ESAM) [23].

Leukocyte margination, 
capture and cell rolling

The very initial contact of the leukocyte with the vascular wall is
determined by simple flow dynamics. Leukocyte margination is

defined by the flow of leukocytes in a position close to the
endothelial surface rather than in the central blood stream,
depends on the interaction between individual red and white blood
cells, and is enhanced in small postcapillary venules, which repre-
sent the main location for leukocyte recruitment [24]. Margination
is rather a passive phenomenon and it is not entirely clear whether
it is a rate-limiting step in inflammatory cell recruitment.

The initial process of active leukocyte recruitment is the tether-
ing or rolling of leukocytes describing the initial selectin-mediated
interaction between leukocytes and endothelial cells [25].
Antibody blockade of selectins inhibited leukocyte rolling in vivo in
multiple studies [13, 26]. An apparent synergism between 
L-selectin and the vascular endothelial selectins exists [27].
Selectins bind to carbohydrate ligands, and leukocyte rolling can
be inhibited by charged carbohydrates [28]. Moreover, 
P-selectin–/– mice show no leukocyte rolling in vivo [29]. The
most important ligand for selectins is the glycoprotein P-Selectin
Glycoprotein Ligand-1 (PSGL-1), which is present as a homod-
imer on leukocytes and can bind to both P-selectin and E-selectin
[30, 31]. Interestingly, PSGL-1 ligation in neutrophils by both 
P-selectin and E-selectin can result in activation of integrins, thus
providing a link between rolling and the subsequent integrin-medi-
ated firm adhesion [31, 32]. This interplay between the PSGL-1-
selectin interaction and LFA-1 activation is important for slow
rolling of neutrophils. It has been shown that an ITAM-dependent
pathway involving the Src-family kinase Fgr and the ITAM-contain-
ing adaptor proteins DAP12 and FcRgamma mediates the sig-
nalling events downstream of PSGL-1 that are required to initiate
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Adhesion molecule Synonyms Binding partner General role Reference

�4ß1 VLA-4, CD49d/CD29 VCAM-1, fibronectin Adhesion [129]

�4ß7 MAdCAM-1 Adhesion [130]

�Lß2 LFA-1, CD11a/CD18 ICAM-1,-2,-3, JAM-A Adhesion, slow rolling [65, 131–133]

�Mß2 Mac-1, CD11b/CD18, CR3
iC3b, ICAM-1,-2, heparin, fibrinogen,
vitronectin, kininogen, JAM-C, RAGE

Adhesion [68, 119, 134–139]

�Xß2 p150.95, CD11c/CD18 iC3b, fibrinogen, JAM-C [140]

�Dß2 CD11d/CD18 ICAM-3, Fibrinogen, vitronectin Adhesion [141, 142]

JAM-A JAM-A, LFA-1 Adhesion, transmigration [62, 65]

JAM-B VLA-4, JAM-B, JAM-C [66, 143]

JAM-C JAM-B, JAM-C, Mac-1 Adhesion, transmigration [62, 143]

P-selectin PSGL-1, Sialyl-Lewisx Cell rolling [144–146]

E-selectin Sialyl-Lewisx Cell rolling [147]

L-selectin CD34, MAdCAM-1 Cell rolling [148, 149]

CD31 PECAM-1 CD31 Transmigration [77]

CD99 CD99 Transmigration [82]

ESAM ESAM Transmigration [23]

Table 1 Players in leukocyte extravasation
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neutrophil slow rolling [32]. The importance of the rolling process
as a required step in the leukocyte recruitment cascade is under-
lined by a congenital pathology called leukocyte adhesion defi-
ciency II (LAD II). Patients suffering from this rare disease reveal
a congenital defect in fucose processing and cannot produce func-
tional fucosylated selectin ligands [33]. Neutrophils from patients
with this syndrome are defective in rolling [33], associated with
severe recurrent bacterial infections.

Activation and adhesion of leukocytes

During the process of leukocyte rolling the contact of leukocytes
with the luminal endothelial surface allows leukocytes to effec-
tively ‘sense’ the endothelial surface-bound chemokines.
Chemokines are dramatically induced by inflammatory mediators
[34]. Chemokines secreted from an inflamed environment can be
transcytosed through the endothelium and presented on the
endothelial cell surface associated with proteoglycans [35, 36].
These surface-deposited chemokines are presented to rolling
leukocytes. By interaction with the G-protein coupled chemokine
receptors on leukocytes chemokines induce intracellular signals
leading to inside-out integrin activation and firm leukocyte adhe-
sion as well as to shape change and pseudopod formation [35].
These shape changes are associated with the conversion of G-
actin to F-actin enabling the cell to enter the adhesion and later the
transmigration process.

Chemokines are grouped into four major subfamilies depend-
ing on the presence or absence of intervening amino acids
between the first two N-terminal cystein residues and are thereby
designated as CC, CXC, CX3C or C chemokines. Besides secreted
chemokines, CX3CL1 (fractalkine) and CXCL16 represent the
transmembrane chemokines [35, 36]. CXCL8 (Interleukin-8, IL-8)
plays an important role for neutrophil activation as IL-8 recep-
tor–/– mice have 12-fold elevated systemic neutrophil counts and
are severely impaired in their ability to recruit neutrophils into
thioglycollate-induced peritonitis [37].

Binding of chemokines to their receptors on leukocytes
results in the inside-out signalling activation of leukocyte 
�1-integrins and the �2-integrins LFA-1 and Mac-l, that mediate
firm arrest of leukocytes [38] (Fig. 1A). In humans, leukocyte
adhesion deficiency I (LAD-I) is caused by the absence of 
�2 integrins resulting in impaired leukocyte recruitment and as
a consequence recurrent, life-threatening bacterial infections
[39, 40]. In mice, �2-integrin deficiency results in severely
reduced firm leukocyte adhesion and impaired leukocyte recruit-
ment [41]. Neutrophils use both LFA-1 (CD11a/CD18;�L�2) and
Mac-l (CD11b/CD18;�M�2) for adhesion as shown in different
animal models [18, 42, 43]. LFA-1 and Mac-1 bind to endothelial
ICAMs such as ICAM-1 and ICAM-2 [44]. ICAM-1 and ICAM-2
are constitutively expressed, and ICAM-1 expression is further
increased after endothelial activation [45, 46]. In contrast,
endothelial VCAM-1 is recognized by �-1 integrin receptors 

predominantly found on lymphocytes and monocytes [47]. This
pathway of adhesion appears to be responsible for immune func-
tions that occur in the absence of �2 integrins in LAD-I patients
[48]. The adhesive activity of integrins is regulated by alterations
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Fig. 1 Recruitment of leukocytes to sites of inflammation depends on
adhesive interactions between leukocytes and endothelial cells or
endothelial cell-bound platelets. (A) During the course of tissue inflam-
mation, adhesive interactions between leukocytes and the endothelium
include: (i ) The initial rolling, which is the loose contact of the leukocyte
with the endothelium, predominantly mediated by the binding of leuko-
cyte PSGL-1 to endothelial P- and E-selectins, and (ii ) The firm adhesion
of leukocytes on the endothelium, which is mediated by interactions of
�2-integrins such as Mac-1 and LFA-1 with the endothelial counter-
receptors of the ICAM family, as well as the by the interaction of the �1-
integrin VLA-4 to endothelial VCAM-1. (B) Leukocyte recruitment can
also be promoted by endothelial-adherent platelets. In this scenario,
platelets can serve as a bridge between leukocytes and the endothelium.
The leukocyte–platelet interaction can be mediated by leukocyte PSGL-1
binding to P-Selectin expressed on platelets, as well as by the binding of
�2-integrin Mac-1 to its multiple ligands/counter-receptors on platelets
such as GPIb, GPIIb/IIIa-bound fibrinogen or JAM-C.
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in integrin affinity and integrin valency, the former being medi-
ated by conformational changes of the integrin subunits and 
the latter involving changes of integrin distribution on the cell
surface [9, 20, 49–51].

Transmigration

Transmigration of leukocytes through the vascular endothelium
can take place in a paracellular or transcellular manner [6, 10,
52]. The major determinant in the paracellular pathway is the
endothelial intercellular junctions, as changes in the integrity of
the endothelial barrier in postcapillary venules affect inflamma-
tory cell recruitment [4, 53, 54]. Two types of interendothelial
junctions are relevant for the transmigration process [55]. Tight
junctions (zonula occludens) are apically located and contain
three types of transmembrane proteins, occludin, claudins and
junctional adhesion molecules (JAMs). These transmembrane
molecules are linked to the actin cytoskeleton via interaction with
molecules containing PDZ domains, such as ZO-1 [4].
Hierarchically, the most important determinant of the endothelial
barrier is the adherens junctions that are formed by the
homophilic interaction of VE-Cadherin [56]. VE-cadherin acts as
a gatekeeper for the passage of leukocytes and inhibition of VE-
cadherin increases the permeability of endothelial-cell monolay-
ers and the rate of neutrophil extravasation in vivo [57]. In vitro
studies indicate that VE-cadherin gaps may form transiently 
during leukocyte diapedesis [58]. The function of VE-cadherin to
regulate the endothelial barrier or leukocyte transmigration can
be modulated by phosphorylation of the cytoplasmic tail of VE-
cadherin, at tyrosines 658 and 731 or at Ser 665 [59, 60], which
can be stimulated by ICAM-1-mediated neutrophil adhesion to
endothelial cells [61].

In addition, leukocyte transmigration involves homophilic and
heterophilic interactions between adhesion receptors on 
the leukocyte and the endothelium [4, 10, 22, 62]. Junctional
adhesion molecules (JAMs) belong to the immunoglobulin super-
family consisting of two extracellular Ig-like domains [4]. Besides
interacting in a homophilic manner [63, 64], JAMs are engaged
as counter-receptors for leukocyte integrins. JAM-A has been
shown to interact with LFA-1 [65], JAM-B binds to VLA-4 [66]
and JAM-C interacts with Mac-1 [67, 68]. The function of JAM-A
in leukocyte diapedesis in vivo has been demonstrated by anti-
body inhibition experiments [69] as well as by evaluation of JAM-
A-deficient mice showing that JAM-A on neutrophils as well as on
endothelial cells participates in neutrophil extravasation [70, 71].
JAM-C can function as a heterophilic binding partner of integrin
Mac-1. The JAM-C/Mac-1 interaction was found to mediate a firm
platelet–neutrophil interaction [68]. In addition, soluble JAM-C or
antibodies to JAM-C blocked neutrophil transmigration through
endothelial cells, whereas accumulation of neutrophils in vivo
was enhanced by endothelial-specific overexpression of JAM-C in

mice [72, 73]. Thus, JAMs are important receptors determining
leukocyte migration across the endothelial barrier [4, 74]. In
addition, JAM-C also acts to antagonize VE-cadherin-dependent
interendothelial adhesion thereby promoting the disruption of the
endothelial barrier by a mechanism involving the small GTPase
Rap1 [75].

Another important adhesion molecule regulating leukocyte
transmigration is PECAM-1, a member of the immunoglobulin
superfamily consisting of six Ig domains that is expressed at
the intercellular borders of endothelial cells as well on platelets,
neutrophils, monocytes and some T cells [22]. Several studies 
suggest that endothelial transmigration of leukocytes is medi-
ated by the homophilic interaction of platelet endothelial cell
adhesion molecule 1 (PECAM-I, CD31) as shown by antibody
blocking studies both in vitro and in vivo [22, 76–78].
Endothelial PECAM-1, which was found to act preferentially in
interleukin (IL)-1�- but not TNF-�-induced inflammatory cell
recruitment [79], recycles between the junctions and the sub-
junctional plasmalemma, and is targeted to the zone of active
leukocyte transmigration [78]. Recently, CD177, a 58- to 64-kD
glycosyl-phosphatidyl-inositol (GPI)-anchored glycoprotein
expressed exclusively on neutrophils, was identified as a novel
heterophilic adhesion ligand of PECAM-1 involved in neutrophil
transendothelial migration [80]. Distal to the step of transmi-
gration mediated by PECAM-1, a further molecule, CD99, which
is expressed on both neutrophils and other leukocytes and at
the interendothelial junctions, participates in leukocyte transmi-
gration [81, 82].

Endothelial cell ICAM-1 has been implicated in transmigra-
tion. ICAM-1 can colocalize with ringlike LFA-1 clusters on
leukocytes during transmigration. In addition, a ‘cuplike’ trans-
migratory structure containing ICAM-1-enriched microvilli-like
projections was shown to surround transmigrating neutrophils
during diapedesis [83, 84]. During neutrophil adhesion to
endothelial cells, ICAM-1 ligation induces cytoskeletal remodelling
associated with ICAM-1 clustering, a process that is dependent
on cortactin [85]. Moreover, cortactin and its tyrosine phospho-
rylation are required for the clustering of ICAM-1 around trans-
migrating neutrophils [86].

Endogenous inhibitors of leukocyte
adhesion

In contrast to the numerous adhesion receptors that have been
identified to promote leukocyte–endothelial interactions, very 
little is known about functionally important endogenous
inhibitors of leukocyte adhesion [5, 8, 10, 74]. Endogenous
inhibitors exist in several aspects of inflammation and immunity,
and function to attenuate exuberant inflammatory and immune
activation [87, 88]. Recently, developmental endothelial locus-1
(Del-1) was identified as an endogenous inhibitor of the leukocyte
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adhesion cascade. Del-1, a glycoprotein secreted by endothelial
cells and associated with proteoglycans of the endothelial cell
surface and/or with the extracellular matrix [89], has been previ-
ously implicated as an adhesive molecule regulating vascular 
remodelling in the context of angiogenesis [90]. Del-1 was 
shown to interfere with LFA-1-dependent leukocyte–endothelial
interactions [91]. In particular, Del-1 deficiency resulted in
markedly increased leukocyte adhesion and recruitment to
inflamed tissues in vivo [91]. The exact mechanistic action of 
the inhibitory role of Del-1 in leukocyte recruitment requires
detailed investigation. Soluble ICAM-5 has also been described
to act as an inhibitor of LFA-1 and can decrease T lymphocyte
and microglia activation in a manner opposite to the pro-inflam-
matory action of ICAM-1 [92]. Interestingly, the high expression
of both Del-1 and ICAM-5 in the central nervous tissue may
contribute to its immune privilege. Galectin-1 is another
endogenous inhibitor of leukocyte recruitment. Galectin-1
inhibits T-cell rolling and adhesion to activated endothelial cells
under flow conditions, whereas galectin-1-deficiency in mice
induced increased homing of T lymphocytes to lymph nodes
and enhanced leukocyte recruitment in the cremasteric circula-
tion [93, 94].

Platelet–leukocyte crosstalk

Besides their well-established role as the first cellular response in
the coagulation cascade [95, 96], platelets are intimately involved
in inflammatory reactions largely because of their direct crosstalk
with leukocytes [97]. Upon vascular injury and endothelial
denudation, platelets adhere and aggregate via their contacts with
the free subendothelial matrix. However, platelets also rapidly
adhere to the activated vascular endothelium. Endothelial-adherent
platelets promote further endothelial activation [98]. Indeed,
platelets adhere to the vascular endothelium of the carotid artery
in ApoE-deficient mice before the development of advanced ather-
osclerotic lesions [99–101].

The interaction of platelets with both leukocytes and endothe-
lial cells provides an important process in inflammation [97,
102]. First, platelet adhesion on endothelial cells and the release
of potent inflammatory and mitogenic substances by platelets
can alter the adhesive, chemotactic and proteolytic properties of
endothelial cells thereby supporting the adhesion and transmi-
gration of leukocytes to the inflamed tissue [103, 104]. Second,
activated platelets release a variety of growth factors, inflamma-
tory cytokines and chemokines into their microenvironment that
can further directly stimulate leukocytes [102]. For instance,
platelets are a major source for the chemokine stromal cell-
derived factor-1 (SDF-1) [105, 106], which supports leukocyte
integrin activation and thereby primary adhesion of circulating
leukocytes to the vascular endothelium [107]. Third, platelets can
directly interact with leukocytes; the platelet–leukocyte/monocyte

aggregates have been implicated in atherosclerotic lesion forma-
tion [99, 108, 109]. The platelet receptors P-selectin, GPIb and
glycoprotein IIb/IIIa contribute substantially to these inflamma-
tory processes in inflammation and atherosclerosis [99,
108–111]. Fourth, via their direct interaction with both endothe-
lial cells and leukocytes, platelets can serve as a bridge to pro-
mote leukocyte adhesion to the vascular wall [68, 99, 110, 112]
(Fig. 1B). The mechanisms involved in the crosstalk between
platelets and leukocytes are multiple. Platelet–leukocyte interac-
tions can be mediated by both selectin-dependent and integrin-
dependent adhesive interactions. In particular, P-selectin on
platelets interacts with PSGL-1 on leukocytes [110, 113, 114]. A
central leukocyte receptor mediating adhesion to platelets is the
integrin Mac-1 [115, 116]. Mac-1 can interact with several
platelets receptors. For example, the interaction between Mac-1
and glycoprotein Ib (GPIb) on platelets can mediate adhesive
interactions between leukocytes and platelets [68, 115, 116].
Inhibition of the Mac-1/GPIb interaction has been implicated as a
therapeutic target in several inflammatory diseases [115–119].
Another major ligand for leukocyte Mac-1 is platelet JAM-C, 
promoting recruitment of leukocytes and dendritic cells [67, 68].
Fibrinogen bound onto platelet glycoprotein IIb/IIIa (�IIb�3-
integrin) may also serve as a binding site for leukocyte Mac-1,
thereby modulating the recruitment of leukocytes to sites of
inflammation by platelets [120, 121].

The relevance of leukocyte–platelet interactions is not
restricted to chronic inflammatory disease, but is important in
a variety of processes in immunity, including the immune
response to bacterial infections. For instance, during the
course of infections microbial contents trigger immune-
mediated platelet activation and thrombus formation resulting
in a proinflammatory and procoagulatory state of the infected
tissue [122–124]. In an in vivo model of sepsis, Clark et al.
demonstrated that platelets stimulate the formation of extracel-
lular traps by neutrophils that can engulf bacteria in the septic
blood [125]. Platelets can also contribute to cytotoxic T-lym-
phocyte (CTL) mediated liver immunopathology independently
of their procoagulant function [126]. In this study, platelet
depletion reduced accumulation of virus specific CTLs in
mouse models of acute viral hepatitis and subsequently liver
damage [126]. On the other hand, platelets and their released
growth factors are important for tissue regeneration [127,
128]. Using a mouse model of liver regeneration it was shown
that platelet-derived serotonin is centrally involved in the initi-
ation of liver regeneration [128].

Conclusions

In summary, the involvement of leukocytes in local or general
inflammatory processes is self-evident. During the last decades, it
has become clear that leukocyte recruitment involves a multi-step
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cascade of adhesive events. Improved imaging techniques will
delineate the importance of the different adhesive interactions for
tissue-specific and disease-specific inflammatory cell recruitment.
Moreover, the role of other non-classical inflammatory cells such
as platelets in inflammatory processes is increasingly elucidated,
which results in a more comprehensive and thorough understand-
ing of inflammation. Given the major importance of inflammatory
processes in infectious, inflammatory and autoimmune diseases,
the detailed understanding of the leukocyte recruitment cascade is

an important prerequisite for developing targeted therapeutic
approaches in the aforementioned pathologies.
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