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Solid tumor progression is significantly influenced by interactions between cancer cells
and the surrounding extracellular matrix (ECM). Specifically, the cancer cell-driven
changes to ECM fiber alignment and collagen deposition impact tumor growth and
metastasis. Current methods of quantifying these processes are incomplete, require
simple or artificial matrixes, rely on uncommon imaging techniques, preclude the
use of biological and technical replicates, require destruction of the tissue, or are
prone to segmentation errors. We present a set of methodological solutions to these
shortcomings that were developed to quantify these processes in cultured, ex vivo
human breast tissue under the influence of breast cancer cells and allow for the study
of ECM in primary breast tumors. Herein, we describe a method of quantifying fiber
alignment that can analyze complex native ECM from scanning electron micrographs
that does not preclude the use of replicates and a high-throughput mechanism
of quantifying collagen content that is non-destructive. The use of these methods
accurately recapitulated cancer cell-driven changes in fiber alignment and collagen
deposition observed by visual inspection. Additionally, these methods successfully
identified increased fiber alignment in primary human breast tumors when compared to
human breast tissue and increased collagen deposition in lobular breast cancer when
compared to ductal breast cancer. The successful quantification of fiber alignment and
collagen deposition using these methods encourages their use for future studies of ECM
dysregulation in human solid tumors.

Keywords: breast cancer, extracellular matrix, fiber alignment, collagen content, second harmonic generation,
scanning electron microscopy

Abbreviations: AI, alignment index; BC-MPS, breast cancer microphysiological system; OI, orientation index; SHG, second
harmonic generation; WEKA, Waikato Environment for Knowledge Analysis; WEKA-DJ, Weka-DiameterJ; WTS, Weka
Trainable Segmentation.
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INTRODUCTION

The extracellular matrix (ECM) is a complex network of
macromolecules which provides biochemical and biomechanical
signals that govern cell behavior (Walker et al., 2018).
Peritumoral dysregulation of the ECM, specifically fiber
linearization and altered collagen deposition, is central in solid
tumorigenesis and metastasis (Taufalele et al., 2019). Fiber
alignment signals cancer cell migration, intravasation, and
epithelial–mesenchymal transition (Provenzano et al., 2006;
Han et al., 2016; Lee et al., 2017; Zanotelli et al., 2018). Altered
and increased collagen deposition increases the ECM’s stiffness,
which promotes cancer progression and increased resistance to
chemotherapeutics (Taufalele et al., 2019). Reproducibly and
accurately quantifying these processes is key to understanding
and potentially halting this remodeling. However, current
methods of quantifying changes in ECM fiber alignment and
collagen deposition are inadequate for human solid tumors. The
three primary gaps are: (1) a lack of methods to visualize and
quantify fiber alignment changes in common ECM images such
as those captured by scanning electron microscopy (SEM); (2)
the absence of generalized statistical methods to combine and
analyze fiber alignment frequency distributions across multiple
samples; and (3) a lack of methods to reliably and accurately
quantify changes in the collagen content of light microscopy
images. Together, these gaps inhibit the study of ECM in
human solid tumors.

Fiber alignment quantification requires imaging of the
ECM, computational identification of fibers in micrographs,
measurement of fiber orientations followed by calculation of
fiber intersection angles. With current techniques’ shortcomings,
fiber imaging for quantitative analysis requires second harmonic
generation (SHG) microscopy to provide high-resolution data
regarding collagen structure and alignment (Keikhosravi et al.,
2014). However, SHG microscopy is cost-prohibitive and not
widely available (Chen et al., 2012; Keikhosravi et al., 2014).
This reliance on SHG is due to limitations in the computational
methods developed to study fiber alignment thus far. Specifically,
the collagen analysis software CurveAlign and its companion
program CT-FIRE have only been reported in the study of
non-physiologic ECMs, such as artificial collagen gels and
only using SHG micrographs (Provenzano et al., 2006; Majeed
et al., 2017). When applied to more commonly available
imaging modalities such as SEM, the reported algorithms fail
to reliably differentiate between fibers from background. These
shortcomings are exacerbated when applied to more complex
ECM, such as that found in human breast cancer (Bredfeldt et al.,
2014a,b). Conklin et al. (2018) utilized CT-FIRE to study SHG
micrographs of human breast cancer biopsies, but some fibers
were over-or under-segmented.

The collection of fiber orientations for a given matrix
constitutes a distribution, which can be represented as a
histogram. For simple, artificial matrices such as those produced
using a single collagen, this distribution is normally (Gaussian)
distributed. However, in native human ECM, the distributions
are non-parametric and typically have multiple, non-Gaussian
peaks. Previous studies reported single-number metrics, such as

standard deviation (SD), alignment index (AI), and orientation
index (OI) (Sun et al., 2015; Taufalele et al., 2019), as
characterizations of these distributions. These single-number
metrics were designed for use with simple single collagen
matrices and lack accuracy when applied to complex ECM.
For native human ECM, these simple metrics are insufficient.
Furthermore, we are unaware of any published methods
which allow for (1) combining distributions from technical
and biological replicates and (2) statistically determining if
distributions from different experimental conditions significantly
vary. This is evidenced by fiber alignment studies reporting a
single histogram for each experimental group without reporting
significance (Grossman et al., 2016).

The second component to ECM remodeling is altered
collagen deposition. While non-destructive histological stains
can be used to qualitatively evaluate collagen deposition, semi-
quantitative methods have historically relied on destructive
methods such as Western blots. Previously reported image-
based methods were time-consuming and inaccurate as they
required manually segmenting areas of interest to separate
collagen from image background (Schipke et al., 2017; Rieppo
et al., 2019). Furthermore, in human ECM, multiple biological
components can stain similarly to collagen, making color-
dependent thresholding methods prone to inaccuracies.

Herein, we present solutions for these major methodological
challenges. First, we demonstrate that segmenting ECM fibers
within a SEM micrograph using a trainable segmentation tool
prior to DiameterJ analysis allows accurate fiber detection
from complex fiber networks. Second, we report a method
for normalizing multiple collagen orientation frequency
distributions to allow biological and technical replicates to
be combined and compared for statistically different changes.
Additionally, we describe a high-throughput machine-learning-
based technique to accurately quantify collagen content from
histological sections. Together, these methods will allow for
robust quantitative analysis and reporting of ECM remodeling
data, enabling the accurate study of human solid tumors.

MATERIALS AND METHODS

All human tissue samples were collected in adherence to
protocols #8759 and # 9189, as approved by the IRB Office of
Louisiana State University Health Sciences Center (LSUHSC).

ECM Generation
To acquire images of ECM fibers, breast cancer
microphysiological systems (BC-MPSs) were generated by
culturing primary breast tissue between two sheets of adipose-
derived stromal cells (ASCs); this was a modification of a
previously described method for culturing adipose tissues
(Lau et al., 2018; Scahill et al., 2018). Briefly, six-well culture
plates were seeded with ASCs (Figure 1). Base layer cell
sheets were cultured on tissue-culture plastic dishes (Corning),
whereas top layer sheets were cultured on UpCellTM (Nunc)
thermoresponsive dishes. A 7.5% gelatin solution was solidified
on a plunger apparatus and placed upon upper layer cell sheets
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FIGURE 1 | Breast cancer microphysiological system (BC-MPS) generation. Schematic of BC-MPS generation showing transfer of confluent ASC cell sheet from

UpCellTM (Nunc) thermoresponsive dishes onto a second sheet of confluent ASCs grown on a standard plastic tissue culture dish. Sandwiched between the two
ASC sheets is minced primary breast tissue seeded with breast cancer cell lines.

at room temperature for 1.5 h to adhere the plunger to the
cell sheet. The upper layer cell sheets were then released from
the UpCellTM dishes by treatment in an ice water bath for
1.5 h. Breast tissue was acquired from patients undergoing
elective surgery, washed with PBS, minced, and combined with
Dulbecco’s modified Eagle’s medium (DMEM). MDA-MB-231
breast cancer cells were seeded into the minced breast tissue.
300 µL of the BC cell-breast tissue mixture was aliquoted onto
bottom layer cell sheets. Upper layer cell sheets were transferred
on top of the aliquoted BC cell-breast tissue mixture using the
plunger apparatus. Warmed culture media were added to each
well prior to a 30-min incubation at 37◦C to release the upper
cell sheet from the plunger apparatus. Samples were grown for
14 days prior to tissue decellularization.

Cell Culture
Adipose-derived stromal cells were isolated from primary human
breast tissue using a previously described methodology (Lau
et al., 2018). ASCs were cultured in DMEM supplemented with
1% Pen/Strep antibiotics (Gibco, Dublin, Ireland) and 10% FBS
(Atlanta Biologicals, Georgia). MDA-MB-231 cells were cultured
in DMEM supplemented with 10% Serum (HyClone Cosmic
Calf, state), 50 ng/mL insulin (Sigma–Aldrich, St. Louis, MO,
United States), and 1% MEMAA, NEAA, sodium pyruvate, and
antibiotic-antimycotic (Gibco, Waltham, MA, United States). All
cells were maintained in 5% CO2 at 37◦C.

Primary Breast Tumor
The metaplastic breast tumor model, known as TU-BcX-4IC,
was obtained from a mastectomy of a 57-year-old white female
with metaplastic breast carcinoma unresponsive to neoadjuvant
adriamycin/cyclophosphamide therapy as previously described
(Chang et al., 2020). The tumor was obtained from the surgical
specimen just after mastectomy. The mastectomy specimen was
confirmed pathologically as a TNBC subtype. The tumor was
obtained in collaboration with the Louisiana Cancer Research
Center Biospecimen Core, which obtains tumor specimens from
local hospitals.

Tissue Decellularization
Breast cancer microphysiological system samples grown for
14 days and the metaplastic breast tumor specimen were
decellularized through a modified previously described protocol
(Pashos et al., 2017). Samples were collected from six-well dishes
using a cell scraper, then transferred to cryovials, and stored
in liquid nitrogen until ready to decellularize. Samples were
thawed at room temperature and then washed with PBS prior
to decellularization. Samples were then incubated on a shaker
at 37◦C, 70 r/min with the following reagents: diH2O for 2 h,
Triton-X for 48 h (Sigma–Aldrich, St. Louis, MO, United States)
diH2O for 2 h, sodium deoxycholate solution (Amresco, Solon,
OH, United States) for 48 h, diH2O for 2 h, sodium chloride for
2 h, and diH2O for 2 h. Samples were stored at 4◦C in a PBS
solution containing 5x antibiotic/antimycotic until use.

Scanning Electron Microscopy
Decellularized samples were fixed in formalin-acetic acid-alcohol
(FAA) overnight. After fixation, samples were dehydrated using
graded ethanol concentrations of 50, 70, and 90%, one time for
each and three times in 100% for 30–60 min each. Following the
final 100% ethanol wash, samples were further dried by Critical
Point Drying using dry siphoned liquid CO2. Samples were then
spray coated and imaged at 25k magnification using FEI Quanta
3D FEG FIB/SEM. Samples exhibited little heterogeneity and
representative images were used for analysis.

SEM Image Analysis
Six SEM micrographs of the metaplastic breast tumor specimen
and three SEM micrographs of 14 decellularized BC-MPS
samples and 14 decellularized BC-MPS samples seeded with
MDA-MB-231 cells were analyzed using modified previously
described methodology (Hotaling et al., 2015). Briefly, SEM
micrographs of decellularized ECM were contrast adjusted
in ImageJ to move the lowest grayscale pixel intensity to
a true black value. Contrast-adjusted micrographs were then
segmented using the WEKA Trainable Segmentation (WTS)
tool in ImageJ (Arganda-Carreras et al., 2017). The WTS tool
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was trained using prior images of tumor fibers to effectively
identify fibers and fiber edges. After segmentation, remaining
noise was removed with ImageJ’s despeckle command. The
micrographs were converted to an 8-bit image for processing
with the DiameterJ plugin for ImageJ. Fiber orientations were
calculated using the OrientationJ plugin within ImageJ. Briefly,
an axial thinning algorithm was used to generate a centerline
for each fiber in each image. A Fourier gradient with a
Gaussian window of 7 pixels was applied to each center line.
The angle, relative to an arbitrary line determined by the
OrientationJ, at which each center line points was recorded
and displayed in a frequency histogram with angles ranging
from −90◦ to +89◦. This method is hereon referred to as
the WEKA-DiameterJ (WEKA-DJ) method. Additionally, each
SEM micrograph was analyzed using CT-FIRE and subsequently
CurveAlign software following the manufacturer’s instructions.
CT-FIRE is used to extract individual fibers from a micrograph.
CurveAlign then uses the extracted fiber data from CT-
FIRE to compute fiber orientations and alignment (Liu et al.,
2017). Oversegmentation incidence was calculated by manually
counting oversegmentation errors in five CT-FIRE Maps and
corresponding Axial Thinning Maps generated from SEM
micrographs of distinct ECMs. Segmented fibers were considered
erroneous if they were found in pores where no fibers were
visible or if multiple fibers were segmented along the width of
one visible fiber.

Fiber Orientation Histogram
Normalization
Fiber orientation distributions analyzed from different SEM
micrographs cannot be directly compared since the orientation
assigned to each fiber is an angle relative to an arbitrary
line set by the DiameterJ software. Figure 2A shows the
orientation histograms generated for a SEM micrograph, Image
A, and for the same SEM micrograph rotated 90◦ clockwise,
Image A Rotated. Despite analyzing the same SEM micrograph,
two different orientation distributions are generated using the
DiameterJ plugin.

To normalize the fiber orientation distributions, the mean
fiber orientation was calculated for each SEM micrograph and
subtracted from all fiber orientations generating orientations
relative to the mean fiber orientation and shifting the mean of
each distribution to the center of the histogram. Values that have
been shifted outside of the −90◦ to 89◦ range of orientations are
then transferred back in range by adding±180◦. Normalizing the
fiber orientation distributions allows multiple distributions to be
superimposed on each other for comparison, such as Image A and
Image B (Figure 2B).

Distributions with normalized data from technical replicates
(n = 3) and biological replicates (n = 14) were averaged together
by summing together frequencies at each orientation relative to
the mean fiber orientation and dividing by n.

Orientation Index
Orientation indices were generated from the fiber orientation
distributions by implementing a modified previously described

method in Microsoft Excel (Taufalele et al., 2019). Briefly, the OI,
S, is defined by:

S = 2 < f
(

1
2

cos (2α)+ 1
)

> −1

where f represents the normalized frequency, α represents the
angle between an individual fiber and the mean fiber orientation
for that distribution, and < f

( 1
2 cos (2α)+ 1

)
> represents the

averaged square cosine of all α per image. An OI of 0 represents
a perfectly random distribution, whereas an OI of 1 represents a
perfectly aligned distribution.

Collagen Quantification
Four samples of BC-MPS grown for 14 days with and without
MDA-MB-231 cells were fixed in 10% formalin at 4◦C overnight,
then paraffin embedded, and sectioned at 5 µm using a Leica
RM 2235 microtome. Four 5 × 5 µm frozen sections of lobular
carcinoma and six sections of ductal carcinoma were purchased
form Origene (Rockville, MD, United States). Masson’s trichrome
staining for collagen was accomplished on all tissue sections using
a standard protocol and imaged using a Mere PathScan 5 slides
canner (Campbell et al., 2014).

A random forest machine learning method for identifying
pixels as collagen positive, collagen negative, or image
background was trained using the QuPath Pixel Classifier
for five Masson’s Trichrome stains of BC-MPS and frozen
sections of ductal and lobular carcinoma (Bankhead et al.,
2017). Collagen percentage for each specimen was calculated
by dividing collagen positive pixels determined by the
pixel classifier by total pixels remaining in the image after
background removal.

Statistical Analysis
Mann–Whitney U tests were performed on averaged normalized
frequency distributions using Microsoft Excel (Microsoft,
Redmond, WA, United States). Two-way ANOVA followed by
Tukey’s multiple comparison test was performed on averaged
OI data and collagen percentage data using GraphPad Prism 5
(GraphPad Software, La Jolla, CA, United States).

RESULTS

Accurate and Rapid Fiber Orientation
Detection With Combined
WEKA-DiameterJ Analysis
Prior to determining fiber orientations, fiber alignment
quantification software must detect fibers within the SEM
micrograph. Figure 3A shows the workflow for analyzing a
SEM micrograph by the CT-FIRE and WEKA-DJ method.
CT-FIRE is used to extract fibers from a micrograph prior to
quantitative fiber analysis by CurveAlign. Fibers segmented by
CT-FIRE are indicated by multi-colored lines on a CT-FIRE
Map. Alternatively, segmentation of fibers can be done via the
WEKA-DJ method in which the WTS Tool is used prior to
analysis by DiameterJ. The WTS Tool outputs a probability
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FIGURE 2 | Normalizing ECM fiber orientation distributions allows comparison of distinct samples and combination of replicates. (A) Fiber orientation distribution
output by DiameterJ for a SEM micrograph of decellularized ECM (Image A) and the same image rotated 90◦ for which the mean fiber orientation (red line) and
orientation set as 0◦ by DiameterJ (green line) are superimposed. Red stripes indicate the distribution’s mean. (B) Superimposed normalized fiber orientation
distributions for Image A and a separate SEM micrograph, Image B, generated by subtracting the mean fiber orientation from all angle orientations, shifting the
distributions’ means to 0◦.

map in which fibers are indicated in white and pores in black.
DiameterJ determines fibers from the WTS Map and generates
an axial thinning map illustrating where segmented fibers lie. The
WEKA-DJ method allowed for accurate fiber detection without
significant rates of fiber oversegmentation. Fiber detection
using the CT-FIRE method was prone to oversegmentation
errors. The software characterized single fibers as multiple fibers
within SEM micrographs and incorrectly identified fibers in
large pores (Figure 3B). Fiber segmentation using CT-FIRE
produced 23.90 ± 8.83 (mean ± SEM) oversegmentation errors
per 6 µm× 6 µm SEM micrograph, relative to 5.91± 2.09 using
the WEKA-DJ method (p = 0.017) (Figure 3C).

Normalized Orientation Distributions
Can Be Used to Quantify Differences in
ECM Fiber Alignment
Normalizing fiber orientation data from DiameterJ using the
mean fiber orientation method allows data from technical
replicates and between experimental groups to be combined and
compared, respectively. Collating data from multiple replicates is
a fundamental tenet of both experimental biology and statistical
analysis of differences arising under varying experimental
conditions. SEM micrographs of ECM show a greater degree of
fiber alignment in samples treated with MDA-MB-231 cancer
cells than in untreated ECM (Figure 4A). Mann–Whitney U tests
on the normalized orientation distributions accurately identified
significant differences in fiber alignment between ECM which
was untreated and ECM treated with the breast cancer cell line
(p = 0.0001) (Figure 4B). In contrast, the OI for control ECM was

0.621± 0.047 (mean± SEM) vs. 0.599± 0.040 in cancer-treated
ECM (p = 0.6520) (Figure 4C).

Pixel Classification Allows Quantitative
Histochemical Analysis of Collagen
Content
Quantitative histochemical analysis of collagen content was
performed on BC-MPS using a random tree-based machine
learning algorithm. The trained pixel classifier accurately
identified pixels within Masson’s trichrome stains as collagen, not
collagen, or background when analyzing BC-MPS (Figure 5A).
Masson’s trichrome stains of BC-MPS with MDA-MB-231
cells exhibited less collagen content than BC-MPS alone
(Figure 5B). The trained pixel classifier determined that on
average 13.39 ± 3.56 and 6.12 ± 4.42% of pixels were collagen
positive for BC-MPS and BC-MPS with the breast cancer cell line,
respectively (p = 0.0430) (Figure 5C).

Normalized Orientation Distributions and
Pixel Classification Allow Quantification
of ECM Dysregulation in Primary Breast
Tumors
Fiber orientation analysis and quantitative histochemical analysis
of collagen content from primary human breast tumors
were performed utilizing the WEKA-DJ method and pixel
classifier, respectively. SEM micrographs of ECM show a
greater degree of fiber alignment in tumors than in human
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FIGURE 3 | WEKA-DiameterJ method produces more accurate fiber segmentation than CT-FIRE. (A) Schematic of workflow for quantifying collagen alignment for a
scanning electron micrograph (SEM) using the CT-FIRE method and WEKA-DiameterJ method (WEKA+DJ). Segmented fibers are indicated by colored lines on the
CT-FIRE Map, by white pixels on the Weka Segmentation Tool (WTS) Map, and as thin black lines on the Axial Thinning (AT) Map. (B) A region of interest within the
SEM micrograph and corresponding CT-FIRE Map, and AT Map after segmentation with the WEKA-DJ method. A single foreground fiber (red arrow) within the SEM
is oversegmented by CT-FIRE but appropriately segmented by the WEKA-DJ method. Segmentation by CT-FIRE incorrectly segmented fibers within a pore (red
box). (C) Incidence of oversegmentation (mean + SEM) by CT-FIRE and WEKA-DJ methods (n = 5) (p = 0.0172).

breast tissue cultured in the BC-MPS (Figure 6A). Mann–
Whitney U tests on the normalized orientation distributions
accurately identified the visually observed differences in fiber
alignment (p = 0.003221) (Figure 6B). The trained pixel classifier
accurately identified pixels within Masson’s trichrome stains
as collagen, not collagen, or background in the sections of
primary breast tumors (Figure 6C). Masson’s trichrome stains of
lobular carcinoma exhibited more collagen content than ductal
carcinoma (Figure 6D). The trained pixel classifier determined
that on average 73.40 ± 8.87 and 32.69 ± 10.87% of pixels were
collagen positive for lobular carcinoma and ductal carcinoma,
respectively (p = 0.027) (Figure 6E).

DISCUSSION

Given the importance of ECM remodeling in cancer progression
and metastasis, accurate and accessible methods of quantifying
changes in fiber alignment and collagen deposition in human
samples are needed (Walker et al., 2018). Software tools have been
developed to measure such changes from micrographs of ECM.
CurveAlign and CT-FIRE have both been successfully applied to
study simplified artificial and murine collagen matrices. However,
both programs have difficulty identifying (1) intact fibers from a
dense fiber network, (2) curvy fibers, (3) fibers which have large

variations in inter-fiber brightness, and (4) dark fibers adjacent
to brighter ones (Drifka et al., 2015; Walsh et al., 2015; Liu et al.,
2017). Previous studies utilizing CurveAlign and CT-FIRE have
relied on SHG microscopy, which provides high contrast between
collagen fibers and their background, reducing the software’s fiber
detection errors (Chen et al., 2012). Other imaging modalities
such as SEM do not share the same sensitivity to fibrillar collagen,
precluding the use of a commonly available and critical imaging
modality from the study of ECM (Bredfeldt et al., 2014b). Modern
SHG instrumentation requires a femtosecond laser and a laser
scanning optical microscope making the imaging modality cost
prohibitive. The fiber detection challenges using contemporary
software are exacerbated when human tumors were imaged; CT-
FIRE over- and under-segmented fibers despite the use of SHG
microscopy (Conklin et al., 2018).

In this study, we demonstrated that segmentation of SEM
micrographs using a machine learning tool prior to orientation
analysis addressed these challenges and accurately identified
fiber alignment in native, human breast ECM. Prior to fiber
orientation analysis with DiameterJ, SEM micrographs were
segmented using the WTS Tool. The WTS Tool is a pixel-based
segmentation software which is built upon the robust machine
learning and data mining platform, Waikato Environment for
Knowledge Analysis (WEKA) (Arganda-Carreras et al., 2017).
The sophistication and adeptness of the WEKA platform
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FIGURE 4 | Normalized orientation distributions identify visible differences in ECM fiber alignment. (A) SEM micrographs of decellularized ECM generated using
breast tissue alone (CTRL) and seeded with MDA-MB-231 cancer cell lines (231). (B) Normalized fiber orientation distributions for CTRL and 231 ECM (n = 14)
(p = 0.000114). (C) Orientation index (mean + SEM) for CTRL and 231 ECM (n = 14) (p = 0.6520).

allow for accurate fiber determination when trained with SEM
micrographs. In contrast, CurveAlign and CT-FIRE rely on
de-noising the SEM micrograph using a curvelet transform
and a variety of post-processing algorithms to identify fibers.
CT-FIRE uses the “FIRE” algorithm which contains steps for
boundary detection, fiber center point identification, and short
fiber removal. In CurveAlign, individual fibers are not extracted,
rather the curvelets from a curvelet transform are used to
represent the edges of fiber segments without additional steps
to detect fiber edges, hence fiber extraction is done by CT-FIRE
prior to analysis by CurveAlign (Liu et al., 2017). Unlike the WTS
tool which can be trained for any image type, the curvelet-based
methods require high-resolution images of collagen fibers and are
prone to inaccuracies. Thus, utilization of the WTS tool allows
accurate fiber alignment analysis from lower resolution imaging
methods such as ECM.

However, the use of the WTS tool requires the subsequent use
of DiameterJ. DiameterJ outputs a frequency distribution of fiber
orientations instead of a single-number metric like CurveAlign’s

alignment coefficient. A method of comparing alignment using
frequency distributions across samples was necessary. Previous
methods of assigning single-number metrics such as OI to
DiameterJ’s frequency distributions have been described. Like
other single-number metrics, OI is a valuable tool only when the
distribution is Gaussian. Single-number metrics cannot represent
the complexity of real ECM distributions, which typically
have multiple, non-Gaussian peaks. The method described
here allows two non-parametric frequency distributions to be
compared. This opens the door to the use of technical and
biological replicates. This is critical when working with complex,
primary human ECM which has much greater inter-image
fiber variation compared to artificial, single collagen matrices
used in prior studies. Here, we showed that OI would have
incorrectly affirmed a lack of difference in alignment among
samples which contain visible differences in fiber alignment.
Furthermore, MDA-MB-231 cells have been previously shown
to induce ECM fiber alignment in a variety of 3D ECM models
(Riching et al., 2014). Currently, studies establish significant
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FIGURE 5 | Pixel classification allows quantitative histochemical analysis of collagen content. (A) Masson’s Trichrome stain of BC-MPS and corresponding
probability map generated by pixel classification, in which red pixels indicate collagen deposition, blue pixels indicate areas with no collagen, and white pixels
indicate background. (B) Masson’s Trichrome stains of BC-MPS alone (CTRL) and BC-MPS under the influence of MDA-MB-231 cancer cells (231). (C) Collagen
content (mean + SEM) of BC-MPS alone (CTRL) (n = 4) and under the influence of MDA-MB-231 cells (231) (n = 6) (p = 0.0430).

changes in cancer ECM utilizing genomic and proteomic findings
(Assadian et al., 2012; Álvarez-Garcia et al., 2019). Although these
findings indicate molecular changes in ECM, they do not shed
light on the physiological significance of cancer related ECM
re-organization. The ability to quantify ECM reorganization
from imaging and compare across samples allows for future
study into this area.

Similar gaps in quantifying collagen content in ECM exist.
Current easily-accessible and accurate methods of quantifying
collagen content rely on destructive methods such as HPLC or
hydroxyproline assays which fail to provide information about
the spatial distribution of collagen content within a specimen
(Qiu et al., 2014). Collagen content was quantified for sections

stained with Picrosirius red, but the method required a polarized
light microscope which is cost-prohibitive (Wegner et al.,
2017). A semiautomated method of histochemical quantification
of collagen content was described using a threshold analysis
but was imprecise as it included non-collagen structures as
collagen and failed to detect smaller collagen deposits (Schipke
et al., 2017). Other methods of quantifying collagen from
histochemical stains rely on manual selection of collagen
which is prone to subjective errors. Training a pixel classifier
using a random forest decision making algorithm makes it
possible to incorporate vastly more information into identifying
collagen during image analysis than is possible with a simple
threshold-based system, thus enabling accurate identification of
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FIGURE 6 | Normalized orientation distributions and pixel classification allow quantification of ECM dysregulation in primary breast tumors. (A) SEM micrographs of
decellularized ECM from human breast tissue (CTRL) and decellularized ECM from a primary human breast tumor. (B) Normalized fiber orientation distributions for
the human breast tissue (CTRL) (n = 14) and breast tumor ECM (n = 1) (p = 0.003221). (C) Masson’s Trichrome stain of frozen breast section and corresponding
probability map generated by pixel classification, in which red pixels indicate collagen deposition, blue pixels indicate areas with no collagen, and white pixels
indicate background. (D) Masson’s Trichrome stains of lobular carcinoma and ductal carcinoma. (E) Collagen content (mean + SEM) of lobular carcinoma (n = 4) and
ductal carcinoma (n = 6) (p = 0.026779). *Indicates p < 0.05 and ** indicates p < 0.005.

collagen content (Bankhead et al., 2017). We demonstrated the
use of QuPath’s trainable pixel classifier as an adept way of
determining collagen from Masson’s Trichrome stains of complex
microphysiological models.

The methods to quantify ECM dysregulation described
here were successfully applied to primary human breast
tumors. Fiber alignment quantification using the WEKA-
DJ method determined that ECM was significantly more
aligned in tumors than in native human breast tissue. This
is expected as tumors have been shown to induce fiber
linearization within the ECM. As this is a critical mechanism
for tumor migration and progression, further examination
of ECM fiber alignment using this method may provide
insight into tumor behavior. Additionally, the pixel classifier
successfully identified significant differences in collagen content
between ductal and lobular carcinomas from histochemical
sections. Identification of histological differences between
lobular and ductal breast cancer types has clinical utility,
as these two cancers are differentiated via examination of
histological sections. Previously, no differences in collagen
content between ductal and lobular tumors were reported with
the use of SHG microscopy despite differences in collagen
associated gene expression between the cancer subtypes.
This discrepancy illustrates increased adeptness of these
methods to analyze ECM.

The use of these methods can also be utilized to analyze
cell-based therapies used to treat injured or degenerated tissues.
Zeugolis et al. described macromolecular crowding (MMC), a
biophysiological approach to cell-based therapy in which inert
polydispersed macromolecules are added to culture media to
create ECM-rich tissue equivalents. MMC induced a plethora of

changes to the ECM, such as increased deposition of numerous
collagenous proteins, basement membrane proteins, and stroma
remodeling enzymes (Satyam et al., 2014). Further evaluation
of MMC using the WEKA-DJ and pixel classification methods
may provide insight into the structural remodeling the ECM
undergoes with MMC.

In cancers, remodeled ECM protects the tumor by impeding
drug diffusion and activation of drug resistance pathways by
hypoxia. Hence, we plan to examine the role of altered ECM fiber
alignment and collagen deposition in drug resistance in future
studies utilizing the methods described in this study.

CONCLUSION

Quantitative analysis of the ECM is becoming more prominent
as the ECM is increasingly recognized as an important regulator
in a variety of diseases including breast cancer. Contemporary
tools to quantify two key mechanisms of cancer-associated
ECM dysregulation, fiber alignment and collagen deposition,
are inaccurate or cost prohibitive. The use of the WEKA-DJ
and pixel quantification methods to quantify these processes is
accurate, affordable, and adaptable. Furthermore, these methods
have successfully been used to quantify fiber alignment and
collagen deposition in human solid tumors and thus will allow
robust study of the role of ECM dysregulation in cancer.
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