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Electrocardiogram (ECG) signal is one of the most reliable methods to analyse the cardiovascular system. In the literature, there are different
deep learning architectures proposed to detect various types of tachycardia diseases, such as atrial fibrillation, ventricular fibrillation, and sinus
tachycardia. Even though all types of tachycardia diseases have fast beat rhythm as the common characteristic feature, existing deep learning
architectures are trained with the corresponding disease-specific features. Most of the proposed works lack the interpretation and understanding
of the results obtained. Hence, the objective of this letter is to explore the features learned by the deep learning models. For the detection of the
different types of tachycardia diseases, the authors used a transfer learning approach. In this method, the model is trained with one of the
tachycardia diseases called atrial fibrillation and tested with other tachycardia diseases, such as ventricular fibrillation and sinus
tachycardia. The analysis was done using different deep learning models, such as RNN, LSTM, GRU, CNN, and RSCNN. RNN achieved
an accuracy of 96.47% for atrial fibrillation data set, 90.88% accuracy for CU-ventricular tachycardia data set, and also achieved an
accuracy of 94.71, and 94.18% for MIT-BIH malignant ventricular ectopy database for ECG lead I and lead II, respectively. The RNN
model could only achieve an accuracy of 23.73% for the sinus tachycardia data set. A similar trend is shown by other models. From the
analysis, it was evident that even though tachycardia diseases have fast beat rhythm as their common feature, the model was not able to
detect different types of tachycardia diseases. The deep learning model could only detect atrial fibrillation and ventricular fibrillation and
failed in the case of sinus tachycardia. From the analysis, they were able to interpret that, along with the fast beat rhythm, the model has
learned the absence of P-wave which is a common feature for ventricular fibrillation and atrial fibrillation but sinus tachycardia disease
has an upright positive P-wave. The time-based analysis is conducted to find the time complexity of the models. The analysis conveyed
that RNN and RSCNN models could achieve better performance with lesser time complexity.
1. Introduction: Cardiovascular disease (CVD) is one that affects
the heart and blood vessels. The CVDs include coronary heart
disease, rheumatic heart disease, etc. [1]. The risk of the CVDs
increases due to blood clots that are caused by the build-up of fat
deposits in the coronary arteries. According to the study
conducted by WHO, an estimated 17.9 million people died due to
CVDs in 2016, i.e. 31% of all deaths worldwide [2]. The CVD in
a broader sense can be categorised into electrical disorder,
circulatory disorder, and structural disorder [3]. The electrical
disorder is caused due to the malfunction of the electrical system
that synchronises the heartbeat (e.g. arrhythmia). The circulatory
disorder is caused due to the high blood pressure and block in the
coronary artery (e.g. stroke or heart attack). The structural
disorder is caused due to the damage in the heart muscle or heart
valves (e.g. cardiomyopathy).

Most of the people might have experienced irregular heart
rhythms at some point in their life. Arrhythmia is developed
when there is an abnormality in electrical impulse formation or
transformation or abnormality in both [4]. Some of the arrhythmias
are a threat to life [3]. When the heart beats are slower than the
normal heart rate (<50 bpm) it is called bradycardia or bradyar-
rhythmia. In such cases, the blood pressure cannot be controlled
and the patient will faint which leads to death. Similarly, when
the heart beats faster than the normal heart rate (>100 bpm) it is
called tachycardia or tachyarrhythmia. This may lead to pass out
and sudden death [5]. As arrhythmias are one of the main causes
of mortality, detection of the arrhythmias at the early stage has
acquired great importance in recent years. Tachycardia and brady-
cardia can be classified into different types based on their origin.
The different types of tachycardia include ventricular fibrillation
(VF), long QT syndrome, premature ventricular contractions,
atrial flutter (AFL), supraventricular tachycardia (SVT), atrial fibril-
lation (AF), sinus tachycardia (ST) and Wolff–Parkinson–White
syndrome [6]. The different types of bradycardia include sinus
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bradycardia (SB), sinus pause, or sinus arrest, sick sinus syndrome
[7, 8].

As the risk of heart disease is high, the detection of disease must
be accurate. Different techniques prevailed in the detection of cor-
onary heart diseases. Some of the techniques are the electrocardio-
gram (ECG), Holter monitoring, echocardiogram, stress test,
cardiac catheterisation, cardiac computerised tomography (CT)
scan, and cardiac magnetic resonance imaging (MRI) [9]. Among
the above-mentioned techniques, ECG based analysis is the most
commonly used practice to diagnose cardiac disease. An ECG
signal is a record of electrical communication of the heart. ECG
signal monitoring is a non-invasive technique. ECG signals are
recorded by placing small electrodes in the legs, arms, and chest.
Cardiac disease is detected through the analyses of variation in
the morphology of the ECG signal. The characteristic feature of a
normal ECG signal during one cardiac cycle is the P-wave followed
by the QRS complex continued by a T-wave [10, 11]. The sample
of the normal ECG signal is shown in Fig. 1 [12].

The intervals between the waves P-QRS-T varies when the
person is affected by the disease. The variation of the ECG signal
based on the characteristic shape and interval helps the experts in
disease diagnosis. However, analysis of the ECG is a complex pro-
cedure as the experts should consider various factors, such as age,
gender, previous health condition, etc. Along with this, the number
of patients a doctor would see during a day is also very high and so,
it is also prone to error. To make ease of this task, an automatic
expert system to diagnose cardiac disease is preferable.

Automation in the expert system aims to make an intelligent
system that can automatically detect disease. Advancement in the
field of artificial intelligence made automation in expert systems
possible [12]. Conventional methods require feature extraction
that is specific for the disease from the raw signal. The model
should be fed with optimal data. The model trained with less
amount of data shows poor performances due to overfitting. A
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Fig. 1 Normal ECG signal [12]
deep learning-based model in contradiction to the machine learning
model can learn the required features by itself [13]. In the case of
cardiac disease, each of the tachycardia and bradycardia disease
contains features, which have disease-specific variability. Fast
beating rhythm is common for all the tachycardia diseases. In the
case of the atrial fibrillation (AF) and VF, the specific feature that
makes them distinct from another tachycardia disease, i.e. ST
data set is the absence of the P-wave. The VF has the presence of
the fibrillatory waves in the QRS baseline [6–8]. The deep learning
model is expected to study different disease-specific features for the
detection of different diseases.
Arrhythmia is the most dangerous cardiac disease which can be

life-threatening because of its abnormal heart rate. Various
studies have been conducted in this field for the detection of differ-
ent types of arrhythmia, which is generally classified as tachycardia
and bradycardia. Acharya et al. [14] proposed an automatic system
to classify different segments of an ECG signal. The proposed
method used a convolution neural network (CNN) that classified
the data into four classes, namely AF, VF, atrial flutter, and
normal. The model was able to achieve an accuracy of 92.50%,
sensitivity of 98.09%, and specificity of 93.13%. Wang et al. [15]
performed a novel short-time multi-fractional approach to classify
AF, VF, and ventricular tachycardia (VT). With a fuzzy Kohonen
classifier, the proposed method achieved an accuracy higher than
97%. Martis et al. [16] used the discrete cosine transform together
with independent component analysis (ICA) as a dimensionality
reduction approach. K-nearest neighbour algorithm based classifier
has been used to classify diseases, such as AF and atrial flutter from
normal ECG beats. The method acquired an accuracy of 99.45%.
A higher-order spectra method was proposed by Martis et al. [17]
for rectifying the problem due to high nonlinearity in the ECG
signal and compared two higher-order methods for classification
of the three diseases namely AF, atrial flutter, and normal. This
method obtained an accuracy of 97.65% and a predictive value
of 99.53%. Khadra et al. [18] used higher-order bi-spectral
analysis for classification of arrhythmias, such as AF, VF, and
VT with respect to normal (NR) ECG. Sensitivity values of 91.7,
81.8, 83.3, and 100% were obtained for VF, VT, AF, and NR,
respectively. Li et al. [19] used a support vector machine-based
method for the classification of VF and VT. The proposed
method achieved an accuracy of 96.3%. Assodiky et al. [20], Isin
and Ozdalili [21], and Alfaras et al. [22] proposed methods for
the automatic detection and classification of the ECG signals.
Gee et al. [23] proposed explainable deep learning using two-
dimensional (2D) time-series ECG data. The present work
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concentrates mainly on interpreting the features learned by the
model trained with the 1D time-series ECG data. Andreotti et al.
[24] compared the performances of feature-based classifiers and
CNN for the detection of AF disease. The proposed method
achieved an F1 score of 0.79 for the feature-based classifier. The
CNN gained an F1 score of 0.83 for the test set. Andersen et al.
[25] proposed a deep learning method which is a combination of
the CNN and the recurrent neural network (RNN) for AF detection
in the long-term ECG signal. The proposed method achieved a spe-
cificity of 0.98 and a sensitivity of 0.86 for the unseen data. The
proposed method requires much less time to analyse the 24 h
ECG signal. Hannun et al. [26] proposed a deep learning method
to classify the 12 different rhythms, such as AF, NSR (normal),
noise, sudden Brady response, bigeminy, AFL (atrial flutter),
EAR (bunny ear pattern), IVR (accelerated idioventricular
rhythm), Wenckebach, trigeminy, SVT, VT. The proposed
method gained a score of 0.97 for the area under the curve
(AUC). The proposed method also acquired an F1_score of 0.837
for the classification of different types of cardiac rhythms.
Shashikumar et al. [27] proposed a combination of a convolutional
neural network and RNN based approach for the detection of
paroxysmal AF. The convolutional neural network is fed with
sequential segments of a signal as the time–frequency domain
represents signal images. The output of the deep learning model
is the features of the images. The features extracted are fed to
RNN for the detection of AF. The proposed approach achieved
an AUC of 0.94.

Sujadevi et al. [28] proposed RNN-based AF detection. The
work made use of architectures, such as an RNN, long-short term
memory (LSTM), and gated recurrent unit (GRU) for the real-time
detection of AF which gained accuracies of 95, 100, and 100%,
respectively. Kiranyaz et al. [29] proposed a 1D CNN-based adap-
tive method for individual specific ECG signal classification. The
method was able to show reliable performance in the classification
of ventricular ectopic beats and supraventricular ectopic beats.
Kachuee et al. [30] used deep learning architecture for the classifi-
cation of five different classes of arrhythmia and the approach
gained an accuracy of 93.4%. Further, the authors have used the
transfer learning approach because of the less availability of data.
Transferred knowledge from the classification of arrhythmia is
used to classify ECG signals with and without myocardial infrac-
tion with an accuracy of 95.9%. Gopika et al. [31] further
showed an improved accuracy from 95.9 to 99% using the features
proposed by Kachuee et al. [30].

From the literature, it is evident that there are various approaches
used for the efficient classification of different types of tachycardia
diseases. The different types of tachycardia diseases are AF, VF,
and ST (AF, VF, and ST), which have the fast beat rhythm as a
common feature. In the previous works, even though AF, VF,
and ST have a common feature, the models are trained with disease-
specific ECG signals for detection of the above mentioned different
types of tachycardia diseases. In most cases, interpretation for the
detection by the respective models is also missing. Hence the
present work establishes the concept of explainable artificial intelli-
gence (AI). Explainable AI is the field that has gained more popu-
larity recently [32]. The interpretation and understanding which can
be made out of the analysis of deep learning models are coined as
explainable AI [32]. It tries to interpret the reason for the decision
made in the black box of neurons. This interpretability helps to
improve performance in various fields of AI. In the disease classi-
fication problem, we may not exactly know what the model learns.
In the case of tachycardia disease, it is expected to learn the fast beat
rhythm. The different types of tachycardia diseases, such as AF and
VF, which do not contain specific P-wave segments are different
from ST which have distinct P-wave segments. Other features in
the ECG signal that make AF different from the other tachycardia
data set is the presence of the fibrillatory waves in the baseline of
the QRS complex. VF also has the fibrillatory waves in the baseline
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of ECG. However, more commonly, the ECG of VF is irregular and
all segments (P, QRS, and ST) are distorted. One distinct feature
used for the identification of ST is the presence of positive
upright P-wave before the QRS complex. Other segments, such
as QRS and ST have normal morphology [33, 34, 35]. The
objective of the present work is to explore and analyse the features
that the model has learned for the detection of tachycardia diseases.
To explore our objective, state-of-art architectures of deep learning,
such as LSTM, RNN, GRU, CNN, and residual skip CNN
(RSCNN) [28, 30] are implemented in our present work. We con-
sidered different types of tachycardia diseases, such as AF, VF,
and ST, which have fast beat rhythm as the common characteristic
feature is used for the evaluation. To achieve this objective, we use
the concept of transfer learning. In our present approach, the model
trained with one of the tachycardia diseases is tested to detect other
different types of tachycardia diseases unseen by the model during
training.
2. Data set description: In this work, ECG signal data sets that are
publicly available in the PhysioNet database [36] are used. Data set
for AF disease is taken from the AF classification 2017 PhysioNet
CinC challenge which is referred to as the tachycardia data set one
(AF: TD1). The VF disease data set which is referred to as the
tachycardia data set two (VF: TD2). This data set is retrieved
from two sources namely Creighton University ventricular
tachyarrhythmia (VF: TD2-A) and MIT-BIH ventricular ectopy
(VF: TD2-B). MIT ventricular ectopy data set has ECG signals
collected from two leads. The data set for ST (ST: TD3) is taken
from the MIT-BIH arrhythmia database. The number of records
of raw ECG signal and the corresponding number of samples
based on feature extraction for all the above-mentioned data sets
is presented in Table 1.

The PhysioNet provides an open-source tool kit for the extraction
of heart rate variability (HRV) features. Joseph et al. [36] in the
background study proposed that for small segment signals which
are of duration <15 min, time-domain features and frequency-
domain features are suitable. The AF-TD1 data set has each
signal varying in the time duration from 30 to 60 s. Thus, as men-
tioned in the PhysioNet tool kit, the time and frequency domain fea-
tures are considered. The work proposed by Andreotti et al. [24]
motivated us to include the nonlinear features and signal quality
features. Hence, in the proposed work, the time-domain features,
frequency-domain features, and nonlinear features along with the
signal quality indices are included to formulate a 169 dimension
feature vector [37].

Each sample is a feature vector with a dimension of 169 [24].
This feature vector contains information related to HRV indices
and signal quality indices. The HRV indicates the changes in the
heart beats per minute. The time-domain features give the fluctua-
tions observed in the HRV over an interval of time. The time inter-
vals may range from 2 min to 24 h. The frequency-domain features
give the energy information of the ECG signal. The nonlinear fea-
tures indicate the complexity and nonlinearity within interbeat inter-
vals of the ECG signal. Signal quality indices represent the
segment-wise features of the ECG signal [37]. Signals are separated
Table 1 Data set description

Data set

atrial fibrillation (AF: TD1) (AF data set CINC challenge 2017)
ventricular fibrillation (VF: TD2-A) (Creighton University Ventricular Tachyarrhy
sinus tachycardia (ST: TD3) (MIT-BIH arrhythmia database of PhysioNet)
ventricular fibrillation (VF: TD2-B) (MIT-BIH malignant ventricular ectopy datab
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as segments of 10 s with an overlap of 50% for constructing feature
extracted samples [24] so that no pieces of information are lost.

The deep learning algorithms may perform better with the raw
ECG signals. However, the deep learning algorithm trained with
the handcrafted features performs better than the raw ECG signals
[30]. However, the main objective of the present work is to interpret
the features learned by the model in association with the abnormal-
ity due to the variation in heart beat rhythms. The main idea of
extracting the HRV features is to make the interpretation of features
learned by the model easy and clear. Feeding the raw signal and
interpreting will just give vague ideas about the model performance.
The contribution of each feature to accurately identify the normal
and abnormal cases makes it easy to interpret the model.

The feature-based analysis rather than feeding the raw signal dir-
ectly to the deep learning architectures is chosen based on the work
proposed by Kachuee et al. [30]. One other advantage of using
feature-based segments is that we can quantify the influence of
the features for the results obtained. The use of these feature
extracted samples reduces the high computational requirement for
the deep learning approach. This gave the motivation to make use
of the feature extracted segments.

3. Methodology: The main objective of the present work is to
interpret the features learned by the deep learning models for
cardiac disease detection using ECG signals. In order to meet the
objective, we consider one of the classes of cardiac diseases
called tachycardia. The tachycardia contains fast beat rhythm as
one of the main characteristic features of an ECG signal. The
different types of tachycardia diseases are AF (AF: TD1), VF
(VF: TD2), and ST (ST: TD3). As AF: TD1, VF: TD2, and ST:
TD3 are the types of tachycardia diseases, ECG signals have fast
beat rhythm as the common feature. Therefore, the deep learning
model was trained with one of the tachycardia diseases called
AF: TD1 and tested with the rest two types of tachycardia called
VF: TD2 and ST: TD3. The VF: TD2 and ST: TD3 are unseen
data sets by the model. This approach aids to interpret the
common characteristic feature of ECG signals corresponding to
different types of tachycardia diseases learned by the model. The
overall workflow of the methodology for the interpretation of the
features learned by the model is shown in Fig. 2. The proposed
method consists of the following steps. Initially, the models are
trained with the AF data set. The AF data set contains both
abnormal and normal cases. Then the trained models using AF
data set are tested with other tachycardia data sets, such as AF
(AF: TD1), VF (VF: TD2-A and VF: TD2-B), and ST (ST: TD3)
separately. The state-of-the-art deep learning architectures
implemented in the present work are RNN, LSTM, GRU, CNN,
and RSCNN [28–30].

3.1. Architecture details: The benchmarks deep learning
architectures, such as RNN, LSTM, GRU, CNN, and RSCNN
[28–30] are contemplated for the study. The details about RNNs
are given in Table 2. The input layer of each model is modified
to 169 × 1, as the input signal, has a feature vector of size
169 × 1. RNNs considered being RNN, LSTM, GRU, which have
one hidden layer with 64 units. The second layer (output layer) is
Number of records of raw
ECG signal

Number of feature
extracted samples

8528 64,767
thmia Database) 33 1426

59 118
ase) 22 945
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Table 2 Architecture details of RNN, CNN, LSTM networks

Architecture RNN LSTM GRU

input layer 169 × 1 169× 1 169× 1
recurrent layer RNN LSTM GRU
output layer dense layer

(sigmoid)
dense layer
(sigmoid)

dense layer
(sigmoid)

Fig. 2 Proposed methodology for the detection of tachycardia diseases and for the interpretation of features learned by the model
dense with the number of neurons the same as the number of classes
considered. AF data set (AF: TD1) which is considered for training
have two classes, i.e. the one without AF (normal: Class 0) and the
other with AF (abnormal: Class 1). So, the final dense layer consists
of two neurons with a sigmoid activation function.
The number of learnable parameters varies according to the

chosen architecture of the model. For the RNNs, the computation
of the number of learnable parameters is given by

paramRNNs = f × [ns(ns+ i)+ ns] (1)

where f is the number of fully connected neural networks, ns is the
number of neurons in the hidden layer and i is the input size. In the
case of RNN, the number of fully connected neural networks is 1,
for GRU it is 3 and for LSTM it is 4. For dense layers, the number
of the learnable parameters is computed by

paramDense = [ns× i+ b] (2)

where b is the bias. The details of the CNN model are shown in
Fig. 3. The CNN model contains a convolution layer with 64
filters of size 3 with stride 1. This convolution layer is accompanied
by ReLU (rectified linear unit) activation function. The output from
the convolution layer is mapped into the nonlinear output using the
activation function for avoiding the vanishing gradient problem.
The model also contains two dense layers: one with 128 neurons
and other with 2 neurons, which serve as the output layer with a
soft-max activation function.
Fig. 3 1D CNN
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The design of the CNN architecture proposed by Swapna et al.
[38] is used in the present work. In [38], the complexity of the
model is validated in terms of the number of learnable parameters.
The complexity along with model performance is taken into consid-
eration to fix the number of neurons in the hidden layer. An increase
in the number of neurons may increase the model performance, but
along with it, there will be an increase in the number of learnable
parameters. The reduction in the number of neurons may decrease
performance [38]. Since better performance with lesser complexity
is always appreciated, we fixed the CNN model with a single layer
of 64 neurons.

The number of learnable parameters of the CNN is given by

paramCNNs = nf × fs+ b (3)

where nf is the number of filters, fs is the filter size and b is the bias.
The details of the RSCNN architecture are shown in Fig. 4.

RSCNN contains 13 weighted layers, which include 11 convolution
layers and 2 dense layers. The first layer is the input layer of size
169 × 1, which is same as the size of the feature vector.
Convolution layer has 32 filters with 3 as the filter size in each
layer. The network has residual blocks. The residual blocks
contain two convolution layers with the ReLU activation function.
Succeeded by a max-pooling layer for the dimensionality reduction,
a skip connection is also included in the residual block. The skip
connection takes care of all the information to be carried without
any loss from the first convolution layer to the final dense layer,
as shown in Fig. 4, these residual blocks are repeated five times.
The dense layer of 32 neurons is included after the residual
Fig. 4 RSCNN
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Table 3 Number of learnable parameters computed for RNN, LST M,
GRU, CNN, and RSCNN

Architectures Number of learnable parameters

RNN 15,170
LSTM 60,290
GRU 45,250
CNN 696,962
RSCNN 54,914

Table 5 Experimental results for AF CINC 2017 data set class 1
(AF: TD1 class 1)

LSTM GRU RNN CNN RSCNN

accuracy,% 88.03 87.25 90.34 78.14 83.93
sensitivity 0.88 0.87 0.90 0.78 0.84
F1_score 0.82 0.87 0.86 0.81 0.86
specificity 0.88 0.90 0.90 0.78 0.83

Fig. 5 Confusion matrix for GRU and RNN model tested with AF: TD1 data

Table 6 Experimental results for CU-VT data set (VF: TD2-A)

LSTM GRU RNN CNN RSCNN

accuracy,% 82.75 77.84 90.88 74.89 68.93
sensitivity 0.83 0.78 0.91 0.75 0.69
F1_score 0.91 0.88 0.95 0.86 0.82
specificity 0.83 0.77 0.90 0.75 0.68

Table 4 Experimental results for AF CINC 2017 data set class 0
(AF: TD1 class 0)

LSTM GRU RNN CNN RSCNN

accuracy,% 95.77 97.87 96.87 97.13 97.92
sensitivity 0.96 0.98 0.97 0.98 0.98
F1_score 0.97 0.98 0.98 0.97 0.98
specificity 0.957 0.96 0.96 0.97 0.97
blocks. The final output layer is a dense layer with 2 neurons with a
soft-max activation function. The number of learnable parameters
computed for all the benchmark architectures is tabulated in
Table 3.

3.2. Training and testing: All the benchmark deep learning
architecture (RNN, LSTM, GRU, CNN, and RSCNN) are trained
with 70% of AF data (AF: TD1) for 1000 epochs with the batch
size 1000 samples for each architecture. The models are tested
with 30% of AF data and also with other tachycardia data sets,
such as VF (VF: TD2-A and VF: TD2-B) and ST data (ST: TD3).

4. Result and analysis: Accuracy, sensitivity, F1 score, and
specificity are the evaluation metric used for the performance
assessment of all the deep learning architectures implemented in
this work. In the biomedical field, the sensitivity score has very
high importance. Let’s consider the condition of disease as a
positive case and the normal as a negative case from the medical
perspective. Hence, sensitivity is the measure of the ratio of
actual positive detected as positive. Since the disease unidentified
is a threat to life, the sensitivity score is considered for the
evaluation of the disease detection along with the accuracy.
Specificity measures the effectiveness of the model to detect the
normal cases. The measure of combined precision and sensitivity
score is incorporated into the F1 score. The confusion matrix
gives the exact idea about the number of samples that are
correctly classified and miss classified. The four parameters used
for the analysis of the confusion matrix are true positive (TP),
false positive (FP), true negative (TN) and false negative (FN).
TP represents the number of samples that are positive and
predicted correctly as positive. FP represents the number of
samples that are negative and predicted wrongly as positive. TN
represents the number of samples that are negative and predicted
correctly as negative. FN represents the number of samples which
is positive and predicted wrongly as negative. The main purpose
of the present work is to determine whether the model trained on
one type of tachycardia can detect other types of tachycardia
diseases. This is performed in order to interpret the common
characteristics of ECG signals that are affected by different types
of tachycardia diseases learned by the trained model. Hence, the
model trained on AF: TD1 data set is tested with AF: TD1, VF:
TD2-A, VF: TD2-B, and ST: TD3.

In AF data (AF: TD1), a total of 19,430 samples were tested in
which 16,873 are class 0 and 2557 are class 1. For the normal
class, the RSCNN model gained an accuracy of 97.92%, which is
higher than other models and RNN gained an accuracy of
90.34%, which is higher than other models for abnormal class.
While considering the average accuracy, including both classes,
the GRU model has performed better than other models with an
accuracy of 96.47%. While considering the sensitivity score for
the abnormal class, RNN has gained a score of 0.90 which is
higher than other models. Thus, for AF: TD1 RNN has performed
better than other models in detecting the abnormal class. The
accuracy score in percentage, sensitivity, F1 score, and specificity
for the models tested with AF (AF: TD1) for class 0 and class 1
is given in Tables 4 and 5. Class 0 represents the normal class
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and class 1 represents the AF (abnormal class). The confusion
matrix for the GRU and RNN model is shown in Fig. 5. The diag-
onal elements in the figure represent the TP and TN number of
samples.

In the case of VF, CU-VT data set (VF: TD2-A) is used for the
evaluation. The models are tested using 1426 samples of tachycar-
dia data. The RNN has acquired a percentage accuracy of 90.34%,
which is higher than other models. Analysing the sensitivity score
of these models, we can understand that RNN has a better score
of 0.91 than other models. The accuracy score in percentage, sensi-
tivity, F1 score, and specificity for the models tested with VF (VF:
TD2-A) is given in Table 6. The confusion matrix for the RNN
model which is tested with VF: TD2-A is shown in Fig. 6. From
the figure, it is clear that the number of TP samples is 1296.

For the validation of the above result, the second data set of VF
disease VF: TD2-B from the MIT-BIH malignant ventricular
ectopy database was taken. The evaluation metrics of the models
tested with VF: TD2-B for lead I and lead II ECG signals are
given in Tables 7 and 8, respectively. In this data set, 945
samples of VF: TD2-B were tested on different models, such as
Healthcare Technology Letters, 2020, Vol. 7, Iss. 6, pp. 146–154
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Table 7 Experimental results for MIT-BIH malignant ventricular ectopy
database (VF: TD2-B-lead I)

LSTM GRU RNN CNN RSCNN

accuracy,% 92.17 90.69 94.71 88.67 76.61
sensitivity 0.92 0.91 0.95 0.89 0.77
F1_score 0.96 0.95 0.97 0.94 0.87
specificity 0.92 0.91 0.95 0.88 0.77

Fig. 6 Confusion matrix for RNN model tested with VF: TD2-A, LSTM model tested with ST: TD3 data, RNN model tested with VF: TD2-B data for lead I and
lead II

Table 8 Experimental results for MIT-BIH malignant ventricular ectopy
database (VF: TD2-B-lead II)

LSTM GRU RNN CNN RSCNN

accuracy,% 93.86 90.16 94.18 88.67 80.32
sensitivity 0.94 0.90 0.94 0.89 0.80
F1_score 0.97 0.95 0.97 0.94 0.89
specificity 0.94 0.90 0.94 0.88 0.80
LSTM, GRU, RNN, CNN, and RSCNN. Among these, RNN has
shown better performance with an accuracy of 94.71% for the
lead I ECG signal of VF: TD2-B. The RNN model has gained
the best sensitivity score of 0.95 when compared with other
models. The RNN has shown the same trend for VF: TD2-B lead
II data with an accuracy of 94.18% and a sensitivity score of
0.94. From the result acquired from VF: TD2-A and VF: TD2-B
data sets, it is clear that RNN had performed well for the
detection of VF disease. The confusion matrix of the RNN model
of VF: TD2-B for the lead I and lead II is shown in Fig. 6. It
shows that TP samples are 895 and 890 for the lead I and lead II,
respectively.
Table 9 Experimental results for ST (ST: TD3)

LSTM GRU RNN CNN RSCNN

accuracy,% 27.97 22.88 23.73 26.50 21.19
sensitivity 0.28 0.23 0.24 0.26 0.21
F1_score 0.44 0.37 0.25 0.42 0.35
specificity 0.28 0.23 0.24 0.26 0.21

Table 10 Variation in morphology of ECG signal for different types of tachycard

Disease P-wave QRS complex T-segment

AF absent not effected not effected
VF absent absent absent
ST not effected not effected diminished
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The next evaluation is done using tachycardia data set three (ST:
TD3) known as ST. The models are evaluated against 118 samples
of ST data. The model acquired sensitivities of 0.28, 0.23, 0.24,
0.19, and 0.21 for models, such as LSTM, RNN, GRU, CNN,
and RSCNN, respectively, and also gained accuracies of 27.97,
22.88, 23.73, 18.64, and 21.19% for LSTM, RNN, GRU, CNN,
and RSCNN, respectively. From these values, it is evident that
the models were not able to detect the ST: TD3 disease. The tabu-
lation of the results is given in Table 9. The confusion matrix for
ST: TD3 is shown in the second matrix of Fig. 6. From the
figure, it is apparent that only 33 samples are TP samples and the
remaining samples are misclassified as TN. The performance evalu-
ation in terms of F1 score and specificity shows the same trend as
that of accuracy and sensitivity.

From the evaluation of the results obtained, we could analyse that
the model which is trained using the AF data set is able to detect the
VF ECG signal. The same model could not detect the ST signal.
The reason behind the performance difference is because even
though AF, VF, and ST are different kinds of tachycardia diseases
there are some disease-specific features for each category. The
feature-specific differences between three types of tachycardia dis-
eases used in the present work are given in Table 10. From disease-
specific features, we could analyse that the AF and VF diseases
share common features of irregular heartbeat and the absence of
P-wave but in the case of ST disease, it has distinct features of
upright P-wave.

From the analysis, we found that RNN has performed better
than architectures, such as LSTM, GRU, and CNNs. The RNNs
(i.e. RNN, GRU, and LSTM) and CNNs are well known for their
performance in biomedical applications. The RNNs have the
ability to remember the previous time step and use that information
to predict the next. The various RNNs, such as RNN, LSTM, and
GRU are different from each other due to the presence of gates,
such as forget gate, input gate, and output gate, respectively.

The RNN is a simple feed-forward network with a feedback loop.
The LSTM and GRU have additional gates to avoid long-term
dependency of the previous states. In the case of tachycardia
disease detection using the ECG signal, there is a possibility that
the GRU and LSTM could miss the important pieces of information
while passing signal vectors through different gates. In RNN, the
memory cell has the ability to store all the information from the
previous state, thus gaining better performance than other architec-
tures. While considering the CNN architecture, the structural
information is stored in the convolutional layer. When compared
to RNNs it lacks the capacity to capture timely information.
Therefore, CNN could not perform better than RNNs.
ia diseases

Heart rate Other features

>100 beats/min presences of fibrillatory waves in the baseline
>100 beats/min presences of irregular waves
>100 beats/min similar to normal sinus rhythm
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Table 11 Five-fold cross-validation accuracy for CNN and RSCNN

Models Accuracy,% Precision Recall F1 score

CNN (fivefold) 95.48±0.39 0.81 0.86 0.83
CNN (singlefold) 95.32 0.851 0.781 0.815
RSCNN (fivefold) 94.96±0.19 0.83 0.78 0.80
RSCNN (singlefold) 96.08 0.92 0.91 0.91
The five-fold cross-validation results for the CNN and RSCNN
models trained with AF: TD1 and tested with the same are shown
in Table 11. From the results, we analyse that the CNN model eval-
uated using five-fold cross-validation achieved approximately equal
performances with that of the single fold results. In the case of
RSCNN, there is a slight decrease in performance while taking an
average performance of five-fold testing. From the accuracy, we
observe that the RSCNN has a variation of ± 0.19%, which
makes it approximately equal to the previous results achieved.
Five-fold results provide a validation of experiments performed.
From the results, we could analyse that the model could gain an
equal amount of performance in each of the five test sets in cross-
validation. This reflects that the model could learn all possible fea-
tures to detect the different variations of the ECG signal.

The time-based analysis is incorporated for adding more details
to the experiments. The time-based analysis includes the time
taken by the model to get trained and the time taken by the
model to get tested. The time required for each model to get
trained with AF-TD1 data set and get tested with AF: TD1, VF:
TD2-A, ST: TD3, VF: TD2-B-lead I, and VF: TD2-B-lead II data
samples is shown in Table 12. The LSTM, GRU, and CNNs are
trained for 1000 epochs each. For the networks, such as RNN,
the model is trained for 298 epochs and RSCNN the model is
trained for 105 epochs. From the experimental results, we
Table 12 Training and testing time for all the deep learning models used in the p

LSTM G

training time (HH.MM.SS) (AF: TD1) 08: 09:00 11:
testing time (seconds) (AF-TD1) 1.47 0
testing time (seconds) (VF: TD2-A) 0.52 0
testing time (seconds) (ST-TD3) 0.01 0
testing time (seconds) (VF: TD2-B-lead I) 0.05 0
testing time (seconds) (VF: TD2-B-lead II) 0.05 0

Table 13 Performance comparison of the present work with respect to state-of-
data sets

Accuracy

proposed methodology (AF: TD1) 96.47
Chanthercrob et al. [39] (AF: TD1) —

Gopika et al. [31] (AF: TD1) 96.47
proposed methodology (VF: TD2-A) 90.88
Boreiko [40] (VF: TD2-A) —

Sohail et al. [41] (VF: TD2-A, VF: TD2-B) 98.03%
proposed methodology (ST: TD3) 27.97
Gopika et al. [31] MIT arrhythmia (N, S, V, F, Q) 97.94
proposed methodology (VF: TD2-B-lead I) 94.71
Proposed Methodology (VF: TD2-B-lead II) 94.18
Mohanty et al. [42] (VF: TD2-A/VF: TD2-B) 99.18
Andreotti et al. [24] (AF: TD1) —

Hannun et al. [26] (AF: TD1) —

Andersen et al. [25] (AF: TD1, VF: TD2, VT, AF, etc.) —

Shashikumar et al. [27] (AF: TD1) AUC-94%
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observe that the RSCNN has taken the least time for training as
the number of epochs is less, compared to all other models. Then
the second least time is taken by the RNN model since it has the
least number of learnable parameters among other models. Even
though the GRU has the second least number of learnable para-
meters, it has taken much greater time than other models, while
comparing other models based on accuracy and number of learnable
parameters. RNN has achieved an accuracy of 96.87, 90.34, 90.88,
94.71, and 94.18% for AF: TD1 class 0, AF: TD1 class 1, VF:
TD2-A, VF: TD2-B-lead II, and VF: TD2-B-lead II, respectively.
RNN model has better performance than any other models in
terms of accuracy and time.

The comparison of the present work with respect to the current
state-art-of-the method is shown in Table 13. For the AF CINC
challenge data set (AF: TD1), CU VF data set (VF: TD2-A),
MIT BIH Arrhythmia database (ST: TD3), and malignant ventricu-
lar ectopy database (VF: TD2-B), respectively. From the results
shown in Table 13, we could interpret that the current methodology
was able to achieve comparable performance with respect to the
state-of-the-art methods. An exception was found in the case of
ST disease. This difference in the performance of ST is because,
the current methodology employs a model trained with the AF
disease to detect other tachycardia diseases, such as VF and ST.
The model which is trained with AF was not able to detect ST seg-
ments. The main feature of ST disease which is the upright P-waves
is different from the AF and VF disease features. The features of ST
do not share common feature distribution with the other tachycardia
disease data set (AF and VF). The difference in feature distribution
failed the model trained by the AF data set to detect ST disease.

Validation of using the feature extracted samples instead of using
the raw ECG signal is done by evaluating the model performance
by giving the input as raw ECG signal and the feature extracted
segments. The comparison of the results acquired by feeding the
model with and without feature extracted ECG signals is shown
resent work

RU RNN CNN RSCNN

41:54 01: 46: 09 06: 48: 51 01: 31: 04
.74 0.15 4.22 11.29
.43 0.23 0.31 0.71
.02 0.01 0.04 0.03
.03 0.03 0.11 0.23
.04 0.03 0.12 023

the-art methods for the AF: TD1, VF: TD2-A, ST: TD3, and VF: TD2-B

Sensitivity F1 score Specificity

0.93 0.92 0.90
0.97 — 1.00
0.93 0.92 0.90
0.91 0.95 0.90
0.83 — —

— — —

0.28 0.44 0.24
0.98 — —

0.95 0.97 0.95
0.94 0.97 0.94
0.97 — 0.99
— 0.83 —

— 0.837 —

0.86 — 0.98
— — —
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Table 14 Performance comparison of the RNN, LSTM, GRU, CNN, and RSCNN models using raw ECG signal and the handcrafted feature segments in
terms of accuracy (%)

LSTM GRU RNN CNN RSCNN

AF CINC 2017 data set (AF: TD1) featured extracted ECG signal 94.76% 96.47% 96.01% 95.32% 96.08%
AF CINC 2017 data set (AF: TD1) raw ECG signal 83.04% 83.29% 87.0% 85.49% 87%

Table 15 Performance of the deep learning models towards the noisy signal in AF: TD1 data set

LSTM GRU RNN CNN RSCNN

percentage of noisy signal falling into normal class 78.66% 78.76% 72.99% 89.17% 73.35%
percentage of noisy signal falling into abnormal class 21.34% 21.24% 27.01% 10.83% 26.65%
in Table 14. From the results, we could see that the RSCNN archi-
tecture has gained an accuracy of 96.08% with feature extracted
signal. In the case of the RSCNN model using keeping the hyper-
parameters constant when fed with raw ECG signal, it could
acquire only 87%. A similar trend can be seen in the case of other
models also. For raw signal, the GRU model could acquire only
83.29%, but when fed with a feature extracted signal it could
achieve an accuracy of 96.47%. From the results, we can analyse
that by keeping model parameters constant the feature extracted seg-
ments give better performances than raw ECG signal. The feature
extracted segments give a closed platform for learning the features.
This helps the model to give better performance.
In order to check the noise robustness, the model is tested with

the noisy segments from the AF CINC challenge data set. These
noisy segments are not annotated. The results are tabulated in
Table 15. All the deep learning models classify the majority of
the noisy segments into the normal class. The expected result
was the reverse, as the noisy segments are considered the
deviation from the normal class. This enforces the direction of train-
ing the deep learning algorithms to detect multi-class with the inclu-
sion of unlabelled noisy segments along with the normal and
abnormal. This can be considered as the future scope of the
present work.
From the experimental results and analysis, we observed that the

model trained with AF was able to detect VF and failed to detect
ST. The expected results were that, if the model has learned the
fast beat rhythm, it must be able to detect the other types of tachy-
cardia diseases. From this, we were able to interpret that, even
though AF, VF, and ST fall under the common disease type
called tachycardia, the features learned by the model were
common to AF and VF which was not applicable to ST. The pres-
ence of upright P-wave is the characteristics of an ECG signal spe-
cific to ST disease. This explains that the model just did not capture
the fast beat rhythm, which is the coarse level feature to detect all
the three different types of tachycardia diseases. Instead, it captured
the disease specific feature, which differentiates the ST from AF
and VF. This analysis from the experiments conducted led to
‘Explainable AI’.
The source codes for the experiments done in the proposed work

are given in https://github.com/Sanjanakaladharan/Explainable-AI-
for-Heart-Rate-Variability-in-ECG-Signal
The findings based on the experiments conducted and the results

obtained are given below:

† Among all the benchmark deep learning architectures implemen-
ted for the different tachycardia disease detection, RNN was able to
perform better based on our proposed transfer learning approach.
† Even though RNN was able to detect two types of tachycardia
diseases namely AF and VF, it failed to detect ST. This may be
due to the absence of P-wave characteristics in the trained model
Healthcare Technology Letters, 2020, Vol. 7, Iss. 6, pp. 146–154
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(using AF: TD1). ST has an up-right distinct P-wave that differenti-
ates it from atrial and VF.

5. Conclusion: In this work, we proposed the transfer learning
approach to interpret the features learned by the model to detect
different types of tachycardia diseases. This is attained by
training the five different deep learning architectures with one of
the tachycardia diseases (AF: TD1). The features learned by the
model using one of the tachycardia diseases are tested with
all other types of tachycardia diseases, namely VF and ST. The
experimental results and analysis have shown that the RNN
model performed better than other standard deep learning
models, such as LSTM, GRU, CNN, and RSCNN. The model
was able to detect the atrial (AF: TD1) and ventricular type of
tachycardia diseases (VF: TD2-A and VF: TD2-B) but failed in
the case of ST (TD3). In the case of AF and VF, it is the absence
of P-wave and the presence of fibrillatory waves are the
features that enabled the model to detect diseases distinct from
the ST. The characteristic feature for ST is the upright P-wave,
which the model failed to capture when trained with one of
the types of tachycardia diseases called AF. Thus, the present
work led to ‘Explainable AI’, which interprets the model used
to detect different types of tachycardia diseases, which have
fast beat rhythm as a common characteristic of the input ECG
signals.
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