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Abstract

We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction
programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12
myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs
validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory
sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on
sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies
nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved
predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence
conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data
supports the validity of the functional regions.
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Introduction

A regulatory network represents the complex interplay between

regulatory proteins and biochemical processes that govern when

and where genes are expressed. Two important components of a

regulatory network are cis-regulatory modules (CRM), composed

of functionally interacting clusters of transcription factor binding

sites (TFBS) sufficient to confer a pattern of expression upon a

promoter, and the corresponding trans-acting transcription factors

(TFs) that bind to a CRM to regulate transcription initiation. The

multiple TFBS that constitute a CRM allow for combinatorial

control of expression; a limited number of TFs can participate in

an exponential number of combinations with each potentially

conferring specific patterns of gene activity [1].

CRMs can be situated almost anywhere relative to the structure

of a gene: both near and far (even exceptionally far) from the

promoter region(s) at which transcription initiates. While there are

indications of quantitative orientation effects in some cases [2],

CRMs are generally thought to be active in either direction

relative to a gene promoter. Linear distance in primary sequence is

no indication of the three dimensional distance (or orientation)

within the nucleus. Regulatory regions can be located in introns of

an adjacent gene [3,4], can skip over intervening genes [5] and

there are suggestions that CRMs can act on genes located on

different chromosomes [3,6]. Reflecting these properties, the

discovery of CRMs stands out as a significant challenge for both

computational and experimental research.

In multicellular organisms, maintaining precise spatial and

temporal control of transcription in various cell types is vital for

correct tissue development and specialization [7–9]. One of the

most widely studied ‘‘programs’’ of tissue development is the

regulation of skeletal muscle differentiation. Myogenesis is a

structured process, in which mononucleate myoblasts fuse together

to form multinucleate myotubes, which then develop into classes of

myofibres [10]. C2C12 cells provide a popular model for this

process, with an easily triggered switch between the growth and

differentiation phases [11]. Any tissue differentiation process

requires complex transcriptional regulation controls. For skeletal

muscle, differentiated cell gene expression involves at least two

major TF families, the myogenin family and the MADS family

[12–14]. In many differentiation processes, multiple proteins

within a homology-based family can participate in the regulatory

control of gene expression at overlapping temporal stages of the

process. Skeletal muscle differentiation follows this model; thus the

myogenin family may equally refer to Myogenin, MyoD, and Myf-

2 while the MADS set encompasses both Srf and multiple

members of the Mef2 gene family. Dozens of muscle-specific

CRMs have been identified [15–17], usually based on reporter

gene assays in the C2C12 cell culture myogenesis model.

Aided by the relatively plentiful set of skeletal muscle CRMs,

much effort has been made by the bioinformatics research

community to develop predictive algorithms for CRM discrimi-

nation. Multiple CRM detection programs have been developed,

which look for clusters of TFBS specific to the TFs known to be
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involved in the cell type of interest. An original discriminative

method to distinguish between CRM and non-CRM sequences

based on a logistic regression analysis (LRA) procedure has been

followed by a plethora of more advanced approaches (Supple-

mental Table S1 in Text S1) [15]. For example, MSCAN makes

use of motif-specific p-values to compute the statistical significance

of sets of non-overlapping potential TFBSs [18], while Clus-

terBuster is based on a hidden Markov model that incorporates

heuristics to improve predictive performance [19]. None of the

methods are sufficiently reliable for direct genome annotation; the

specificity of predictions is sufficiently low that laboratory

validation is essential to distinguish functional CRMs. The overall

performance of the methods and the properties that differentiate

the functional CRMs from the false candidates remain to be

determined.

In some cases, the prediction of CRMs has been coupled with

phylogenetic footprinting under the premise that sequence

conservation of known CRMs and TFBS is indicative of function

and therefore a conservation filter will improve the positive

predictive value of the CRM prediction methods [15,20–22]. It is

often the case that the regulatory sequences display evidence of

evolutionary selective pressure compared to the background rates

of sequence change in non-functional sequence [23,24]. If the

expression pattern of a gene is conserved between two species in

the same taxonomy class, the CRM that confers the pattern is

likely to be retained as well (although the individual TFBS within

the CRM may be altered). By applying phylogenetic footprinting

to the analysis of closely related species (i.e. 50–100 million years

of separation for vertebrates), it becomes possible to concentrate

predictions within a subset of regions in the conserved segments of

genes. Improved specificity is balanced against the reduced

sensitivity imposed by any filter.

Once predictions of regulatory sequences have been made,

laboratory validation is required to confirm regulatory function.

One of the most widely used methods for validating computational

predictions of regulatory regions are reporter gene assays in a cell

culture model system [25]. A fusion construct of the predicted

regulatory sequence and a reporter gene with a basal promoter in

a plasmid is transiently transfected into cells, and the reporter gene

activity is measured to determine the regulatory impact that the

tested sequence exerts. It is feasible to conduct larger-scale

experiments to investigate functional properties of panels of

candidate CRMs and promoters within cells. Cooper et al

performed a large screen of promoter activity in 16 cell lines on

all predicted promoters in the 1% of the human genome targeted

for in depth annotation by the ENCODE Project [26]. Similarly,

relatively large-scale in vivo enhancer studies have been performed

using highly conserved (human to fish) sequences driving reporter

gene expression in transgenic mouse embryos, leading to the

identification of 75 forebrain-specific enhancers [27]. Kappen et al.

analyzed the regulatory controls for lsl, a LIM/homeodomain

transcription factor, by inserting randomly sheared 8–10 kb

fragments from the lsl genomic locus into reporter constructs

and testing for expression both in vitro and in vivo [28]. Using a

single copy insertion mouse transgenesis procedure, the Pleiades

Promoter Project evaluated over 100 candidate regulatory

sequences for the capacity to direct selective patterns of reporter

gene expression in the developed brain [29]. The development of

higher-throughput approaches to verify enhancer and promoter

function has been a focus of recent efforts to annotate vertebrate

genomes.

The properties of skeletal muscle CRMs have been widely

studied, but relatively few novel functional CRMs have been

described since CRM prediction methods have emerged. To

quantify the performance of CRM prediction methods requires a

new body of reference data. We generated predictions of CRMs

with three published methods and assessed the predictive benefit of

sequence conservation and annotation of the expression patterns

of proximal genes. We employed LRA, MSCAN, and ClusterBus-

ter to scan the human genome for putative skeletal muscle

regulatory regions, and tested a subset for the capacity to drive

reporter gene expression in a selective manner in the C2C12 cell

skeletal muscle differentiation assay. We compare the reporter

gene expression in immature myoblasts against expression in

mature myotubes, as well as in a fibroblast cell line. Based on the

outcomes of the analysis, we define additional properties of

sequence composition that are predictive of function and establish

a new reference collection for the continuing development of

predictive methods.

Methods

Human Genome Search Regions
Promoter regions are identified following the procedure

described for the oPOSSUM database [30]. The oPOSSUM

database contains the set of genes identified as being in one-to-one

human and mouse ortholog pairs based on annotations in

EnsEMBL v. 41 and UCSC hg18/mm8 whole genome align-

ments. For each ortholog pair, 10 kb upstream and downstream of

a TSS is searched for CRMs. All noncoding regions are included

in the search, including intergenic regions, introns, and untrans-

lated regions (UTR) of exons; protein coding portions of exons are

excluded. Any noncoding region that constitutes a portion of a

coding exon in an alternative transcript is removed from the

selection process. All alternative transcription start sites (TSS)

supported by either human or mouse Fantoms3 CAGE evidence

were identified and 50 bp on either side of each TSS was excluded

[31].

Muscle cis-Regulatory Module Prediction
CRM prediction tools were used to search for muscle-specific

regulatory modules within the specified genome sequences.

Logistic Regression Analysis (LRA), MSCAN, and ClusterBuster

were applied to the human genomic sequence regions specified

above [15,18,19]. The input TFBS motif models were taken from

JASPAR, a database of transcription factor binding site profiles

Author Summary

For efficient identification of genomic sequences respon-
sible for regulating gene expression, a number of
computer programs have been developed for automatic
annotation of these regulatory regions. We searched for
potential regulatory regions responsible for controlling the
expression of skeletal muscle-specific genes using these
programs, and validated the predictions in a popular cell
culture model for muscle. We were able to identify 19
previously uncharacterized regulatory regions for muscle
genes. The accuracy of the predictions made by these
programs leaves much to be desired, leading us to
conclude that other signals in addition to the sequence
information will be required to achieve sufficient predic-
tive power for genome annotation. Genomic regions with
confirmed regulatory function were compared against
non-functional sequences, revealing sequence conserva-
tion, composition and chromatin modification properties
as important signals in determining regulatory region
functionality.

Muscle Enhancer Profiling Reveals Novel Properties
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[32]. The models used were MEF2A (MA0052), SRF (MA0083),

MYF (MA0055), TEAD (MA0090), and SP1 (MA0079); TFs with

described key roles in muscle-specific gene expression. Predicted

CRMs composed entirely of SP1 TFBS were excluded.

Conservation Analyses
The candidate regions were analyzed for conservation based on

phastCons scores (generated with 28 placental mammal genomes)

obtained from the UCSC Genome Annotation system [33]. For a

region to be classified as conserved, the presence of at least one

sub-region with phastCons scores of 0.7 or greater over 20 bp is

required. For each region, both the mean and the maximum

phastCons scores were calculated and sub-regions with phastCons

scores over 0.7 were extracted and the ratio of the length of these

sub-regions over the total length of the region calculated. For

phylogenetic depth evaluation, three sets of human phyloP scores

(generated with 46 vertebrates, 46 placental mammals and 46

primates; database version hg19) were obtained from the UCSC

Genome Annotation system.

MyoD ChIP-Seq Data
The ChIP-Seq peak locations for MyoD binding regions in the

mouse genome were obtained from http://www.cs.washington.

edu/homes/ruzzo/papers/DevCell/2010a/, the companion web

resource to the reference publication [34].

Histone Modification ChIP-Seq Data
C2C12 cell ChIP-Seq peak locations for H3K4me1/2/3,

H3K9me3, H3K9Ac, H3K18Ac, H3K27me3, and H4K12Ac

annotated by Asp et al. were downloaded from the NCBI GEO

database (GSE25308; [35]).

TFBS Profile Similarity Comparison
MatrixAligner was used to calculate the profile similarity of two

TFBSs [36]. This program generates scores from 0 to 2, where a

score of 2 indicates complete identity between two matrices being

compared.

Cell Culture
Mouse C2C12 myoblasts (ATCC CRL-1772; American Type

Culture Collection; Manassas, VA, USA) and mouse NIH-3T3

fibroblasts (ATCC CRL-1658; American Type Culture Collec-

tion; Manassas, VA, USA) were maintained in Dulbecco’s

modified Eagle’s medium, supplemented with 10% (v/v) heat

inactivated fetal bovine serum, 100 U/ml penicillin, and 100 mg/

ml streptomycin. The cultures were grown at 37uC and 5% CO2.

Differentiation of myoblasts into myotubes was induced by

transferring C2C12 cells to differentiating media consisting of

2% (v/v) horse serum, 100 U/ml penicillin, and 100 mg/ml

streptomycin. The media and reagents for cell culture were

obtained from Gibco-Invitrogen (GIBCO-Invitrogen Canada,

Canadian Life Technologies, Burlington, ON, Canada).

Plasmids and Cloning
Primer3 was used to design the flanking primers for each

predicted CRM for PCR [37]. After performing PCR with the

designed primers (synthesized by Invitrogen Coporation (Carls-

bad, CA, USA)), 20 ng of each PCR product was pooled, which

were then purified using the PCR purification kit (NEB,

Mississauga, ON, Canada) and subcloned into the pGL-3

promoter luciferase vector (Promega; Fisher Scientific, Nepean,

ON, Canada) via Kpn I and Bgl II restriction enzymes sites.

Restriction digest was performed overnight at 37uC. Post-

digestion, the vector was dephosphorylated with calf intestinal

alkaline phosphatase (NEB, Mississauga, ON, Canada). The

restriction enzyme-digested PCR products and the vector were

gel-purified using QIAquick gel extraction kit (Qiagen Inc.

Mississauga, ON, Canada) and ligated using T4 DNA ligase

(NEB, Mississauga, ON, Canada).

A set of control clones and a sample of the library were

prepared. Constructs were transformed into sub-cloning efficient

DH5a chemically competent E .coli cells (GIBCO Invitrogen

Canada, Canadian Life Technologies, Burlington, ON, Canada)

via heatshock at 42uC and plated on LB agar plates containing

100 mg/ml of Ampicillin for preliminary bacterial colony screen-

ing. Colonies were picked and inoculated overnight in 3 ml LB

broth with ampicillin. Plasmids were prepared using QIAprep

Spin Miniprep Kit (Qiagen Inc. Mississauga, ON, Canada).

Sequence confirmation was performed by the CMMT/CFRI

DNA Sequencing Core Facility.

High-throughput Screening of Clone Libraries
Large-scale transformation, colony picking, miniprep, and

sequencing reactions with the constructs were performed (Genome

Science Centre, Vancouver, BC, Canada). 1 ml of ligation mix was

transformed by electroporation into E. coli DH10B T1 resistant

cells (Invitrogen). Transformed cells were recovered using 1 ml of

SOC medium and plated onto 22 cm622 cm agar plates

(Genetix) containing 100 ug/ul ampicillin. Bacterial colonies were

picked from the agar plates and arrayed into 384-well microtiter

plates (Genetix) using a QPIX automated colony 15 picker

(Genetix). Plasmid preparations were performed via an alkaline

lysis protocol. DNA sequencing reactions were prepared using a

Biomek FX workstation (Beckman-Coulter) and performed using

BigDye 3.1 (Applied Biosystems). Analysis of the resulting

sequences to the target DNA regions was performed with AlignX

from the Vector NTI software (Invitrogen).

DNA Concentration Measurement and Normalization
Concentration of the plasmid products was quantified using

Picogreen assays (GIBCO-Invitrogen Canada, Canadian Life

Technologies, Burlington, ON, Canada) via fluorescence mea-

surement with a POLARstar Omega microplate reader (BMG

Labtech; Fisher Scientific, Nepean, ON, Canada). All DNA

samples were normalized to 100 ng/ml per well.

Transfection and Reporter Gene Assays
Two sets of C2C12 myoblasts and one set of NIH-3T3

fibroblasts were seeded in 96-well plates at a density of 6000 cells

per well. The myoblasts were divided into two sets so that one set

could be harvested as myoblasts, while the other set could be

differentiated into myotubes prior to harvest. After 24 h (at 70%

confluency) in growth media, the cells were transfected with

200 ng of a pGL3-promoter firefly luciferase plasmid construct

and 20 ng renilla phRL-TK internal control luciferase plasmid

(Promega, Madison, WI) using Lipofectamine 2000 according to

the manufacturer’s protocol (GIBCO-Invitrogen Canada, Cana-

dian Life Technologies, Burlington, ON, Canada). At 24 h post-

transfection, the myoblast C2C12 set and the NIH-3T3 fibroblasts

were harvested and luciferase activity measured using the Dual-

Luciferase Reporter Assay System (Promega, Madison, WI) and a

POLARstar Omega microplate reader (BMG Labtech; Fisher

Scientific, Nepean, ON, Canada). The final set of C2C12

myoblasts was switched to differentiating media 24 h after

transfection, and incubated for 96 h for differentiation into

myotubes. For each clone, duplicate transfections (technical

replicates) were performed. The reporter gene activity assays were

Muscle Enhancer Profiling Reveals Novel Properties
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carried out in two phases. In phase 1, all plasmid constructs were

tested in the three cell types. In the second phase, only myotube

and myoblast activities were assessed.

Data Analysis
The following terminology will be used when discussing the

experimental data:

N Clone: a single clone bacterial colony with a homogeneous

insert sequence

N Plasmid prep: plasmid extraction from a single bacterial

culture

N Insert sequence: the genomic region introduced into a plasmid

N Insert plasmid: the vector plasmid containing a sequence of

interest

N Clone replicates: replicated experiments using the plasmids

from the same clone but from different plasmid preps (i.e.

independent DNA preparation)

N Insert replicates: experiments using plasmids recovered from

different bacterial clones but sharing the same insert sequence

N Technical replicates: replicated experiments using plasmids

from the same DNA preparation

All statistical analyses were done using the R software [38]. The

ratios of firefly luciferase expression values over the renilla

luciferase expression values were calculated to measure the relative

increase of the firefly luciferase activity over the renilla luciferase

activity (the internal control for transfection efficiency). Clones that

did not produce both firefly and renilla luciferase expression values

above the minimum threshold of 1000 luminescence relative light

units (LRUs) were marked as failed transfections and removed

from subsequent analyses. This heuristic filter was applied to

exclude spurious expression ratio measurements, as the ratio of

two small values can result in a disproportionately high value, and

the VSN procedure intended to mitigate this effect was not

sufficient [39]. For those clones where only the firefly luciferase

values were above this threshold, the renilla luciferase value was

set to the threshold level. This step was designed to minimize the

occurrence of large ratios even when the firefly luciferase

expression values are near the threshold. The threshold of 1000

LRUs is higher than the median machine background level, which

was found to be below 250 LRUs. While this conservative heuristic

filter may result in a decrease in sensitivity, the trade-off was

deemed acceptable in order to avoid situations where spurious

measurements are accepted as false positive results. The expression

ratios from the two technical replicates for each clone were

averaged, excepting the cases where a replicate transfection failed

the minimum expression threshold filter (in such cases the single

replicate value was used). The expression ratios obtained for each

cell type were normalized using the VSN package. Each clone was

treated as an independent sample even though there were in some

cases insert replicates. The stochastic variation in the number of

insert replicates would otherwise have complicated the analysis.

Differential expression between 1) fibroblasts and myotubes, 2)

myoblasts and myotubes, and 3) fibroblasts and myotubes groups

were determined using the SAM package [40], applying a false

discovery rate maximum of 0.05. The two sets of clones selected

from phase 1 and phase 2 at the FDR of 0.05 were combined and

grouped according to the insert sequence. For each sequence, the

Figure 1. Selection of clones for differential expression analysis. The selection is divided into 2 phases, where the clones selected for Phase 2
are a subset of all clones tested in Phase 1. Phase 1 and Phase 2 samples are from different plasmid preparations.
doi:10.1371/journal.pcbi.1002256.g001
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number of clones that were identified as showing differential

expression was counted, and those sequences with only one

supporting clone and/or less than 50% of the available clones

identified as positive were excluded from the final set.

Results

The experimental procedures and analyses presented in this

paper consist of four main components: i) computational

prediction of muscle-specific CRMs within the human genome;

ii) validation of predictions using reporter gene assays and cell

culture; iii) assessing performance of CRM prediction tools on the

experimentally tested regions; and iv) analysis of the properties of

newly validated muscle-specific CRMs relative to the properties of

non-active sequences.

Region Selection
The overall region selection process is illustrated in Supple-

mental Figure S1 in Text S2. Three sets of genomic sequences

were identified for the study of skeletal muscle CRM predictions:

(i) background regions randomly selected from conserved regions

for control (background set); (ii) predicted skeletal muscle CRM

regions proximal to skeletal muscle-expressed genes (muscle set);

and (iii) predicted skeletal muscle CRM regions proximal to genes

with no observed link to skeletal muscle (non-muscle set). Prediction

of CRMs was performed for the muscle and non-muscle sets, while

the background sequences were randomly selected from conserved

intergenic regions which may or may not contain predicted

CRMs. The sets are further described below.

Background. A set of 200 regions was selected randomly

from intergenic regions within the oPOSSUM conserved

sequences (Methods) with high regulatory potential scores [41].

The scores are intended to reflect consistency with the pattern of

sequence identity in genome sequence alignments observed in

known CRMs, and minimally reflect regions of greater sequence

conservation. It is important to note that regions selected from

conserved regions of the genome are likely to have distinct

properties from regions randomly selected from the whole

genome.

Muscle. Gene expression profiles associated with elevated

expression concurrent with C2C12 myoblast-to-myotube differen-

tiation were identified from the literature. Distinct sources of

annotated skeletal muscle genes follow. Moran et al. performed gene

expression profiling using Affymetrix oligonucleotide arrays, and

identified 108 genes up-regulated in differentiated myotubes using

one-way nested analysis of variance [42]. Tomczak et al. profiled

expression using Affymetrix GeneChips, from which they identified

447 genes up-regulated in myotubes through hierarchical cluster

analysis with CAGED 1.1 software [43]. In a complementary study,

Blais et al. performed ChIP-chip analysis that identified 198 regions

bound by MyoD, myogenin or Mef2 [44]. Kislinger et al. examined

global proteome changes by tracking the abundance of 1865

proteins through gel-free tandem mass spectrometry in both

myoblasts and myotubes, of which 80 were identified as up-

regulated in myotubes [45]. The superset of the skeletal muscle

genes arising from these studies was compiled. We previously

annotated a list of 28 CRMs in 24 human genes for which at least

one regulatory region responsible for skeletal muscle expression had

Table 1. List of genomic regions validated as driving muscle-specific expression.

Coordinates Prediction Method

Set Chr Prediction Insert Gene Name
Positive
Wells C. Buster LRA MSCAN

BG 11 116201218–116201584 116201218–116201584 APOA4; APOC3 4/5

BG 11 1721407–1721765 1721407–1721765 HCCA2 3/6 C

BG 11 66008803–66009164 66008803–66009164 DPP3 2/2

BG 11 71615350–71615709 71615350–71615709 INPPL1 2/2

NM 15 83185168–83185457 83184998–83185491 ALPK3 2/2 C L M

NM 18 40637176–40637555 40637097–40637579 SETBP1 3/4 C L M

NM 22 22516591–22516990 22516569–22517062 DERL3; SLC2A11 10/11 C L M

NM 22 22883635–22883974 22883584–22884017 CABIN1 2/4 C L M

M 1 119250477–119250882 119250477–119250882 TBX15 2/2 C L M

M 1 199612030–199612429 199611961–199612457 TNNT2 2/4 C M

M 2 144878638–144878867 144878533–144878970 ZEB2 2/2 C M

M 2 88147937–88148156 88147915–88148315 SMYD1 4/4 L

M 4 37728510–37728799 37728494–37728957 TBC1D1 2/4 L M

M 6 42106432–42106831 42106373–42106867 CCND3 2/2 C L M

M 6 7127465–7127684 7127364–7127817 RREB1 2/4 L M

M 9 35677988–35678317 35677887–35678364 TPM2 6/9 C L

M 14 104259446–104259775 104259362–104259861 INF2; ADSSL1 2/3 C L

M 19 3326530–3326884 3326530–3326884 NFIC 4/4 L M

M 19 54184895–54185244 54184834–54185225 GYS1 2/3 C L M

Gene names were chosen for their proximity to the regions of interest (UCSC hg18). ‘Positive Wells’ column shows the number of replicates that were classified as
positive out of all replicates for the sequence. Columns ‘C.Buster,’ ‘LRA,’ and ‘MSCAN’ indicate programs which predicted a CRM in the given region.
doi:10.1371/journal.pcbi.1002256.t001
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been confirmed experimentally; we refer to this collection as the

muscle reference set (a portion of this set was described in [15]; listed

in Dataset S1). Combining the superset with the muscle reference

set yields 610 unique skeletal muscle-selective genes based on

C2C12 experimental data.

Three CRM prediction programs were applied to the 610

sequences and 2,167 putative CRMs were recorded. A total of 518

candidate regions were predicted by more than one program, and

high-quality primers for the same experimental PCR settings could

be designed for 271 of them using Primer3. Further 220 primers

could be designed for 400 randomly selected putative CRMs that

were predicted by one program only. In the end, 384 candidate

regions were selected for PCR amplification. For the muscle

reference set, albeit highly circular due to the use of most of the

sequences in parameter training for the published methods, we

assessed the number of known CRMs detected by each program:

Cluster-Buster detected 16, LRA detected 13, and MSCAN

detected 10.

Non-muscle. The set of genes represented in the oPOSSUM

database excluding the 610 muscle genes were similarly scanned

with the three prediction tools. These candidate CRMs were

screened to remove any overlap with CRMs included in the muscle

set or the background set.

Validation of CRM Activity in Cell Culture
Library construction and properties. The above sets of

predicted CRMs and background regions were inserted into

luciferase reporter gene plasmids and prepared as clone libraries.

As the clone recovery process was stochastic, only a subset of the

regions was recovered from each library and the number of insert

replicates for each candidate CRM was variable. In the end, 355

unique insert sequences were present in 672 tested plasmids, of

which 339/355 were successfully aligned to the intended PCR

regions. The specific number of recovered candidate regions from

each collection (88 background, 196 muscle or 55 non-muscle) is given

in Supplemental Table S2 in Text S1; their locations are listed in

Dataset S1. A brief discussion on the technical challenges faced is

given in Text S3.

Validation of the assay. Before proceeding with the

experimental validation of the 339 sequences, we first assessed

the performance of the dual luciferase reporter assay with known

CRMs from muscle-expressed genes (desmin, TN-I) [46–48] and

non-muscle expressed genes (PAH) [49]. The activity of the pGL3-

promoter plasmid served as a negative control, while the PAH

sequence was anticipated to function equivalently in differentiated

and undifferentiated C2C12 cells. Two independent plasmid

preparations were assessed with transfections performed in

triplicate. The expression of the reporter gene driven by the

muscle CRMs was elevated 5-fold (DES) and 15-fold (TNI) in

myotubes relative to myoblasts, while the non-muscle CRM (PAH)

was unchanged (Supplemental Figure S2 in Text S2).

Reporter expression analysis. An overview of the clone

production process is presented in Figure 1. The subset of plasmids

that selectively directed myotube expression (2-fold increase or

elevated based on SAM analysis) in phase 1 was advanced for

further analysis in phase 2. In addition, single rows from each of

the seven plates used in phase 1 were advanced, in order to assess

the reproducibility of results. This selection process resulted in 204

plasmids being advanced. Independent plasmid preparations were

used in the second round.

While individual predicted CRM inserts exhibit higher

expression than the background controls, the mean expression

ratios of the two sets are not significantly different based on a t-test

(Supplemental Figure S3 in Text S2). Reporter gene expression

increases from myoblasts to myotubes are similar between the two

groups, although the predicted CRM inserts exhibit higher

variability. Both firefly and renilla raw reporter expression values

were lower for the background controls. This characteristic was

observed for both phase 1 and phase 2 (independent plasmid

preparations).

Using the analysis criteria described in Methods, a set of 19

novel insert sequences was identified as driving selective

myotube expression (relative to myoblasts and fibroblasts)

(Table 1). These 19 CRMs are hereafter referred to as the

validated positive regions. Of the 19 CRMs, 11 were derived

from the muscle gene insert set, 4 from the non-muscle set and

4 from the conserved regions control group. Application of the

CRM prediction tools to the 4 functional sequences from the

control group resulted in 1 putative CRM being identified by

ClusterBuster.

Table 2. Over-represented TFBS in the background regions of the validated set vs. the non-responding background regions
(ranked by Fisher p-values).

TF TF Class Ctrl gene hits Ctrl gene non-hits Target gene hits Target gene non-hits Z-score Fisher score

RREB1 ZnF-C2H2 8 43 3 1 13.29 2.23E-02

Dl REL 26 25 4 0 5.27 8.04E-02

NHLH1 bHLH 16 35 3 1 7.03 1.14E-01

doi:10.1371/journal.pcbi.1002256.t002

Table 3. Over-represented TFBSs in the non-background regions of the validated set vs. the non-responding non-background
regions (ranked by Fisher p-values).

TF TF Class Ctrl gene hits Ctrl gene non-hits Target gene hits Target gene non-hits Z-score Fisher score

MEF2A MADS 116 92 13 2 4.48 1.55E-02

NHLH1 bHLH 120 88 12 3 7.98 7.36E-02

Fos bZIP 181 27 15 0 4.10 1.35E-01

doi:10.1371/journal.pcbi.1002256.t003
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Properties of the Validated Positive Set
To identify defining characteristics of the positive regions

compared to the non-responding regions, the validated set was

subjected to analyses based on sequence and conservation

properties.

Overrepresented TFBS. The oPOSSUM analysis method

was applied to identify TF binding motifs over-represented in the

19 functional CRMs relative to the inactive inserts (Table 2). The

top-scoring TFBS in the myotube-directing background regions

are those of RREB1, dorsal and NHLH1 [50–52]. We could not

find any direct link between muscle development and RREB1 in

the literature. It is possible that the enrichment is just an artefact

due to the RREB1 motif having high information content, which

results in infrequent binding site predictions compared to most

other motifs. If the foreground regions contain even just a few sites,

it can result in high over-representation scores compared to the

background set. Dorsal, a Rel TF, is involved in early stages of fly

development; however, we could not find any direct role that Rel

TFs play in vertebrate muscle development. As there could be

other contributing motifs beyond the 5 muscle-linked motifs used

the initial CRM prediction methods, further oPOSSUM analyses

were carried out: 1) comparing the validated regions from the non-

background sets as the test set against the remainder of the non-

responding regions of the non-background sets as the control set,

and 2) comparing the entire set of validated regions against all

inactive inserts. Because all non-background regions are CRM

predictions made with the 5 muscle motifs, these motifs were

expected to be prevalent in both the positive and non-responding

regions. Unexpected motifs present in the positive regions but

absent in the non-responding regions could contribute to increased

expression in myotubes. If this were the case, these additional

motifs would be expected to be overrepresented in the above

oPOSSUM analyses. Comparison of the non-background

validated regions against the non-responding regions returned

MEF2A and NHLH1 as being the most over-represented TFs

(Table 3). MEF2A is one of the five muscle TFs used to make the

CRM predictions. As not all predictions necessarily contain

MEF2A hits, this result indicates the importance of this binding

site being present for functional muscle-specific CRM relative to

the other four muscle motifs. It suggests that MEF2 binding sites

are potential master sites for a subset of active CRMs. NHLH1 is a

bHLH TF, the same TF class as the myogenin family, sharing a

similar binding profile with this group (normalized score of 1.73

using the MatrixAligner program, as explained in the Methods

section). The over-representation of this motif may be an indirect

marker for Myf, one of the five profiles contributing to the CRM

predictions. Comparison of all validated regions against all non-

responding regions again returns NHLH1, RREB1 and MEF2A

as the most over-represented motifs (Table 4; Supplemental Figure

S4 in Text S2).

Sequence composition. The next property examined was

the sequence composition of the validated regions. Specifically, we

analyzed both the single and dinucleotide composition

characteristics of these regions to see if any significant biases

could be found compared to the non-responding regions. The

Wilcoxon rank sum test was performed to determine if any of these

region sets showed significantly different composition

characteristics. As shown in Table 5, both the muscle validated

regions have higher G/C mononucleotide frequency compared to

the non-responding regions; the significance of these differences is

supported by the rank sum tests for which most p-values were

below 0.05.

We also calculated the G/C and A/T skews in these sequences,

but no significant differences in these two measures could be found

between the responding regions and the non-responding regions

(Supplemental Table S3 in Text S1).

To further characterize the sequence compositional differences

between the responding and the non-responding regions, we

analyzed the dinucleotide compositions of the sequences

(Figure 2a). Differences were found in the frequencies of AA,

CC and GG, where the responding regions have higher

frequencies of CC and GG dinucleotides, and the non-responding

regions have higher frequencies of AA dinucleotides. This gives

further support to the difference in the G/C compositional

characteristics of the responding vs. non-responding regions. The

CpG dinucleotide was not enriched in the validated regions and

analysis presented below suggests that the enrichment properties

are not related to the well-known properties of CpG islands (this

point will be further explored below).

To examine whether such biases are present in CRM regions

for other tissue types, we performed composition analyses of the

curated brain-specific CRM collection from the Pleiades Promoter

Project [29]. The goal of this project is to construct human mini-

promoters that drive gene expression in specific brain regions. As

part of this project, the authors compiled a set of regulatory

sequences from 296 genes shown to act as brain-specific CRMs in

literature, which they deposited into the PAZAR database [53].

They also performed in vivo expression studies of their mini-

promoter constructs to identify the regulatory sequences that can

drive gene expression specifically in brain regions. Because this

data set is comprised of sequences from a number of different

species, we performed our analysis on both the entire set and

Table 4. Over-represented TFBSs in all regions of the validated set vs. the non-responding regions (ranked by Fisher p-values).

TF TF Class Ctrl gene hits Ctrl gene non-hits Target gene hits Target gene non-hits Z-score Fisher score

NHLH1 bHLH 136 123 15 4 9.79 2.07E-02

RREB1 ZnF-C2H2 50 209 8 11 11.49 2.49E-02

MEF2A MADS 125 134 13 6 3.38 7.16E-02

doi:10.1371/journal.pcbi.1002256.t004

Table 5. Sequence composition characteristics of the
responding regions vs. non-responding regions.

Responders Non-Responders p-value

Muscle Validated 0.54 0.51 4.35E-02

Muscle Reference 0.58 0.51 2.87E-06

Pleiades Curated All 0.55 0.51 1.67E-02

Pleiades Curated Human 0.56 0.51 3.40E-03

GC content; P-values were calculated using Wilcoxon rank sum tests.
doi:10.1371/journal.pcbi.1002256.t005
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human sequence subset. For the control set to compare against, we

use the non-coding human sequences that were tested in the

project and found to have no effect on driving gene expression in

the mouse brain. Similar to the muscle sequences, the Pleiades

brain CRMs display elevated G/C content compared to non-

functional sequences (Table 5). As for the dinucleotide frequencies,

while not as pronounced in the muscle responders vs. non-

responders, for the Pleiades regions, TA, TG and TT dinucleo-

tides occur more frequently in the non-responders (Figure 2b).

Lastly, we repeated the analysis for the MyoD ChIP-Seq peak

locations identified by Cao et al., and found elevated G/C content

in the MyoD-binding regions (Table 6).

Evidence of muscle expression. We attempted to assess if

myotube expression data was predictive for functional CRM

activity in the results (Supplemental Table S4 in Text S1), however

there were insufficient numbers from most datasets to determine

significance.

Sequence conservation. In selecting candidate skeletal

muscle CRMs, we did not incorporate phylogenetic footprinting

(sequence conservation). This exclusion allows for a retrospective

assessment of the impact of conservation-based filters on the

specificity and sensitivity of the predictions. Table 7 gives the

comparison of the sequence conservation characteristics of the

validated regions versus the non-responding regions. While the

average lengths of the PCR amplified inserts averaged ,400 bp,

only a portion of each sequence may be conserved. Global

measures may therefore fail to reflect the presence of a locally

conserved putative CRM. To alleviate this potential problem, we

measured both the mean and the maximum sequence

conservation scores for each region and then calculated the

mean of these values for each region set. For the validated regions

from the non-background sets, we observe both higher mean and

maximum phastCons scores compared to the non-responding

regions. This observation supports the validity of the widely used

approach of applying conservation filters when making predictions

for functional genomic regions. While some genome-wide ChIP-

Seq studies for TFs have suggested that the conservation of the TF

binding regions are limited, it is important to recognize that the

TF binding by itself does not necessarily indicate cis-regulatory

function. Figure 3 presents examples of positive regions from each

of the background, non-muscle and muscle sets, representing the

different conservation characteristics observed. The performances

of the three methods with and without sequence conservation filter

are summarized in Supplemental Table S5 in Text S1.

We performed receiver operating characteristic (ROC) analysis

for Cluster-Buster, LRA, and MSCAN using the ROCR package

in R [54]. The ROC analysis was performed both with and

without a conservation filter applied, based on the maximum

phastCons scores (Supplemental Figure S5 in Text S2). For true

positive regions, we included both the insert sequences that were

validated through the reporter expression assays or literature-

derived known muscle reference regions exclusive of the skeletal

muscle training sets used in the development of LRA and

ClusterBuster (see Dataset S1). For negative examples, all

predicted and tested CRM regions (muscle and non-muscle sets) that

did not respond to the reporter assays were used. An ROC curve

based solely on the conservation filter was also generated. While

adding the conservation filter improved the prediction perfor-

mance for all methods tested, the conservation filter-only results

exhibited the best performance, with the AUC of 0.76. However,

it is noted that a large percentage of the non-responding regions

come from the predictions by the three methods (211 of 295

regions, or 71.5%); as such, this high AUC of 0.76 is not

independent of the contributions by the prediction programs. The

findings confirm utility for incorporating sequence conservation

into the prediction of cis-regulatory modules.

Promoters and CpG islands. We examined the distances of

the regions to the nearest Ensembl-annotated TSSs (Supplemental

Table S6 in Text S1). While there was much variability in the

distances, with some regions located more than 100 kb away, the

responding regions were in general located closer to the TSSs than

the non-responding regions (median of ,1 kb vs. ,12.5 kb). In

order to determine if the responding regions are associated with

CpG islands, 1 kb upstream and downstream from each region

were searched for UCSC-annotated CpG islands (Supplemental

Table S7 in Text S1). While a higher proportion of the responding

regions were associated with CpG islands compared to non-

responding regions, the difference did not have statistical

significance (p-value of 0.13 obtained with Fisher test). Only 2

regions from the validated set were associated with CpG islands

(10.5%), while 10 regions from the reference set overlapped with

CpG islands in their flanking sequences (35.7%). This increase is

likely due to the fact that the reference set regions are more

proximal to the TSSs (median distance of 122.5 bp) than the

validated set regions (median distance of 4,606 bp), and CpG

islands are also typically in the vicinity of TSSs [55]. As evident in

Table S7 in Text S1 and Figure 2, the muscle reference regions do

display elevated CpG frequency and CpG island proximity,

consistent with experimental bias in early promoter analysis for

regions proximal to transcription start sites.

Phylogenetic depth. Cheng et al. performed ChIP-chip

analysis of GATA1 binding regions in mouse erythroid cells and

observed that most of the GATA1 binding regions contained the

canonical binding site motifs [56]. However, they determined that

the GATA1 binding motifs in regions associated with high

enhancer activity were more evolutionarily conserved compared

to those motifs in regions with no identifiable enhancer activities.

To evaluate whether this observation holds for the muscle

regulatory regions identified in this study, we searched the three

region sets for binding site hits with all available vertebrate profiles

Figure 2. Dinucleotide frequencies in responding regions vs. non-responding regions. a) Muscle Regulatory Regions. Muscle
Validated = 19 validated muscle regions in this study. Muscle Reference = 28 muscle reference regions from literature. Muscle Non-Responders = all
regions that were tested in this study and found not to drive gene expression. b) Pleiades Curated Regulatory Regions. Pleiades Curated All = 1341
curated regulatory regions from all species. Pleiades Curated Human = 631 curated regulatory regions in humans only. Non-Responders = all regions
that were tested and found not to drive gene expression.
doi:10.1371/journal.pcbi.1002256.g002

Table 6. Sequence composition characteristics of the MyoD
ChIP-Seq peaks compared against the non-responding
regions from this study.

MyoD ChIP-Seq Non-Responders p-value

Myotube 0.54 0.51 1.23E-06

Myoblast 0.54 0.51 6.60E-07

GC content; P-values were calculated using Wilcoxon rank sum tests.
doi:10.1371/journal.pcbi.1002256.t006
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from the JASPAR CORE collection. When overlapping sites for

the same motif were found, only the highest scoring site was kept.

We first calculated the average phyloP scores for the predicted

binding site and non-binding site positions in each of the three

region sets. The scores for the responding regions are spread over

a larger range than the non-responding regions, which also

showed the lowest mean score (Supplemental Figure S6 in Text

S2). We identified the TFs with predicted binding sites that

exhibited at least 2-fold increase in their phyloP scores over the

non-binding site positions in each region set, and compared the

mean phyloP scores in the predicted sites for these TFs among the

three region sets (Supplemental Table S8 in Text S1). The average

phyloP scores were significantly higher for the validated and

reference sets than for the non-responding set, as confirmed by t-

tests. Included in the TFs with 2-fold increase in the validated and

reference sets are some of the known muscle-specific TFs, such as

MEF2A, Myf, SRF and PBX1 [57]. We combined the list of the

TFs with at least 2-fold increase in the validated and the reference

set, and compared the ratios of the phyloP scores for the predicted

sites for these TFs and the non-binding site positions in each

region set (Figure 4). The ratios are significantly higher for the

responding regions (confirmed with t-test; p-value of 2.461024 for

all species; Supplemental Table S8B in Text S1). When phyloP

scores are calculated using more closely related species, the p-

values become more significant. Non-responding regions do not

show such a trend in scores (confirmed with t-test; p-value of 0.76

for all species and primates only).

MyoD ChIP-Seq evidence. Cao et al. performed a genome-

wide ChIP-Seq binding assay for MyoD in C2C12 myoblasts and

myotubes [34]. We compared the MyoD peak locations with our

three region sets to determine the extent of overlap with each. As

we were testing the regulatory effects of human genomic sequences

in murine C2C12 cells, we first performed a lift-over of the regions

to the mouse genome using the Galaxy service, transitioning from

human assembly hg19 to mouse assembly mm9 [58]. Successfully

mapped regions were then compared with the MyoD peak

locations (Table 8). Whereas only 15.6% of the successfully

mapped non-responding regions overlapped with the MyoD peaks

in myotubes, 58.1% of the responding regions overlapped with the

peaks, which is a significant increase (p-value = 3.061028 with

Fisher exact test). These observations support the use of ChIP-Seq

assay results for achieving improved specificity in the identification

of functional regulatory elements.

Histone modifications. Chromatin conformation changes

through histone modifications play an important role in the

regulation of gene expression. Acetylation of histone tail residues

lead to open chromatin, allowing TFs better access to enhancer

regions. Histone methylation has been associated with both

activation and repression depending on which residues are

modified. In order to examine the epigenetic changes associated

with myotube formation, Fischer et al. performed a ChIP-chip

study of major histone modifications (H4ac, H3ac, H3K4me2/3)

in C2C12 cells, from which they observed that H3K4me2 (when

combined with other acetylation in the same region) and H4ac

were frequently associated with elevated expression [59]. Asp et al.

performed a more comprehensive ChIP-Seq study in C2C12 cells,

where they identified the locations of H3K4me1/2/3, H3K9me3,

H3K9Ac, H3K18Ac, H3K27me3, H4K12Ac, and PolII in both

myoblasts and myotubes [35]. Using the subsets of the validated,

reference and non-responders that were successfully mapped to

the mouse genome, we examined the extent of overlap between

these regions and the modified histone peaks for H3K4me1/2/3,

H3K9Ac, H3K18Ac, H3K27me3 and H4K12Ac (Figure 5). We

observed increases in the proportion of the combined set of

responding regions that overlapped with H3K4me2 (p-

value = 3.561026 with Fisher exact test), H3Kme3 (p-

value = 2.761025), and H3K18ac (p-value = 3.461023) peaks in

myotubes compared to myoblasts, whereas the non-responding

regions did not show as large increases (p-values for H3K4me2:

6.561023, H3Kme3: 1.561021, and H3K18ac: 3.761021). As

the responding regions act as enhancers in myotubes, such

observations point to these histone marks as being activating.

While not statistically significant, increases in H3K12Ac peak

overlaps were observed in responding regions (p-

value = 7.861022), whereas decreases were observed in non-

responding regions (p-value = 1.761023). Differences between the

properties of the validated and reference regions were observed in

some cases (e.g. H4K12Ac), which may reflect the previously

mentioned promoter proximity of the later set. There is some

decrease in the number of responding regions with H3K27me3

marks from myoblasts to myotubes (p-value = 5.861022), whereas

there is little change in the non-responding regions (p-

value = 7.261021). H3K27me3 histone marks are known to play

important roles in repression of muscle-specific genes in

proliferating cells. If we look at the reference set and the

validated set separately, we observe that most only the reference

regions show a decrease in the H3K27me3 peaks with borderline

statistical significance (p-value = 5.161022).

Discussion

We generated genome-wide predictions of muscle-specific

CRMs using three CRM prediction programs, including Clus-

ter-Buster, LRA and MSCAN. Based on the predictions, 339

Table 7. Sequence conservation based on phastCons scores (28-way Placental Mammals).

Region Set Mean Score Avg. Max Score Conserved Region Make-Up

All Positives 0.20 0.84 18.9%

Positives from Background Set 0.12 0.74 7.9%

Positives from Non-Background Sets 0.22 0.87 21.2%

All Non-Responding Regions 0.17 0.77 15.1%

Non-Responding Regions from Background Set 0.22 0.87 18.4%

Non-Responding Regions from Non-Background Sets 0.16 0.75 14.4%

Column ‘Mean Score’ refers to the overall mean of the mean scores for each region in each set, while ‘Avg. Max Score’ refers to the mean of the highest score for each
region in each set. ‘Conserved Region Make-Up’ lists the summed conserved region lengths (identified as sub-regions with phastCons score over 0.7) divided by the sum
of the lengths of all regions in each set.
doi:10.1371/journal.pcbi.1002256.t007
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candidate sequences were tested for CRM activity using promoter-

reporter gene assays in a cell culture model of skeletal muscle

development, of which 278 were successfully transfected into cells

and had reporter expression measurements taken. The validation

process revealed 19 myotube-restricted promoter-enhancing

sequences. In addition to the known enrichment for sequence

Figure 3. Examples of positive regions. Muscle TFBS hits (threshold of 80%) and the phastCons conservation profile for the region are shown as
well. When square brackets are shown, they indicate the original CRM prediction. a) Positive sequence from the muscle set. The muscle-specific TFBS
are located in regions of high sequence conservation. b) Positive sequence from the non-muscle. This sequence showed the most consistent increase
in reporter expression, with all 12 replicates determined as significantly up-regulated in muscle. c) Positive sequence from the background set.
Despite the clear cluster of muscle-specific TFBS located in the region of high sequence conservation, none of the CRM prediction tools could classify
this as a muscle CRM.
doi:10.1371/journal.pcbi.1002256.g003
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Figure 4. Phylogenetic depth analysis of TFBSs in responding and non-responding regions using phyloP (46-way, hg19). The x-axis
grouping indicates the species used to calculate the phyloP scores. TFBSs were searched using all vertebrate profiles from the JASPAR CORE
collection using the threshold of 0.8. TFs with at least 2-fold increase in phyloP scores (46wayAll) in the TFBS positions over the non-TFBS positions in
the responding regions were identified. The score ratios for these TFs were compared among the three region sets. a) Average phyloP scores for the
predicted TFBS positions and non-TFBS positions in each region set. b) Ratios of phyloP scores for the TFBS positions and non-TFBS positions in each
region set.
doi:10.1371/journal.pcbi.1002256.g004

Muscle Enhancer Profiling Reveals Novel Properties

PLoS Computational Biology | www.ploscompbiol.org 12 December 2011 | Volume 7 | Issue 12 | e1002256



conservation of functional CRMs, phylogenetic depth analysis

revealed that the individual TFBSs display even higher sequence

conservation than the surrounding sequence. The active CRMs

exhibited elevated G/C mononucleotide content indicating the

value for including sequence composition measures in the

implementation of future methods. Comparison of the ChIP-Seq

results for MyoD and histone modification marks in C2C12 cells

with the identified enhancing sequences further supports their

recognized utility in the detection of active, functional CRMs.

The performance of the CRM prediction programs used in this

paper was not sufficient for genome annotation. The poor

performance is likely reflective of the incomplete information

presented for the prediction – the primary sequence and

sequence conservation data does not convey information about

the three dimensional properties of the nucleus nor the epigenetic

state of the chromatin [60–63]. As evidenced by the significant

increase in the proportion of responding regions that overlap with

MyoD and histone modification peaks from ChIP-Seq studies,

incorporating the results from ChIP-Seq assays for the relevant

TFs, co-activating proteins or histone modification marks can

improve the specificity of the predictions. In order for such data

to be useful, data needs to be generated for each tissue type

analyzed, as CRMs are anticipated to be differentially marked

when activated. At this time, there is an insufficient amount of

such large scale data available to make this a feasible strategy for

many tissue types, but more complete data may become available

as the costs of experiments come down and sensitivity increases.

Ultimately an intersection of computational and experimental

methods will be required for the highest quality annotation of

CRMs.

A fundamental question arising out of the work reported here is

why methods that appeared to be doing well for skeletal muscle

CRM discovery failed to demonstrate strong predictive capacity in

application here. One key reason may be driven by selection bias

for laboratory studies. The reports of CRMs from individual gene

studies may in many cases have been influenced by the

identification of muscle-related motifs in the available genomic

sequences. Due to the selective publication of those sequences

showing positive expression, the relative importance of motif

enrichment may have been over emphasized. Another key

limitation is that most of the methods generate sufficiently high

false prediction rates that the reliability of any specific set of

predictions is unlikely to be high. The results here demonstrate the

Table 8. Regions overlapping MyoD ChIP-Seq peaks in C2C12
cells.

Myoblasts Myotubes P-value

Responding 27.9% (12/43) 58.1% (25/43) 4.3E-03

Non-responding 11.6% (23/199) 15.6% (31/199) 1.5E-01

P-value 8.4E-03 3.0E-08

P-values were calculated using Fisher exact tests.
doi:10.1371/journal.pcbi.1002256.t008

Figure 5. Histone modifications in the responding and non-responding regions. Proportion of the regions that overlap with ChIP-Seq
peaks from Asp et al. are displayed. (MB = Myoblasts, MT = Myotubes).
doi:10.1371/journal.pcbi.1002256.g005
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driving need for experimental validation of computational

predictions whenever feasible.

One striking observation emerging from this study is the

enrichment of G/C mononucleotides in the CRMs, observed

both in the new muscle set as well as the brain-directing CRMs

from the Pleiades Project [29]. The potential contribution of

compositional properties to regulatory regions has been previ-

ously explored, including a statistical method for CRM prediction

[64] and a recent approach from Evans to classify CRM-

containing regions into compositional subsets of genome

sequences [65]. These approaches and the data presented here

are independent of the long-recognized role of CpG islands in

demarcating promoter-containing regions and the influence of

CpG enrichment on motif over-representation [66,67]. While

there have been prediction methods released, such as Stubb,

EMMA and PhylCRM, that directly incorporate phylogenetic

footprinting in order to reduce the false positive rate of their

predictions [21,22,68], the joint incorporation of nucleotide

composition properties and sequence conservation remains to be

explored.

The outcomes of this paper include both a novel set of 19

skeletal muscle-directing CRMs for use in future machine

learning procedures and the specific call for the inclusion of

nucleotide composition properties in the next generation of

tools.
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