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Abstract

Background: The complexity of messenger RNA processing is now being uncovered by experimental techniques that are
capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics.
This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In
this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These
processes include elongation, which has a minimum time for completion and processing that is not captured in the model.

Methodology: In this paper, we explore the impact on the mRNA distribution of representing the elongation process in
more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the
elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective
of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We
demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the
Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise
the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise
summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.

Conclusions: We conclude that processivity is not fully consistent with the on/off model unless the probability of
successfully completing elongation is low—as has been observed. The results also suggest that some form of coupling
between the promoter and a rate-limiting step in transcription may explain the cell’s inability to maintain high mRNA levels
at low noise—a prediction of the on/off model that has no supporting evidence.
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Introduction

The on/off model of gene activation accounts for the noise

(standard deviation/mean) observed in mRNA and protein levels

in single cells [1–7]. This model, shown in Figure 1, explains why

cell to cell variations in mRNA may be greater than that of a

simple Poisson process [2,4], that noise strength (variance/mean)

varies with the rate of mRNA production [5], and predicts that the

same population mean can be achieved with greater or lesser noise

as determined by frequency of promoter activation [5]. The

variation in mRNA distribution in vivo in yeast has recently been

shown to uncover different modes of gene expression, with many

yeast genes being less noisy than might be supposed [7]. Noise in

protein levels has also been characterised as greater than

Poissonian, and has been shown to be pathway specific with stress

response genes being among the most noisy [8,9]. It has also been

observed that protein distributions can have longer tails than

would be the case if they followed a Poisson distribution, and that

this may indicate the existence of generating processes other than a

Poisson process [9]. Single molecule studies of E. coli proteins have

demonstrated that in steady-state they follow a gamma distribution

[10], while protein bursts follow a geometric distribution [11].

Noise, or noise strength, is a useful summary of variability, but

does not capture any asymmetry in the distribution. Hence,

measures of this asymmetry are of interest when analysing models

and data.

Imaging experiments are the primary method for obtaining

mRNA data at the copy per cell level, and while these are often

relatively high-throughput techniques, the resulting histograms

often show bin-to-bin variability. When characterising the shape of

a distribution, skewness and kurtosis (see Materials and Methods

for definitions) provide an alternative to methods that analyse the

histogram, such as Kullback-Leibler (KL) divergence. To illustrate

the advantage, Table S1 presents the results of a computational

experiment where between 100 and 100,000 samples are drawn

from a Poisson distribution and the skewness, kurtosis and KL

divergence are calculated. This experiment indicates that skewness

can be calculated reasonably accurately for sample sizes of 100
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and above, while kurtosis may require as many as 1000 samples.

For KL divergence, the apparent error between the sampled and

the theoretical distribution increases by a factor of approximately 8

for a ten-fold reduction in the number of samples. Therefore,

skewness and kurtosis appear to be robust measures with respect to

sample size, while KL divergence suffers from the bin-to-bin

variability that results from lower sample sizes. We apply skewness

and kurtosis to the distribution of mRNA/cell predicted by the

on/off model of gene activation. An extensive survey of the

parameters of the model is undertaken, where the distributions are

computed by stochastic simulation.

The on/off model abstracts from the underlying molecular

mechanisms. These lumped processes must be given feasible

parameters - a question which we address here by surveying a

range of normalised parameters. More substantial questions arise

when this phenomenological model is refined into a more detailed

model. A more detailed representation of the molecular events in

the initiation of transcription is proposed in [12] where two

inactive and two repressed states are modelled, in addition to the

active state. In more recent work [13], this five state model of the

promoter is simplified for analysis using the on/off model. (Note

that transcription remains a single reaction in these models.) The

many RNA processing events that can occur co-transcriptionally

(such as capping, pre-mRNA splicing and 39 end cleavage and

polyadenylation [14]), the coupling between transcription and

mRNA export, and the possible interrelationship between the

promoter state and transcript elongation are all candidates for

inclusion in a more detailed model of transcription. Such a model

might account for every nucleotide addition step that the RNA

polymerase, Pol II, performs after initiation (for a review of the

role of Pol II in transcription see [15,16], for a discussion of

elongation see [17], and for an overview of coupling see [18]). This

is important to allow key downstream processing events to be

modelled, such as transcription of intron sequences (the 59 and 39

splice sites and branchsite). The change in representation required

has the effect of making transcription more deterministic - a

property we investigate further by stochastic simulation. Step-wise

models of elongation are proposed in [19,20] where it is shown

that the elongation time is narrowly-distributed around the mean

(for genes of 1kb and where stepping forwards is more likely than

backtracking). Pausing is shown to skew the distribution of

elongation times positively, that is, increasing the probability of

longer elongation times. In the context of translation, a queueing

model [21,22] has been proposed to represent the progress of

ribosomes along the mRNA. This model is shown to classify

mRNAs on the basis of properties of the flow of ribosomes, in

agreement with experiment. The size and duration of a burst of

protein or mRNA copied from a biopolymer template are defined

in [23] in a model that can be solved for the waiting time between

bursts of production.

The elongation models analysed here explore the possibility that

a polymerase will continue elongating even if the promoter

becomes inactive and, as an alternative, that the gene must be in

the active state for elongation to complete successfully. The ability

of Pol II to travel the length of the gene is termed processivity in

[24], and it was demonstrated that this ability can be uncoupled

from the elongation rate. That is, factors that affect processivity do

not affect the rate of elongation, but elongation defects reduce

processivity through the dissociation of Pol II at sites of arrest. We

show that these properties have a significant impact on the

distribution of mRNA in terms of skewness and kurtosis, in

addition to altering the mean and variance. These changes to the

basic model are based on recent observations of the mRNA

transcription process made at the single gene level [7,25–27] and

form the basis of a more detailed model of transcription being

developed to explain elongation and RNA processing in time-

series and distribution data. On the methodological level, the

simulation results show that when comparing models, skewness

differs from model to model by several standard deviations across

much of the parameter range, and so may be a valuable addition

to the methods used for analysing single-cell data.

This paper continues with a description of the on/off model,

discussion of its parameters, and presentation of the simulation

results. Next, we explain the elongation models and present the

simulation results for them. The investigation of the alternative

models concludes with an analysis of mRNA data from yeast, and

a survey of published model parameters. Finally, we discuss related

work and draw conclusions from our study in this wider context.

Results

Stochastic Models and Methodology
The on/off model of transcription is represented as a Dizzy

model and simulated using the Gillespie algorithm (see Materials

and Methods). Figure 1 depicts the model, and a listing of it can be

found in Appendix S1. This model specifies that mRNA (M) is

synthesised at a rate c only when the gene is in the active state, and

that mRNA is degraded at a rate d in any state where Mw0. The

transitions of activation and inactivation have rates a and b

respectively, and move the gene from the inactive (I) to the active

(A) state (off to on) and vice-versa.

A useful distinction can drawn between the rate c of mRNA

production when the gene is in the active state, and the process of

transcription as a whole, which is the observable rate of production

of mRNA over time, or in a population of cells, and incorporates

the modulation of c by the on/off switching rates a and b. We refer

to the former as synthesis in the following discussion.

An analytic solution exists for the on/off model [28] and will

serve as a reference for the simulation-based approach adopted

here. Stochastic simulation is an alternative to solving complex sets

of equations, and yields the probability distributions for species of

molecules, in addition to the mean and variance that can be

derived analytically. Computational simulation can also be used to

determine the time course of a stochastic model.

The On/Off Model of Transcription
The on/off model was originally expressed by the following

equations:

I ?
a

A ð1Þ

Figure 1. The on/off model of gene activation and synthesis.
Circles represent species or states, rectangles represent reactions
between species or transitions between states.
doi:10.1371/journal.pone.0008845.g001
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A?
b

I ð2Þ

A?
c

AzM ð3Þ

M ?
d
1 ð4Þ

following [28], we analyse the model for dw0 (M is Poissonian for

d = 0). (This model was originally named the IAP Process and

described the production of protein rather than mRNA.) The

expressions for the steady-state mean and variance are as follows,

from which the noise strength can be derived:

SMT~(a � c)=(d � (azb)) ð5Þ

Var M~(a � c)=(d � (azb))

z(a � b=(azb)2) � (c2=(d � (azbzd)))
ð6Þ

Var M=SMT~1z(b � c)=((azb) � (azbzd)) ð7Þ

The steady-state variance has two terms: The first corresponds

to the mean, and therefore the ratio of the variance to the mean

will always be greater than 1. That is, the noise strength will be

greater than that of a Poisson process which has a ratio of 1. It is

noted in [4,28] that the model is normalised by the degradation

rate d. That is, the degradation rate sets the timescale over which

the model evolves to steady state - the characteristics of the model

are not otherwise dependent on d. This feature is exploited in the

following exploration of the model parameters.

A Survey of Parameters for the Normalised Model
Knowing that the model parameters can be rescaled to plausible

values, the behaviour of the model is explored for a normalised

degradation rate d = 1. It is helpful to structure the analysis by

calculating b1 to give a desired value of M for selected values of a1

and c1, where the subscript 1 denotes normalised parameters. We

choose M = 1, 2, 5, 10 and record characteristics of the distribution

for the parameter combinations that yield the selected mean

mRNA level. The survey is limited to low values of M as many

constitutively expressed yeast genes have mRNA abundances in

this range. The statistics of interest are the mean, variance,

skewness, kurtosis, noise strength and the histogram of the

simulated distribution of M. To condense the presentation of the

results, we focus on mean values of M = 1 and 10.

The values of a1 we survey range from 1/8 to 128, and the

values of c1 range from 10 to 5000. (The parameter values specify

the reaction probability density per unit time.) These ranges are

selected to include values determined by [4] to characterise noise

in mammalian mRNA (i.e. a1 around 1 and c1 between 500 and

1000). Values of c1 as low as 10 are explored because values of 500

and above may not give plausible synthesis rates on rescaling (this

issue is discussed below). Higher values of a1 are explored in order

to discover the behaviour of a system that transitions more rapidly

from off to on, with respect to the degradation rate. Often, bwa

and in most cases b&a. This means that the time spent in the

inactive state (1=a) is typically much greater than the time spent in

the active state (1=b). The ratio a1=(a1zb1) is also of interest as it

represents the fraction of time spent in the on state. This ratio is in

fact constant for each series of values of c1 explored here, as M is

held constant, and by equation 5: a1=(a1zb1)~M=c1. We show

that varying a1 while keeping M and c1 (and therefore this ratio)

constant results in a wide range of behaviour.

The analysis presented here is organised around a1. When

a1 = 1 the time in the inactive state equals that taken for a molecule

of M to degrade, on average. It should be noted that the two

modes of gene expression bwc and bvc identified in [7]

correspond to a1w1 and a1v1 for M = 1, and to a1w10 a1v10

for M = 10 in the analysis presented here. Modes of expression are

discussed in more detail later, where we also show that the range of

a1 values surveyed includes all those we could obtain from the

literature. As we are primarily concerned with noise in the

transcription process itself (intrinsic noise), noise strength is taken

as the most appropriate measure of variability. It should be noted

that noise strength scales with the mean, which can lead to

unintended artifacts where both intrinsic and extrinsic noise is

considered [29].

Simulation Results
Figure 2 (A and C) shows that the simulated values for mean

(plotted as open symbols) and variance (plotted as filled symbols)

lie on the curves predicted by equations 5 and 6, as would be

expected. Note that the color coding used in this plot, and those

following, identifies a series of results according to the value of

synthesis c1, e.g. orange triangles denote models where c1 = 50, the

independent variable (activation) is on the x axis and the

dependent variables on the y axis. Variance is proportionately

higher when M = 10 in comparison with M = 1. In both cases, for

activation rates a1§10, the mean and variance tend towards the

same value, and hence noise strength tends to 1. Figure 2 (B and

D) shows that skewness and kurtosis reduce as a1 increases from its

lowest value, and that the range of skewness and kurtosis values is

not strongly dependent on the mean value of M. The variation of

skewness and kurtosis with a1 is highest for the largest synthesis

rates, c1, and this reduces considerably for low synthesis rates.

Skewness and kurtosis reduce to approximately 1 for a mean

M = 1 (2B), while for M = 10 (2D) they reduce to 0.34 and 0.13

respectively. These results confirm that the second, third and

fourth moments of the mRNA distribution are only weakly

dependent on c1 when a1 is above 2. The error bars for skewness

and kurtosis are plotted in Figure S1.

Figure 3 shows the extent to which the on/off model can be

fitted by gamma, Poisson, Gaussian and negative binomial

distributions. Neither the gamma nor Gaussian model fits as well

as the negative binomial distribution. The Poisson distribution fits

well for certain values of activation, depending on the mean M.

With the exception of c1 values of 100 and below (M = 10), and

consistent with the analysis of [30], the on/off distribution is

accurately modelled by the negative binomial distribution.

These results suggest the mRNA distribution can never be

Gaussian for low mean values, while it can take a more symmetric

form as M and a1 increase. The results account for both the

behaviour shown in [3] where the parameters give a Poisson or

normal-looking distribution, and that described in [4] where a

much noisier parameterization is chosen. A consequence of these

findings is that fitting parameters in the space where a1w8 will be

hampered by the lack of variation of the distribution with c1. The

error bars on skewness and kurtosis show that we could not

confidently determine activation rates from these values, although

they do vary with a1.

Processivity and Coupling
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Parameter Interpretation
As noted, the degradation parameter d specifies the timescale.

Letting as, bs and cs be the parameters for some other time scale s

as determined by the degradation rate ds, then the scaled model is

equivalent to the normalised model providing:

as~a1 � ds, bs~b1 � ds and cs~c1 � ds:

That is, the predictions for the normalised parameters can be

rescaled to determine the absolute rates (or absolute mean time for

a transition) given knowledge of ds. The plausibility of the off-on

activation rate can then be assessed, as can the feasibility of the

synthesis rate cs. The scaled values for a for degradation rates of

1s, 60s, 10min, 1 hour and 4 hours are given in Table S2. The

scaled c values are given in Table S3.

From considerations of the initiation rate (0.2), physical size

(100 bp) and average elongation rate of Pol II (20–30 bp/s), it can

Figure 2. Simulation results for SSSMTTT~1. A. mean (open symbols) and variance (filled symbols); B. skewness and kurtosis. For SMT~10: C. mean and
variance; D. skewness and kurtosis. Points are average values from 10 repetitions for a given activation a1 rate, and are colour coded according to c1 . In A.
and C., a log 10 scale is used on both axes, and error bars show the standard deviation for 10 repetitions. Solid lines in A. and C. are the theoretical
solutions for mean and variance are derived from equations 5 and 6. Solid lines in B. and D. are computed from equation 1 in [4] (Supplementary Material).
doi:10.1371/journal.pone.0008845.g002
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be concluded that an mRNA transcript can be completed at a

maximum rate of one every 5 seconds, i.e. a rate of 0.2 [31]

(assuming also that events in elongation, splicing and termination

apply uniformly to transcripts). Allowing for the possibility of a

higher maximum elongation rate of up to 70 bp/s [26], we would

limit the maximum mRNA production rate cs to lie in the range

0.2–0.5. Although inexact, such an estimate is useful as it places

constraints on plausible cs values for a known ds. Table S3 lists the

scaled values (i.e. the product of the normalised c1 rates and the

actual degradation rate). Degradation rates observed for some

yeast mRNAs are in the order of minutes while in mammalian

systems the rate may be in the order of hours. Taking the half life

of a yeast mRNA as 10 minutes, values of c1 of 500 are not

plausible as they correspond to mRNA being transcribed above

the maximum rate. This value for c1 is plausible for mammalian

mRNA synthesis where the degradation rates can be 4 hours [4].

By considering how the normalised parameters are scaled, we can

constrain the plausible range for model parameters. Naturally, our

beliefs about plausible rates may change as new evidence emerges.

Once the parameters have been rescaled, the average times a

gene spends in the active and inactive states can be worked out -

we can consider whether it is plausible for a gene be active for 1/

10s, or for 100s. This requires biological insight and a deeper

model of transcription that incorporates events at the molecular

level.

Models of Elongation
The production of a mature eukaryotic messenger RNA

involves many processing events that can occur co-transcription-

ally, including 50 end capping, intron removal (splicing) and 30 end

cleavage and polyadenylation [14]. Some of these events can now

be observed and measured at the single-transcript level. The

extent to which these transcription and processing events are

coupled is still under investigation and stochastic modelling may

play a role in formulating and testing theories. However, the on/

off model clearly does not account for the many hundreds of

molecular events that occur in the production of a transcript, nor

of the abortive transcriptional activity that is now being

uncovered. In this section, we examine several modifications that

change the characteristic of the synthesis step by representing the

elongation process in more detail. It should be noted that

elongation is not typically considered the rate limiting step in

synthesis, the prior initiation step will set the rate for the synthesis

of mature transcripts. However, under high induction the spacing

of Pol II sets an upper limit as discussed above. And if, in addition,

the gene is short, we can consider the case where elongation does

become the sole and limiting factor.

A model of elongation might represent every base (or

nucleotide) addition event for each of the N bases in the transcript.

Figure 4A shows how the elongation process might be incorpo-

rated into the on/off model. Rather than fix a value for N to

model a specific gene, we note that, for any large N, synthesis is

now modelled as a more deterministic process [19,25]. A

parameterization for the model is obtained by giving each of the

N transitions a rate N times that of the original synthesis step of the

on/off model. The key questions are how the mRNA distribution

is affected by modifying the model in this way, whether these

changes are reflected in observable differences in the mean,

variance, skewness and kurtosis, and whether any such changes

can be used in model fitting and model selection.

In exploring the parameter space, we make the simplifying

assumption that at most one Pol II is active at any time, and hence

ignore any effects of polymerase assemblies holding each other up

during elongation (as noted earlier, this phenomena has been

investigated by [19,20,23]). This assumption is borne out for some

yeast genes where typically 0 or 1 nascent mRNAs are detected,

for example MDN1 [7], (while an average of two polymerases

were observed at the transcription site in [26]), but clearly this

assumption will not apply to longer genes expressed at high levels

where multiple Pol IIs transcribe mRNA simultaneously. If the

gene is short, and the induction level is high, then we may ignore

the time between the completion of each round of transcription

and effectively consider elongation as the rate setting step. Were

Pol II to be recycled at the promoter, we would have exactly this

case. This simplification mirrors that in the original on/off model

Figure 3. Kullback-Leibler divergence between the simulated
distribution at 50s simulated time and that at 33s (the steady-
state series), and the best fitting gamma, Poisson, Gaussian
and negative binomial distributions. A. SMT~1, and B. SMT~10.
Points are values from a single survey of 66 parameter value
combinations (55 in the case SMT~10), ensuring that each of the
standard distributions is fitted to the same simulated distribution and
so the KL values are directly comparable.
doi:10.1371/journal.pone.0008845.g003
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where the initiation rate and the time for synthesis cannot be

distinguished from the synthesis rate.

In the processive and coupled elongation models, the steps in

elongation are represented by a counting procedure rather than by

explicitly creating a series of N transitions. This is preferable as

simulating models containing long series of transitions is more

computationally expensive than the counting approach, and the

models they implement are equivalent. The elongation transition

increments a count place CT. When the count reaches a specified

value the number of mRNA M is increased by 1 (as indicated by

the filled rectangle that represents the testing of the count value,

see Figure 4B). Letting N = 100, the synthesis rate is multiplied by

100 to obtain the elongation rate e. When the gene is active, the

elongation process takes the same amount of time as the original

synthesis step, and so the rate of mRNA production should be the

same as in the original model. But the variability of the synthesis

time is much reduced, and so the effect on the distribution

characteristics must be investigated. The elongation process is

modelled stochastically, but has a more predictable outcome. A

narrow distribution of elongation times also follows from similar

assumptions made in [19]. As the elongation rate is easily derived

from the c1 parameter, it is straightforward to assess the behaviour

of the new model using the same a1 and b1 parameters as before.

No analytic solutions are available for the models described below;

however, it is possible to show the effects of the modifications by

comparison with simulations of the on/off model (or the analytic

solutions for it).

Processive Elongation - the On/Off-PE Model
In a simple deterministic elongation model, consistency with

the on/off model would be retained as all elongation events

contribute to M (see the Text 1 for more details of this model).

However, when the count is interpreted as corresponding to the

position of a Pol II on the gene, it is implausible that the count

(Pol II location) is retained from one round of activation to the

next. In fact, elongation is often considered to be processive, that

is, Pol II assemblies will continue to transcribe mRNA even if the

promoter becomes inactive. The on/off-PE model allows the

count, once started, to continue until M is incremented once,

irrespective of the gene being active or inactive. This modifica-

tion may allow an additional mRNA to be produced on each

round of transcription. And, as the limiting reaction rate is

greater than in the on/off model, this effect will be magnified at

higher activation rates. (This magnification would be less were

initiation an explicit step in the process: The processive model

represents the upper limit for an initial rate-limiting step in

synthesis.)

Coupled Elongation - the On/Off-CE Model
Another possibility is for Pol IIs that are part-way through

elongation when the gene transitions to the inactive state to

dissociate from the DNA. (The inefficiency of engagement and

elongation has been described in [26].) The on/off-CE model

modifies the deterministic elongation on/off model by resetting

the count when the gene becomes inactive. This change removes

the contribution of previous elongation activity when the gene re-

activates, and implements a simple coupling between the

completion of elongation (which we equate with the production

of a mRNA) and the state of the promoter. Elongation can be

‘abortive’ - elongation may not lead to a mRNA - and its

successful completion is correlated directly, or indirectly, with the

promoter.

Simulation Results
Beginning with the results for mean and variance for the on/

off-PE model, Figure 5A shows that for a desired M = 1, the

simulated mean rises above the desired value for all but the lowest

values of a1. For a1 = 2, the mean is approximately double that

intended. The mean continues to rise as a1 increases, the range of

values for the steady-state mean lies in the range 1.05–55.5

copies/cell. The variance takes the predicted values for a1ƒ1,

but thereafter increases in parallel with the increase in the mean.

The noise strength does not decrease below 0.9 except for the

combination of a1§4 and c1ƒ100. When M = 10 (Figure 5B), the

mean values for M predicted by the on/off-PE model begin to

rise above the desired value of 10 as a1 increases beyond 8. Mean

mRNA lies between 10.1 and 111 copies/cell across the

parameters surveyed. However, noise strength only reduces

significantly below 1 for the combination of high values of a1 and

low values of c1, as the increase in the mean is again matched by

increasing variance.

Figure 5 (C and D) shows that for the on/off-CE model when

M = 1, mean and variance both fall significantly below their

predicted values as a1 increases above 2. This is due to the

increasing probability that the gene will switch to the off state

while elongation is in progress, a consequence of which is the

reduced overall rate of mRNA production. Noise strength tends to

1 as a1 increases. Despite mean and variance diverging from the

values predicted by the on/off model, they converge, and so the

noise strength characteristic does not appear different from that of

the on/off model.

The skewness and kurtosis of the on/off-PE model are

compared to those of the on/off model in the scatterplot in

Figure 6 A and B for M = 1 (and in Figure S2 for M = 10). The on/

off-PE model has correlated, but reduced, skewness and kurtosis

(with reference to the on/off model). As can be seen, the

predictions differ by 2 or 3 standard deviations over much of the

parameter space. The on/off-CE model shows a different

characteristic, as indicated in Figure 6 C and D, where both

measures vary non-monotonically, reducing as a1 increases from

1/8 to 2, then increasing again as the M distribution becomes

Figure 4. Modelling initiation, synthesis and the coupling
between them. A. synthesis is modelled by a series of steps; and B. by
a counting procedure, where (optionally) the count may decrement.
The filled rectangle represents a transition that is enabled when a
threshold is reached, i.e. when the count reaches N.
doi:10.1371/journal.pone.0008845.g004
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increasingly concentrated around 0. For the on/off-CE model,

when M = 1, skewness has a minimum value of approximately 2,

and kurtosis remains above 4; and when M = 10, skewness has a

minimum value of 0.54, and kurtosis remains above 0.34.

In summary, the models considered here have very similar

characteristics when a1 is less than 2, and M is high (i.e. 10). It is

most evident that different mechanisms are in play for low values

of M. Differences are also observed when a1 is greater than 2: It

has been shown that using an elongation model as the

representation of synthesis in the on/off model can explain

values of noise strength below 1. The range of skewness and

kurtosis values is shown to be largely independent of the mean,

hence re-scaling is not necessary in order to compare values

across datasets or models (i.e. in contrast with the variance,

factoring by the mean is not necessary). Skewness values show

differences of several standard deviations when comparing the

deterministic, -PE and -CE models with the reference model, and

this may be a general phenomena that is useful in model fitting

and model selection.

The mechanisms proposed in the elongation models can be

reviewed in the light of the simulation results. For more frequent

activation/inactivation cycles, the processivity mechanism increas-

es mRNA production significantly. The high probability of

elongation initiating, with no means for elongation to pause or

Figure 5. Mean (open symbols) and variance (filled symbols) for the on/off-PE model. A. SMT~1; B. SMT~10. For the on/off-CE model:
C. SMT~1; D. SMT~10. Points are average values from 10 repetitions. Error bars show the standard deviation for 10 repetitions. Solid lines are the
theoretical solutions for mean and variance.
doi:10.1371/journal.pone.0008845.g005
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for Pol IIs dissociate, is the reason for this outcome. Were the

probability of the (single) Pol II completing elongation to be 1/90,

as observed in [26], then the mean mRNA would be much

reduced. A reduction of this scale cannot be applied when a1 is low

without stopping elongation, but could be a factor that reconciles

the processive model with the basic on/off model for high values of

a1. In contrast, the coupling mechanism causes mRNA levels to be

depressed. This suggests that for higher activation rates (a1§8),

any coupling between the promoter and a rate limiting step in

synthesis will prevent high mean mRNA levels being achieved at

low noise. This effect is observed for the particular case where

elongation is rate limiting, but would also follow if the escape of

Pol II from the promoter-proximal pause region was linked to

promoter state.

Modelling the Single-Cell
Two questions are now addressed in the analysis of single-cell

data: i. do skewness and kurtosis measured from real data match

values predicted from the model? and ii. is there evidence of

constraints on the parameters of the on/off model when the model

is fitted to single cell data?

We created a yeast strain that expresses a reporter RNA called

Ribo1, and the number of mRNA per cell was counted using an in

situ hybridization technique sufficiently sensitive to reliably detect

single mRNA molecules (see Figure 7 and Materials and Methods).

The reporter was under the control of a Tet-responsive promoter,

contained the ACT1 intron and the 39 processing signal of PGK1.

Four cultures of yeast strains expressing Ribo1 were prepared and

analyzed independently. In a representative sample, the mean

Figure 6. Scatterplots of skewness and kurtosis taking the on/off model as a reference (plotted on the x axis). A. skewness for the on/
off-PE model. B. kurtosis for the on/off-PE model. SMT~1 in A and B. Skewness and kurtosis for the on/off-CE model for C: SMT~1; and D.
SMT~10. Points are average values from 10 repetitions. Error bars, where shown, indicate the standard deviation for 10 repetitions. Solid lines join
points in the same series.
doi:10.1371/journal.pone.0008845.g006
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number of mRNA/cell in steady-state was 23.8 copies/cell in a

population of cells (327 cells, 2–82 copies/cell) The observed

probability distribution is shown in Figure 8A, along with the

predicted probability distribution under the parameterization

listed in Table S4 (sample 4). As indicated in Table 1 , skewness

and kurtosis are in good accord with observation when the

variability of the data is accounted for by estimating the standard

deviation by the bootstrap method. At these elevated mean mRNA

levels, kurtosis becomes negative, i.e. the distribution is flatter than

Gaussian. The fit of these characteristics to the data could be

improved if skewness and kurtosis were optimized in model fitting.

To explore the possibility of constraints on model parameters,

the Ribo1 data are included in the scatterplots in Figure 8 of a1

Figure 7. Image-based measurement of mRNA in yeast. A.
Schematic of the Ribo1 reporter gene used in this study. The position of
the probes used to detect the reporter RNA are indicated by horizontal
red bars. B. Detection of single molecules of the Ribo1 reporter RNA.
Expressing (upper panels) and control cells (lower panels) are shown.
Left panels display the RNA signal (red) overlayed with the nuclei (blue).
Each field in a projection of a 3D stack (1861866 mm). C. Efficiency of
RNA detection. Histograms of the number of spots versus spot
intensities across an entire 3D stack (6366366 mm) are shown for
control or Ribo1 expressing cells. The area shaded in yellow correspond
to the spots included in the analysis after thresholding. Bottom panels:
overlay of the two histograms revealing the amount of Ribo1 RNA
molecules lost by the thresholding procedure (,15%; red area).
doi:10.1371/journal.pone.0008845.g007

Figure 8. Modelling mRNA expression in single cells. A.
Distribution of mRNA, a. observation and b. model. B. Scatterplot of
c1 and a1 parameters from published models: blue triangles indicate
mammalian data [4], green circles indicate yeast [7], as do purple
squares (this paper), and the black diamond shows data from E. coli [2].
Closed symbols are plotted when b1wa1 , open symbols indicate
b1va1 . All parameters have been scaled such that d~1 as in preceding
figures. The line is an empirically-derived equation for the upper limit of
c1 . C. Scatterplot of SMT values and a1 parameters from published
models, symbols are defined as in B. Blue and black lines are the
predicted upper constraint on SMT for alternative assumptions about
the proportion of time in the on state. The grey line is SMT~a1 .
doi:10.1371/journal.pone.0008845.g008
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values from published models [2,4,7]. Values of synthesis c1 are

plotted against a1 in 8B, and in 8C mean mRNA SMT is plotted

against activation rate. This analysis shows that, on the available

evidence, there is a constraint on the synthesis rate that can be

approximated by: c1v(10{a1=2)3. When this constraint is

incorporated into equation 5, a constraint on SMT can be

inferred when the ratio a1=(a1zb1) is considered. As this ratio

increases, the possibility of high activation rates producing high

levels of mRNA at low noise is reduced. The on/off model can be

parameterized to give high copies/cell of mRNA with high

activation rates (i.e. fast activation/inactivation cycles that reduce

noise) but such a combination is not supported by the available

data. Rather, high mean levels are modelled by low activation

rates and are noisy. Low activation rates can also explain data

where the mean mRNA is low. This evidence further supports the

argument that regulation acts to increase time in the active state or

to effectively increase the synthesis rate by regulating Pol II

initiation or the efficiency of elongation, rather than to increase the

frequency of activation [4]. These dominant factors are consistent

with a processive model of elongation for activation rates below 2,

and for high and low SMT. On the assumption that the noise

implicit in the published model parameters are a true reflection of

the data, we can rule out the highest values of a1 in the processive

model as although they explain high mean mRNA, they

underestimate the noise.

The ratio of synthesis to inactivation has been suggested as a

way to define kinetic mechanisms [5], and to determine

transcriptional bursting, i.e. c=bw1 or c=bv1. Some limitations

of this approach have been noted [7]. The ratio of synthesis to

activation might similarly be taken as defining a mode of gene

expression: c=aw1 or c=av1. However, it is a straightforward

consequence of equation 5 that for a1vSMT it must be the case

that c=bw1 and c=aw1. The boundary a1~SMT is shown in

Figure 8C: Below this line only one of the inequalities in each pair

can possibly hold, above it a second mode is possible. The ratio of

activation to inactivation is another simple distinction that can be

made, and this too is shown in Figure 8C by the use of open and

closed symbols. It can be seen that b1va1 only for higher values of

a1. The ratios b=a, c=a and c=b take a continuum of values that,

broadly speaking, reduce as a1 increases. None of these distinctions

explain the absence of high a1 rates for high SMT, but we note

that the assumption of coupled of elongation reveals that this

would be, at the very least, a highly inefficient mode of

transcription under such conditions, if not an impossibility.

Discussion

The on/off model of mRNA transcription has been simulated

over a wide range of feasible parameters. The distribution of

mRNA/cell in steady-state has been summarised by the mean,

second, third and fourth moments. Unlike the mean and variance,

equations for skewness, kurtosis have not been derived analytically

in the general case - and their application to the on/off model is

presented here for the first time. Modifications to the on/off model

that give a more detailed account of elongation are shown to

influence all of these measures. Moreover, we have shown that

skewness and kurtosis are of value when comparing models.

Each step in elongation, and the possibility of Pol II

backtracking, is modelled in [19]. The count procedure in the

models proposed here similarly captures the phenomenon of a

repeated step-wise process, but does so in a way that allows the

parameters of the on/off initiation model to be mapped to the new

models, and surveyed. The representation of promoter state and

elongation in a single model is also found in the model of the

dynamics of Pol II engagement proposed by [26]. However, our

model does not distinguish initiation from the later engagement

process, nor assign them different rates in order to explore the

assumptions we make in a uniform way across the parameter

space.

The on/off model has been used successfully to explain single-

cell mRNA data [1–7], without the modifications proposed here.

Even where noise is observed to be low [7], it remains at least

Poissonian and hence consistent with the model. While a

deterministic elongation model reduces noise below this bound,

processivity and coupling restore noise to the gene expression

characteristic. Initiation, pausing and backtracking in elongation

further reduce its predictability, and accounting for them in a

processive model will add additional noise to the process of

transcription. The marginal impact that different stochastic

processes have on the overall size of fluctuations in a population

is noted in [32], where protein noise is shown to be only weakly

dependent on burst size and waiting time statistics, and on the

number of steps in the degradation pathway. Through this course-

graining effect [32], the phenomenological on/off model may

indeed accurately summarise the molecular mechanisms that are

being uncovered and modelled. One critical step will be to

accurately determine the activation and synthesis rates experi-

mentally, e.g. as in [2], as without this data they must be found by

optimization. As illustrated in this paper, the distributions that

they are estimated from are essentially invariant in certain regions

of parameter space. A further issue arises in model comparison,

where the saturated elongation process necessary to maintain a

high mRNA expression level may obscure any characteristics that

result from molecular-level elongation mechanisms: Even with full

knowledge of the important parameters, the predictions are likely

to be dominated by the activation/inactivation cycle rather than

by the more subtle features of the synthesis process at lower levels

of processing. From the modelling perspective, genes expressed at

low levels are the more promising candidates for testing alternative

theories, but clearly this poses challenges experimentally.

Table 1. Skewness and kurtosis in the mRNA distribution in four sample populations, and estimates of these values from the
corresponding on/off model (standard deviation).

Sample No. Cells Skewness (data) Kurtosis (data) Skewness (model) Kurtosis (model)

1 152 0.2401 (0.1218) 20.7203 (0.1641) 0.3499 (0.0174) 20.5440 (0.0352)

2 378 0.3218 (0.0839) 20.7119 (0.1467) 0.3558 (0.0211) 20.7702 (0.0279)

3 315 0.0954 (0.0865) 20.3972 (0.1339) 0.1924 (0.0138) 20.5518 (0.0185)

4 327 1.0353 (0.1522) 1.1975 (0.5929) 0.7356 (0.0182) 0.3311 (0.0660)

Standard deviation of data is estimated from 1000 bootstrap samples.
doi:10.1371/journal.pone.0008845.t001
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Materials and Methods

Stochastic Simulation
All simulations were performed using the Gillespie algori-

thm implemented in Dizzy (http://magnet.systemsbiology.net/

software/Dizzy/). This software was modified to store the

histograms of the distributions for further analysis. 10,000

simulations were run for each set of parameters surveyed, and

this procedure was repeated 10 times to obtain means and

variances. The EDDIE compute cluster was used to run the

simulations, which, for the more complex models, took 7–10 hours

for each parameter survey, each of which was repeated 10 times

for the four models.

It is necessary to show that the simulations have stabilised, and

this was achieved by measuring the divergence between the

distribution for the end time and that of an earlier time using the

Kullback-Leibler (KL) measure:

KL(p,q)~
X

x[X

p(x)log(p(x)=q(x)) ð8Þ

The KL divergence is calculated from the probability that the

data falls into a bin (x) as defined in the two distributions being

compared, p and q. The divergence between the probability

distribution of mRNA at 50s and at 33s (of simulated time) is plotted

in Figure 3 in order to demonstrate that the simulation has reached

a stationary state. KL divergence is also useful for determining how

good a fit the best-fitting Poisson, Gaussian, gamma or negative

binomial distribution is to the simulated distribution. The best-fit

distribution parameters are calculated from the simulation data

using maximum likelihood, but this calculation alone does not

return a goodness of fit, and so the distance must be calculated

separately. The SSJ Java library (http://www.iro.umontreal.ca/

simardr/ssj/indexe.html) was used to obtain the distribution

parameters. The KL divergence is a measure of relative entropy

[33], decreasing as the distributions become more similar. It is

asymmetric, and weights the terms in the summation by p(x). The

measure does not allow the hypothesis that the distributions are the

same to be tested at a specified P value. For this, we chose the one-

sided Chi-square test at the P value 0.05

Skewness and Kurtosis
The skewness and kurtosis of a set of n samples X with mean �xx

and standard deviation s is defined as follows:

Skewness(X )~
X

x[X

(x{�xx)3=(n{1)s3 ð9Þ

Kurtosis(X )~(
X

x[X

(x{�xx)4=(n{1)s4){3 ð10Þ

The subtraction of 3 from the sum in equation 10 makes the

value of kurtosis for a Gaussian distribution equal to 0.

Skewness is a measure of asymmetry and is 0 for a symmetric

distribution such as the Gaussian distribution. Negative values

indicate a longer tail to the left of the peak, while positive values

indicate that the right tail is longer. Kurtosis measures how peaked

the distribution is, relative to the Gaussian distribution (the

subtraction of 3 from the sum in equation 10 makes the value of

kurtosis for a Gaussian distribution equal to 0). Positive values for

kurtosis indicate that a distribution is more peaked than the

Gaussian. Negative values indicate a distribution that is flatter

than the Gaussian distribution.

Image-Based Measurement of mRNA in Yeast
The Ribo1 reporter was integrated as a single copy at the his3

locus. Yeast strains were grown in YNB and fixed in mid-log

phase. The sequence of the probes and the in situ hybridization

protocol used in this study are posted on the Ribosys project

website http://www.ribosys.org. We used a semi-automated

procedure to detect and automatically count single molecules of

the various reporter mRNAs. This procedure relies on the fact that

single mRNA molecules are visible as bright, individual spots. 3D

stacks of control and strains expressing the various reporters were

taken with a CCD camera (CoolSnap HQ, Roper Scientific), on

an upright microscope equipped for fluorescent imaging (DMRA,

Leica microsystems), with a 1006 objective, NA 1.4. Image

analysis was performed with the Spot function of Imaris 3.0

(Bitplane). A Gaussian filter 0.2 micrometer wide was first used to

remove variation in local intensities smaller than spots of single

mRNAs, see Figure 7B. Then, all local maxima were identified in

the 3D image, and the maxima corresponding to background were

removed by setting a minimal threshold for the local variation in

intensity. This threshold varied from experiment to experiment,

and it was chosen as the minimal value that eliminated all spots

from the control yeast strain (see Figure 7B). To evaluate the

efficiency of detection, we plotted histograms of the number of

spots detected as a function of local spot intensity (see Figure 7C).

This allowed us to estimate that we detected more than 85% of the

mRNA molecules, with no background contamination. In each

case, the distribution were derived from 110 to 358 cells.

Supporting Information

Figure S1 Skewness and kurtosis. For the on/off model: A.

,M. = 1, and B. for ,M. = 10. For the on/off-PE model: C.

,M. = 1, and D. for ,M. = 10. For the on/off-CE model: E.

,M. = 1, and F. for ,M. = 10. Error bars show the standard

deviation for 10 repetitions.

Found at: doi:10.1371/journal.pone.0008845.s001 (0.13 MB TIF)

Figure S2 Scatterplots of skewness and kurtosis for the on/off-

PE model taking the on/off model as a reference. ,M. = 10 in

both cases: A. skewness; B. kurtosis. Points are average values from

10 repetitions. Solid grey line indicates y = x.

Found at: doi:10.1371/journal.pone.0008845.s002 (0.96 MB TIF)

Table S1 Estimates of skewness, kurtosis and Kullback-Leibler

divergence from sampling a Poisson distribution (l= 9). Mean and

variance are obtained from 1000 repetitions. This table presents

the results of a computational experiment where between 100 and

100,000 samples are drawn from a Poisson distribution and the

skewness, kurtosis and KL divergence are calculated. The value of

l is 9 in the generating distribution, and therefore the theoretical

value of skewness is 1/3, kurtosis is 1/9 , and the theoretical mean

is 9 in all samples. The table gives the mean and variance for these

measures based on 1000 repetitions, and lists the error. For

skewness and kurtosis, the error is the magnitude of the difference

between the mean and the theoretical value, and for KL

divergence the error is the factor by which the divergence

increases in comparison with the divergence for the larger sample

size (i.e., that given in the row above). This exploration indicates

that skewness can be calculated reasonably accurately for sample

sizes of 100 and above, while kurtosis may require a greater

number, possibly as many as 1000 samples. For KL divergence,

the difference between a sampled distribution and the theoretical
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distribution (which is known in this case) increases by a factor of

approximately 8 for a ten-fold reduction in the number of samples.

Therefore, skewness and kurtosis appear to be robust measures

with respect to sample size, while KL divergence suffers from the

bin-to-bin variability that results from lower sample sizes.

Found at: doi:10.1371/journal.pone.0008845.s003 (0.02 MB

PDF)

Table S2 Values of as scaled for d = 1s, 1min, 10min, 60min and

240min and expressed as mean times (s or h:m:s) for the transition.

Found at: doi:10.1371/journal.pone.0008845.s004 (0.04 MB

PDF)

Table S3 Values of cs scaled for d = 1s, 1min, 10min, 60min and

240min (*values.0.5 are not realistic).

Found at: doi:10.1371/journal.pone.0008845.s005 (0.03 MB

PDF)

Table S4 Parameters for the on/off model for four sample

populations of Ribo1.

Found at: doi:10.1371/journal.pone.0008845.s006 (0.03 MB

PDF)

Appendix S1 On/off models in Dizzy syntax.

Found at: doi:10.1371/journal.pone.0008845.s007 (0.03 MB

PDF)
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