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Abstract: A system was developed to evaluate and predict the interaction between protein 

pairs by using the widely used shape complementarity search method as the algorithm for 

docking simulations between the proteins. We used this system, which we call the affinity 

evaluation and prediction (AEP) system, to evaluate the interaction between 20 protein pairs. 

The system first executes a “round robin” shape complementarity search of the target protein 

group, and evaluates the interaction between the complex structures obtained by the search. 

These complex structures are selected by using a statistical procedure that we developed called 

‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with 

a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing 

the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs) 

that were biologically relevant combinations. Our ultimate goal is to construct an affinity 

database that will provide cell biologists and drug designers with crucial information obtained 

using our AEP system.

Keywords: protein–protein interaction, affinity analysis, protein–protein docking, FFT, massive 

parallel computing

Introduction
Proteins have diverse functions ranging from molecular machines to signaling. They 

participate in catalytic reactions, provide transport, form viral capsids, traverse mem-

branes and construct regulated channels, transmit information from DNA to RNA, thus 

making it possible to synthesize new proteins. Given their importance, considerable 

effort has centered on the prediction of protein functions. A major way of achieving 

this is through the identification of binding partners. If we know the function of at 

least one of the components with which the protein interacts, that should enable us 

to determine its function(s) and the pathway(s) in which it plays a role. This holds 

since the vast majority of the functions performed by proteins in living cells involve 

protein–protein interactions (PPI).1,2 Hence, by observing the intricate network of 

these interactions we can map cellular pathways, their interconnectivities and their 

dynamic regulation. Their identification is at the heart of functional genomics; their 

prediction is crucial to the discovery of new drugs. Knowledge of these pathways, 

their topologies, lengths, and dynamics may provide useful information for forecasting 

side effects.

The PPI affinity problem involves finding a protein pair that is interactive from 

a protein group with a known structure.1,2 Recently, pharmaceutical companies have 

been trying to produce medicines based on candidates discovered using protein–
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chemical compound docking simulations. Docking analysis 

with respect to PPI remains limited, however, because the 

macromolecules involved in these simulations are large 

and thus require extensive computational resources. PPI is 

a basic element of model construction in research that first 

analyzes the cell-signaling pathway and then identifies the 

target protein of a drug. The prediction of the interactions 

between vast numbers of proteins is crucial if we are to 

understand such biological phenomena as cellular signaling, 

enzyme reaction and gene expression regulation.

PPI prediction has been extensively studied both experi-

mentally3–7 and theoretically. In experimental studies, Giot 

and colleagues,8 and Stanyon and colleagues9 constructed a 

protein interaction map on a genome scale for Drosophila 

melanogaster, and Rain and colleagues10 constructed that for 

human Helicobacter pylori. Based on theoretical calculations, 

Wojcik and colleagues11 constructed an interaction map by 

using domain profile pairs in which the input was the amino 

acid sequence for H. pylori.

These studies mainly used either genome scale analysis8,10 

or sequence analysis.12 However, in vivo, PPI is achieved by 

using protein structural information. Therefore, ultimately, 

PPI evaluation and prediction should also utilize protein struc-

tural information. Such an interaction evaluation and predic-

tion system has been discussed by Smith and colleagues,13 they 

did not consider the composition, performance or accuracy of 

the evaluation or the prediction of a concrete system. If we 

can perform such an ultimate PPI evaluation and prediction 

of the interaction between pairs of a large number of proteins, 

we can assume a signal transmission pathway, and then we 

can evaluate and predict the affinity between an enzyme and 

inhibitor(s) or substrate(s), an antibody and an antigen. Such a 

large-scale PPI affinity evaluation system has been discussed 

by Park and colleagues14 and Gong and colleagues.15 Their 

system, Protein Structural Interactome map (PSIMAP) (http://

psimap.com/), performs evaluations by using Euclidean dis-

tance between two domains and the number of residue pairs 

within a given distance threshold as the PPI measurement 

base. This method is simple and fast. We know that the data 

provided by PSIMAP are useful, but such a method based on 

simply distance comparisons is not available for making PPI 

maps that include sufficient three-dimensional (3D) structural 

information for supporting a drug discovery. Therefore, in 

this study we developed a high-speed and more detailed PPI 

affinity evaluation and prediction system that is based on our 

original docking simulation program and the original high-

speed FFT library produced by Hourai and colleagues16 and 

can be performed using a massive parallel PC cluster. In this 

system, which we call an affinity evaluation and prediction 

(AEP) system, first a “round robin” shape complementarity 

search is executed for the target protein group, and then 

the interaction between the proteins is evaluated based on 

complex structures determined by using a statistical procedure 

that we developed called ‘grouping’.

Methods
evaluation of shape complementarity
When the shape complementarity17–19 between two proteins is 

evaluated, the structure of a protein is converted into a rigid 

body object represented in a 3D grid space. Typically, in 

the protein–protein docking simulation, each point of the 

protein represented on the grid is classified as being in the 

core area, the surface area, or the cavity area as described 

below. Because the accuracy of docking simulations that 

use the shape complementarity search depends strongly on 

the representation method, various representation methods 

have been developed.

Here, we have developed a representation method called 

the voxel model, which has two distinguishing features. (1) 

The molecular surface can be faithfully modeled by changing 

the radius of the probe sphere to define as the extended 

solvent-accessible surface, which is traced out by the probe 

sphere center as it rolls over the protein, of each atomic type. 

(2) The shape complementarity can be determined much 

more accurately than just made voxel models by reducing 

the thickness of the molecular surface. However, when the 

thickness is reduced too much, the response of the shape 

complementarity evaluation function becomes too sensitive. 

Next we describe in detail the voxel model and the procedure 

for converting the crystal structure of a protein to the voxel 

model (voxelization).

Voxelization
The voxel model is expressed as shown in expression (1), 

where VOXEL (V) represents the voxel model, INNER 

(I) defines the area on the atom, where the protein exists, 

OUTER (O) is the area that is not INNER, in other words it 

indicates a solvent. SURFACE (S) is the area on the molecu-

lar surface of the protein, CAVITY (C) is the area inside 

SURFACE that is not INNER, namely, it means a cavity. N is 

a set of natural numbers, and φ is an empty set. n
I
, n

O
, n

S
, and 

n
C
 are the upper bound values of each voxel type (I, O, S, C) 

decided from the molecular size of the protein. All the areas 

in the voxel space in the initial state are defined as DEFAULT 

(D), and a temporary molecular surface of protein is defined 

as TMP_SURFACE (S
tmp

).
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The procedure of voxelization is formulated using expres-

sion (2). Figure 1 details each step of this procedure.
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•	 Step 1 (DEFAULT):

In the voxel space, all grid points are assigned to DEFAULT 

as the initial state.

•	 Step 2 (INNER):

The grid points that exist within a spheroid of radius R
i
 

(=R
vi
∆r

i
) are assigned to INNER, where R

vi
 is the van der 

Waals radius of each atom, and ∆r
i
 is the increment in the 

radius of a defined type of atom.

•	 Step 3 (OUTER):

All the remaining grid points are assigned as OUTER.

•	 Step 4 (TMP_SURFACE):

The INNER grid points that adjoin the OUTER grid points 

are newly assigned to TMP_SURFACE.

•	 Step 5 (SURFACE):

A TMP_SURFACE grid point is finally replaced by 

SURFACE or INNER according to the following process. 

When a TMP_SURFACE grid point is enclosed by six or 

more OUTER grid points, the TMP_SURFACE grid point 

is re-assigned to SURFACE. After this process has been 

completed for all TMP_SURFACE grid points, the remain-

ing TMP_SURFACE grid points are re-assigned to INNER. 

Thus, finally, the TMP_SURFACE grid points vanish from 

the voxel space.

•	 Step 6 (CAVITY):

The grid points which remain as DEFAULT are re-assigned 

to CAVITY. Hence, the DEFAULT grid points also disappear 

from the voxel space.

score function of contact surface area
In the shape complementarity evaluation, the surface contact 

between proteins represented by the grid points is evaluated 

by using the score function of the contact surface area.17 

This score function defines a score for INNER, OUTER, 

SURFACE, and CAVITY as described in Voxelization. The 

contact surface score function we adopted for our voxel model 

is the pair-wise shape complementarity (PSC) score function 

S
PSC

 that Weng and colleagues17 defined with ZDOCK.17,18,20 

As defined in expressions (3) and (4), this S
PSC

 is a primitive 

function where the electrostatic interaction is not considered. 

The score function S
PSC

 consists of two factors R
PSC

, L
PSC

.

DEFAULT

OUTER

SURFACE

INNER

TMP_SURFACE

CAVITY

(1) DEFAULT (2) INNER (3) OUTER

(4) TMP_SURFACE (5) SURFACE (6) CAVITY

Rvi

Δri
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Figure � six-step voxelization process for the quantization and characterization of protein surfaces in our AeP system.
Abbreviation:  AeP,  affinity evaluation and prediction.
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The factor R
PSC

(l, m, n) is for the receptor protein, which 

is a protein fixed on the grid space, and the factor L
PSC

(l, m, n) 

is for the probe protein, which is a protein that is rotated and 

translated on the grid space. In expressions (3) and (4), l, m, 

and n are the coordinates of the grid point, and “Re[]” and 

“Im[]”, respectively, indicate the real and imaginary parts of 

the factor and the PSC scoring function. Moreover, bonusR, 

which appears in the real part of R
PSC

(l, m, n), indicates 

“bonus” points (ie, additional points added to the PSC scor-

ing) when the probe protein penetrates the pocket structure 

of the receptor protein. The final S
PSC

, as shown by expres-

sion (4), is obtained by calculating the correlation function 

between R
PSC

 and L
PSC

. The computational complexity of this 

calculation is O(N6), but can be decreased to O(N3logN) by 

using a fast Fourier transform (FFT) as follows.
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Abbreviations: (DFT, Discrete Fourier Transform; IFT, 

Inverse Fourier transform).

In the S
PSC

 calculation, we adopted the FFT library 

CONV3D developed by Hourai and Nukada.16 The CONV3D 

is highly optimized for specific CPU architectures (Pentium, 

Xeon, Athlon, POWER5, etc.), achieves high-speed perfor-

mance, and is about three times faster than the widely used 

FFT library package FFTW21,22 (according to the results 

obtained with Protein–Protein Docking Benchmark 2.0;23 

data not shown).

At the beginning, a rotational search is performed in an 

actual evaluation of the contact surface between proteins. 

The rotational search works by explicitly rotating the ligand 

protein around each of its three Cartesian angles by a certain 

increment (15 degrees in this study). A total of 3600 rotated 

bodies of the ligand protein are thus generated. Next, the 

shape complementarity evaluation is undertaken for all 

rotated bodies. If the grid size of the ligand protein is N3, then 

N3 × 3600 PSC scores must be calculated. Based on prelimi-

nary experiments, in all the analyses we only extracted the 

top-ranked 512 PSC scores for the following procedures.

Reliability of shape complementarity evaluation
To confirm the reliability of the shape complementarity 

evaluation by using our voxel model, we performed simple 

docking calculations using some bound structures adopted 

from Weng’s Protein–Protein Docking Benchmark 2.0 as 

samples. It is widely recognized that the main challenge 

in protein docking lies in the unbound–bound transition. 

Although we are also more interested in the unbound experi-

ments than in the bound, the latter enables us to primitively 

confirm the advantages of our AEP’s improvement at the 

initial stage. Because a protein complex for the latter, which 

is pulled apart and reassembled, is more complementary 

than individually crystallized component structures for the 

former. The widely used i-RMSD (backbone RMSD at the 

interface) was the criterion we used to evaluate the reliability. 

In this way we evaluated the difference between the complex 

structure obtained by using the docking calculation and the 

X-ray crystal structure.

Affinity analysis
To calculate protein-protein affinity, we assess the biologi-

cal relevance of target proteins by statistically analyzing the 

characteristics of shape complementarity. The affinity 

analysis involved processing the 512 top-ranked values of 

S
PSC

 obtained from the shape complementarity evaluation by 

using a clustering method that we call grouping. The follow-

ing describes the affinity prediction procedure and includes 

a description of the grouping method.

•	 Step 1 (Shape complementarity evaluation):

A shape complementarity evaluation of protein pairs is 

performed. Only the 512 top-ranked S
PSC

 scores are then 

considered for step 2.

•	 Step 2 (Grouping):

The purpose of step 2 is to classify the 512 S
PSC

 scores 

into 10 clusters, C
i
 (i =	1–10). First, the clustering method 

is performed hierarchically by using the nearest neighbor 
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method for the 512 values of S
PSC

 as follows. We define the 

targeted dataset X =	{x
1
, ..., x

512
} as consisting of 512 S

PSC
 

scores from step 1. For each data point, x
i
 is represented as 

x
i
 = (S

i
, T

i
(T

X
, T

Y
, T

Z
), R

i
(R


, Rφ, Rψ)). Here, S

i
 = S

PSC
 from 

expression (4), T
i
(T

X
, T

Y
, T

Z
) is the amount of translation 

for the ligand protein in the grid space, and R
i
(R


, Rφ, Rψ) 

is a rotation parameter for the ligand protein. If (o,p,q) in 

expression (4) is used, then o = T
X
, p = T

Y
, and q = T

Z
 in 

T
i
(T

X
, T

Y
, T

Z
), respectively.

All data x belonging to the dataset X are sorted by the 

rank order of S
i
. In X, we define the data point with the maxi-

mum S
i
 (maxS

i
) as the central data y

1
 of cluster 1 (y

1
 ∈ C

1
). 

Here, the term central data indicates data that represent 

a characteristic of a cluster. Now, we introduce the distances 

D
1
(y

1
, x

i
) and D

2
(y

1
, x

i
) between y

1
 and x. Here, in this dataset x, 

the data y
1
 is not included and is not classified into any clusters 

C
i
 (x

i 
 ∈ (C

i
)C). The distance D

1
 is represented as the Euclidean 

translation distance, and the rotational distance D
2
 is a value 

defined to represent the difference in rotation of data x
i
 and 

data y
1
. Here, we define the center of gravity of a ligand as 

point G and the coordinates of the Cα atom in the C- and 

N-terminals of a ligand as points C and N, respectively. We 

also define vector u as the normal vector of a plane, which 

is defined by three points (G, C, and N). Thus, the rotational 

difference D
2
 indicates the cosine between u

i
 of data x

i
 and u

1
 

of data y
1
. When the following two conditions exist between 

the above data x
i
 (ie, x

i
 ∈ (C

i
)C) and the central data y

1
, the 

data x
i
 are classified into cluster 1 (C

1
).

(1) When the translation distance |D
1
| between T

i
 of 

data x
i
 and T

1
 of the central data y

1
 is less than a certain 

translational threshold (eg, 10.0Å).

(2) When the rotational distance |D
2
| between x

i
 and y

1
 

is less than a certain rotational threshold (eg, π/6).

Cluster C
1
 is determined by repeating step 2 for all x

i
 

where y
1
 is excluded. Similarly, step 2 is repeated for clusters 

C
i
 (i = 2–10). Step 2 ends either when the ten clusters (C

1
–C

10
) 

are generated or when all x
i
 belong to any cluster C

i
.

•	 Step 3 (Calculation of Z-score):

The purpose of step 3 is to prepare for the affinity analysis. 

The Z-score indicates the number of standard deviations that 

an observation is above or below the mean. It allows us to 

compare observations from different normal distributions. 

Here, a set of central data y
i
 of each cluster C

i
 obtained in 

step 2 is defined as the central dataset Y. The distribution 

Z
score

(y
i
) is the Z-score distribution of the PSC score of each 

set of central data y
i
 ∈ Y when the dataset X is considered 

a population. The distribution Z
conformation

(C
i
) is the distribu-

tion of the Z-score of m
Ci

. Here m
Ci

 is the number of data that 

constitute cluster C
i
 when the dataset M

cluster
 = {m

ci
 | i ∈	N, 

i  0} is considered a population. In step 3, the distributions 

Z
score

(y
i
) and Z

conformation
(C

i
) are calculated.

•	 Step 4 (Calculation of affinity score S
affinity

):

The measure for the affinity analysis is called an affinity score 

S
affinity

, which is defined in expression (5) as the maximum 

value of a linear combination of Z
score

(y
i
) and Z

conformation
(C

i
) 

and their corresponding weighting factors w
s
 and w

c
. The 

weighting factors w
s
 and w

c
 are introduced to determine the 

balance between the S
PSC

 score distribution Z
score

(y
i
) and the 

conformation distribution Z
conformation

(C
i
) when the affinity 

score S
affinity

 is calculated. The analysis of the affinity between 

protein pairs can be quantified by using S
affinity

.

 
S w Z y w Z C

w weight

affinity s score i C conformation i

s

= ⋅ + ⋅max( ( ) ( ))

: iing factor for y

w weighting factor for Z
score i

e conformation

Z ( )

: (cci )

 
(5)

•	 Step 5:

Steps 1 to 4 are repeated. For example, if the affinity analysis 

is needed for 20 receptors and 20 ligands (20 ×	20), then steps 

1 to 4 are repeated 20 times because there are 20 ligands for 

each receptor. The S
affinity

 matrix is obtained by repeating steps 

1–5 for all protein pairs.

When several target proteins have an unknown affinity, 

we can consider our AEP system to be an affinity prediction 

system. To evaluate the prediction performance of our AEP 

system, we used receiver operating characteristics curve 

(ROC) analysis. Based on the ROC analysis, we evaluated 

the maximum prediction performance of our AEP system by 

using a recall, a precision and a cutoff value. The parameters 

of w
s
 and w

c
 in expression (5) were defined at the maximum 

prediction performance.

Performance measures
Sensitivity and specificity are one of the performance 

measures for assessing the statistical significance of AEP’s 

predictions. The sensitivity or the recall measures the per-

centage of biologically relevant pairs which are correctly 

identified as having the high-affinity scores; and the speci-

ficity measures the percentage of biologically not relevant 

combinations which are identified as having the low-affinity. 

Here, the evaluation of each affinity scores (ie, high or low) 

is determined by a cutoff value from ROC analysis. Then, 

precision is the number of predictions statistically identi-

fied as belonging to the protein pairs divided by the total 

number of pairs. “Accuracy” is closely related to precision, 

measures the percentage of correctly identified protein pairs 
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in the total number of pairs. Moreover, prevalence is defined 

as the total number of biologically relevant pairs in all the 

pairs. F-measure, which is the weighted harmonic mean 

of precision and recall, can be used as a single measure of 

performance.

implementation
Our AEP system was implemented using C language, which 

we ran on the cluster PC (16 cores and 64 GB memory). To 

improve the performance, we parallelized the core program 

of AEP using the Message-Passing Interface (MPI) library. 

For example, the time needed for the docking calculation 

is about 12 seconds for a grid size of 1283 with a rotation 

resolution of 15 degrees. Thus, the peak performance of AEP 

is 7,200 protein–protein pairs per day.

Protein pair dataset
All protein pairs used in this study were selected manually 

from complex structures registered with the Protein Data 

Bank (PDB). We adopted the 20 protein pairs (bound dataset) 

shown in Table 1, and analyzed the affinity of each pair.

In a docking simulation that uses a general shape comple-

mentarity search, the receptor is fixed to the grid space and 

the ligand is rotated and translated in the grid space.

Results and discussion
Validation of docking accuracy 
using our AeP system
We selected seven protein pairs from Protein–Protein Docking 

Benchmark 2.0 according to the distribution of difficulty 

(“moderate”, “medium”, and “difficult”) that Weng and 

colleagues defined. The breakdown of the difficulty in the 

seven selected pairs was five pairs in the moderate difficultly 

class (1DFJ24, 1F3425, 1HIA26, 1AKJ27, 1F5128), one pair 

(1I2M29) in the medium difficultly class and one pair (1EER30) 

in the difficult class. Table 2 summarizes the docking calcu-

lation results for seven protein pairs in which i-RMSD was 

Table � Targeted 20 protein pairs

Protein Data Bank-ID Index Receptor Ligand

1AY7 0 Ribonuclease sA BARnase inhibitor

1BPL 1 glucanohydrolase:A glucanohydrolase:B

1CAU 2 Canavalin:A Canavalin:B

1D4V 3 TnF-related Apoposis inducing Ligand Death receptor 5

1eAY 4 Chey:A,B Chey-binding(P2) domain

1eM8 5 DnA polymerase iii c subuinit DnA polymerase iii y subunit

1F2T 6 RAD50 ABC-ATPase n-term. domain RAD50 ABC-ATPase C-term. 
domain

1F60 7 elongation Factor eeF1A elongation Factor eeF1BA

1gO3 8 DnA-directed RnA polymerase subunit e DnA-Directed RnA polymerase 
subunit F

1KA9 9 imidazole glycerol phosphtate synthase:h imidazole glycerol phosphtate 
synthase:F

1RKe 10 Vinculin VCL protein

1VeT 11 Mitogen-activated protein kinase 1 interacting 
protein 1

Late endosomal/lysosomal 
Mp1 interacting protein

1WMh 12 Protein kinase C, iota type Partitioning defective-6 homolog 
alpha

1WRD 13 Target of Myb protein 1 Ubiquitin

1Xg2 14 Pectinesterase 1 Pectinesterase inhibitor

1Y96 15 gem-associated protein 6 gem-associated protein 7

2F9Z 16 Chemotaxis protein CheC Chemotaxis methylation protein

2g2U 17 B-lactamase shV-1 Beta-lactamase inhibitory 
protein

2hsn 18 Methionyl-tRnA synthetase gU4 nucleic-binding protein 1

2nXn 19 Ribosomal protein 
L11 methyltransferase

50s ribosomal protein L11
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used to confirm the reliability of the shape complementarity 

evaluation. For all seven pairs, i-RMSD  1.10 Å, indicating 

enough accuracy for docking prediction. As regards 1F34, 

1HIA, 1EER, 1I2M, and 1F51, the rank that gives these 

highly accurate results is within the top 20 ranks. On the 

other hand, the S
PSC

 for 1DFJ and 1AKJ is relatively low, and 

therefore their ranks are also low, namely 129th and 230th, 

respectively. However, the affinity analysis successfully 

predicted the active sites of these pairs, including 1DFJ and 

1AKJ. Although a general docking simulation uses a more 

complex evaluation function, the results obtained here by 

using a primitive evaluation function consisting only of the 

shape complementarity were good. Based on these docking 

results (Table 2), the shape complementarity evaluation is 

sufficiently reliable for affinity analysis.

shape complementarity evaluation
Prediction performance comparison 
between AeP and ZDOCK 3.0.1
As mentioned in Evaluation of shape complementarity, an 

original docking simulation code is included in our AEP 

system. We evaluated the prediction performance of the 

system when replacing our code with ZDOCK 3.0.1,31 

which is a widely used docking program, and compared 

the prediction accuracy of the ZDOCK 3.0.1 version 

with that of the original AEP. It is the purpose of the 

comparison to show the effect of voxelization, grouping, 

and parallelization, which we have introduced.

We have already confirmed this effect. For this compari-

son, we adopted 20 different protein pairs (bound dataset) 

from the Protein–Protein Docking Benchmark 2.0. The high-

est score of ZDOCK 3.0.1 output was adopted as the affinity 

score for each protein pair.

The prediction performance obtained using ZDOCK 3.0.1 

is shown in Table 3. This table represents the advantages of 

performance parameters of AEP over ZDOCK 3.0.1. Here, 

these parameters are of the peak performance by using the 

chosen cutoff from the ROC analysis. The F-measure of AEP 

is 5.1% more accurate than that of ZDOCK 3.0.1. That means 

the high specificity of AEP over ZDOCK 3.0.1 while the 

difference of sensitivity is slightly 10.0% (ie, the difference 

of the value of true positives is only 2). AEP has an ability 

to correctly identify many true negatives (ie, TN = 307) 

with few false positives (ie, FP = 73) rather than ZDOCK 

3.0.1 (ie, TN = 260, FP = 120). The ability to eliminate false 

positives is very important in terms of our goal that tries to 

deeply penetrate protein–protein networks. It is significantly 

valuable not to predict nonbonding pairs as well as identify-

ing correct combinations.

Moreover, our AEP required much less computational 

time than ZDOCK 3.0.1. ZDOCK 3.0.1 needs over 3600 

seconds for one protein pair whereas our AEP system 

needs only 12 seconds, namely it is 300 times faster. As 

shown by these results, we have revealed the advantage 

of our AEP with respect to prediction and computational 

performance.

The effect of grid size 
on the identification capability 
of our affinity analysis
The accuracy of the representation of the protein model is 

dominated by the grid-size of the voxelization procedure. 

In shape complementarity docking, the optimum grid size is 

defined as being 1.2 Å by Weng and colleagues17 as regards 

accuracy of docking, although, for our affinity analysis, which 

is derived from that shape complementarity docking scheme, 

the optimum grid size is unclear. Thus, we first investigated an 

optimal grid size for our affinity analysis. In this investigation 

using 20 × 20 protein pairs as shown in Table 1, the grid size 

ranged from 0.8 to 2.2 Å at 0.2 Å intervals. As the standard for 

our evaluation of the accuracy of the affinity analysis we used 

F-measure, which we obtained as the cutoff value from the 

ROC analysis. The results of F-measure are shown in Table 4. 

Table � Docking calculation results to validate the shape complementarity evaluation using voxel model

Complex (PDB-ID) Description i-RMSD (angstrom) Rank

1DFJ Ribonuclease A/Rnase inhibitor 0.60 129

1F34 Porcine pepsin/Ascaris inhibitor-3 0.81 1

1hiA Kallikrein/hirustatin 0.76 7

1AKJ MhC Class 1 hLA-A2/T-cell CD8 coreceptor 0.61 230

1eeR erythropoietin/ePO receptor 1.02 9

1F51 sporulation response factor B/sporulation response factor F 0.73 20

1i2M Ran gTPase/RCC1 1.09 5

Abbreviations: i-RMsD, backbone root mean square at the interface; PDB-iD, Protein Data Bank-iD.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2009:2�

Tsukamoto et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

According to these results, the highest F-measure was derived 

with a grid size of 1.2 Å. Thus, we use this grid size for all 

analyses as mentioned below.

evaluation for 20 × 20 protein pairs
Figure 2 shows the results of the shape complementarity 

evaluation for about 20 × 20 protein pairs. It also shows the 

normalized S
PSC

 for the receptor of each ligand. The vertical 

axis shows the normalized S
PSC

 where the maximum value 

is 1.0, and the horizontal axis shows the PDB index of the 

receptors (The relation between the index and PDB-ID is 

shown in Table 1).

The polygonal lines of 12 out of 20 receptors have no 

characteristic peak. For these receptors, the score of each 

predicted ligand is not the maximum (ie, S
PSC

  1.0) or 

the number of ligands with maximal score is not only one: 

1AY732(index =	 0), 1CAU33(2), 1D4V34(3), 1EAY35(4), 

1EM836(5), 1VET37(11), 1WMH38(12), 1WRD39(13), 

1XG240(14), 2F9Z41(16), 2HSN42(18), and 2NXN43(19). 

Thus, when using only the normalized S
PSC

, it is too dif-

ficult to evaluate and quantify the affinity between ligand 

and receptor.

Using our affinity calculation, Figures 3 and 4 show the 

affinity score S
affinity

 with w
c
 = 0 and w

s
 = 1. These values for 

w
c
 and w

s
 (parameters used for calculating affinity scores) 

were chosen to provide the maximum prediction performance 

(ie, F-measure) from our preliminary experiments.

Figure 3 shows the S
affinity

 of the receptor of each ligand, 

and the vertical axis shows the S
affinity

 and the horizontal axis 

shows the PDB index of the receptor. When our AEP system 

is used as a prediction system, the horizontal dotted line 

shows that the cutoff value at which the system achieves its 

maximum prediction performance is 7.54σ. This value pro-

vides the optimal tradeoff between sensitivity and specific-

ity. Each filled arrowhead () denotes a protein pair where 

S
affinity

 exceeds the chosen cutoff value, thus indicating that 

the biologically relevant pair with a statistically significant 

score; each unfilled arrowhead is a protein pair incorrectly 

identified as being biologically relevant (ie, false positive).

Figure 4 shows the S
affinity

 matrix in which the 10 data 

points (denoted by circles) along the diagonal of the matrix 

represent the protein pairs that have been experimentally 

confirmed to be biologically relevant. The vertical axis 

shows the index of the ligand, and the horizontal axis that 

of the receptor.

Based on Figures 2 and 3, the S
affinity

 obtained by our 

grouping process is more suitable than the simple S
PSC

 for 

estimating protein–protein affinity. For example, the S
affinity

 

for a specific ligand is the highest for the following receptors: 

1BPL44(1), 1F6045(7), 1GO346(8), 1KA947(9), 1RKE48(10), 

1VET(11), 1Y9649(15), 2G2U50(17), and 2NXN(19). These 

protein pairs with the highest score are also biologically 

relevant pairs. Moreover, for 1F2T51(6), the S
affinity

 of a bio-

logically relevant pair is the 2nd high score.

Our AEP system can therefore constitute a prediction 

system if we introduce a recall, a precision and a cutoff 

value. Our system predicts pairs whose S
affinity

 exceeds the 

cutoff value and are thus biologically relevant pairs. Based 

on the ROC curve in Figure 5, a cutoff value of 7.54σ dem-

onstrates the maximal prediction performance of our system. 

Table � Comparison prediction performance between AeP and 
ZDOCK

Parameters ZDOCK  
(grid size = �.�)

AEP  
(grid size = �.�)

F-measure 0.194 0.245

Accuracy 68.8 80.0

sensitivity (Recall) 75.0 65.0

Specificity 68.4 80.8

Precision 11.1 15.1

AUC 0.776 0.744

Abbreviation: AEP, affinity evaluation and prediction;  AUC, area under the curve.

Table � evaluations about the prediction performance for various of grid size

Grid size 0.� �.0 �.� �.� �.� �.� �.0 �.�

F-measure 0.129 0.132 0.526 0.120 0.286 0.400 0.103 0.161

Accuracy 49.5 44.3 95.5 56.0 80.0 92.5 17.3 87.0

sensitivity (Recall) 75.0 85.0 50.0 60.0 80.0 50.0 95.0 25.0

Specificity 48.2 42.1 97.9 55.8 80.0 94.7 13.2 90.3

Precision 7.1 7.2 55.6 6.7 17.4 33.3 5.4 11.9

AUC 0.580 0.654 0.779 0.560 0.800 0.718 0.488 0.479

Cutoff value 4.340 4.770 7.540 5.530 6.120 7.220 4.300 6.410

Abbreviation: AUC, area under the curve.
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Figure � normalized PsC score SSPC of the receptor of each ligand.  The horizontal axis shows the PDB index as in Table 1, and the vertical axis shows the normalized PsC 
score SSPC.
Abbreviations: PDB, Protein Data Bank; PsC, pair-wise shape complementarity.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances and Applications in Bioinformatics and Chemistry 2009:2�0

Tsukamoto et al Dovepress

submit your manuscript | www.dovepress.com

Dovepress 

When this cutoff is adopted, the performance of our AEP 

as a prediction system has an F-measure of 0.526, a recall 

of 50.0%, a precision of 55.6% (sensitivity of 50.0% and 

a specificity of 97.9%), and an accuracy of 95.5%. When 

we consider that the prevalence of the current sample size is 

5%, this performance is sufficiently high. Our AEP system 

identified 10 of 20 biologically relevant combinations from 

among 400 pairs of combination candidates. In addition, 

because our AEP system can identify the true negative pairs, 

the specificity and the accuracy are sufficiently high at 97.9%, 
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Figure � Affinity score Saffinity of the receptor of each ligand. The cutoff value is 7.54σ.  The filled arrowhead () denotes a protein pair in which Saffinity  7.54σ and is thus 
biologically relevant; the unfilled arrowhead is a protein pair incorrectly identified as being biologically relevant (ie, false positive). The horizontal axis shows the PDB index, 
and the vertical axis shows the affinity score Saffinity.
Abbreviation: PDB, Protein Data Bank.
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95.5%, respectively. This means that the prediction provided 

by our AEP system is reliable.

Efficacy of “asymmetrically biased” PSC 
score function for affinity analysis results 
by comparison of molecular size
We compiled the relationship between the number of atoms 

in terms of a molecular size and the results of the affinity 

analysis as shown in Figure 6. There is a relation between 

the affinity results and the size of receptors or ligands. This 

size indicates the number of atoms for a protein. The cor-

relation coefficient between the identification probability of 

biologically relevant pairs and the size of receptor is 0.40. 

This positive correlation is related to the characteristic of the 

score function of the shape complementarity. As mentioned 

above, the score function we used for the receptor is differ-

ent from that for the ligand. Because the score function for 

a receptor has a “bias” that tends to pull into the ligand to 

own pocket structure, we expect our AEP system to exhibit 

increasing docking structure accuracy when searching 

between a “large” receptor and a “small” ligand. The cur-

rent results reveal the efficacy as regards the evaluation of 

affinity. Moreover, because this characteristic is always good 

for a molecule that consists of a large number of atoms, to 

make the estimation performance more accurate, the dataset 

should be rearranged in terms of the assignment of either 

a receptor or a ligand by the order of the molecular size. In 

other word, a “large” molecule should always be assigned 

as a receptor regardless of whether it functions biologically 

as a receptor or a ligand.

Problem with shape complementarity 
evaluation
In the current affinity analysis, our AEP system succeeded 

in predicting the following 10 biologically relevant protein 

pairs from 400 (ie, 20 ×	20) protein pairs: 1BPL(1), 1F2T(6), 
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Figure � Matrix of affinity score Saffinity with weighting parameters wc = 0, and ws = 1.  The points on the diagonal line show the biologically relevant pairs, and the circles show 
the biologically relevant pairs where the AeP system provided a successful prediction.
Abbreviation:  AEP,  affinity evaluation and prediction.
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1F60(7), 1GO3(8), 1KA9(9), 1RKE(10), 1VET(11), 

1Y69(15), 2G2U(17), and 2NXN(19). The common feature 

of those complex structures is that, except for 1F2T(6) and 

1Y96(15), they have a typical docking type that we called 

“surface-to-surface”. The ”surface-to-surface” type as shown 

in Figure 7(a) is docking formed under a wide contact sur-

face. Even the affinity evaluation was derived from a shape 

complementarity search, because in practice, the affinity 

analysis revealed that a shape complementarity search can 

identify a pair with such a docking type in a sophisticated 

manner from 400 protein pair candidates.

In addition, the docking type of 1F2T(6) or 1Y96(15) is 

different from the typical type as mentioned above. We call 

their docking type “edge-to-edge”. The “edge-to-edge” type 

is a docking style where the edge of the surface of a receptor 

comes in contact with a ligand edge as shown in Figure 7(b). 

Naturally, a shape complementarity search has difficulty in 

dealing with the “edge-to-edge” docking type. Indeed as 

shown in Figure 3, with 1F2T(6), even our AEP system suc-

ceeded in predicting the pair, and the affinity score from the 

correct pair is the 2nd highest score rather than the highest. 

Our AEP system also succeeded for 1Y96(15), however, 

the 2nd highest score from an irrelevant pair is also over the 

cutoff value of 7.54σ.

On the other hand, our AEP system failed to predict the 

following 10 biologically relevant pairs: 1AY7(0), 1CAU(2), 
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Figure � The ROC curve for the prediction performance of the AeP system.  The peak performance achieved at point P (cutoff value is 7.54σ), and their values are shown 
in the bottom-right corner.
Abbreviations:  AEP, affinity evaluation and prediction; ROC, receiver operating characteristics.
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Figure � Relation between the size of each protein pair (ie, number of atoms) needed for biological relevance and the affinity analysis results. The horizontal axis shows the 
number of atoms in the receptor, and the vertical axis shows that in the ligand. The symbols denote the protein pair. The unfilled circles () denote a protein pair that was 
identified as biologically relevant by the AEP system, and the filled circles () denotes a protein pair identified as not biologically relevant.
Abbreviation:  AEP, affinity evaluation and prediction.

(a) Surface-to-surface (b) Edge-to-edge

(c) Point-to-point

Figure � Models for docking styles. Type (a), called “surface-to-surface”, is most popular docking among our docking complex structures. Type (b) is called “edged-to-edge” 
contacting only using each edge of receptor and ligand. Type (c) is called “point-to-point” which is most less performance by shape complementarity search.
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1D4V(3), 1EAY(4), 1EM8(5), 1WHM(12), 1WRD(13), 

1XG2(14), 2F9Z(16), and 2HSN(18). This prediction failure 

might be due to a structural feature of the protein pair that 

hinders the shape complementarity evaluation.

Because the docking type of 1AY7(0), 1CAU(2), 

1EAY(4), 1WHM(12), 1WRD(13), 1XG2(14), and 2F9Z(16) 

is “edge-to-edge”, the affinity scores S
affinity

 are low (ie, under 

7.54σ) for almost all the ligands. The complex structures 

of 1D4V(3), 1EM8(5), and 2HSN(18) are “point-to-point” 

docking type. This docking type has a smaller contact surface 

area than the “edge-to-edge” type as shown in Figure 7(c). 

In fact, the docking site of the 1EM8(5) receptor is too small 

to allow us to detect the correct pair. This makes a shape 

complementarity search difficult to perform with this type.

Most of the protein pairs that our AEP system failed to predict 

were not the typical docking type (ie, surface-to-surface) with 

a complex formation as mentioned above but edge-to-edge 

and/or point-to-point type, because the shape complementarity 

search cannot deal easily with these types. We are now extract-

ing the common characteristics from these negative docking 

types and developing methods to overcome these issues.

Conclusion
A shape complementarity search method and a statistical 

method called ‘grouping’ were combined to evaluate and 

predict the affinity between various protein pairs with known 

structures. At a prevalence of 5.0%, prediction with our AEP 

system had a recall of 50.0%, a precision of 55.6% and an 

accuracy of 95.5%. An evaluation of the affinity was difficult 

when only the PSC score based on the shape complementarity 

evaluation was considered.

The affinity evaluation was significantly improved by the 

grouping process that we introduced. Future research will 

be undertaken on the relation between the physicochemical 

characteristic of proteins and the prediction accuracy of our 

AEP system, and then, based on those findings, research will 

be undertaken on further improving the accuracy of the sys-

tem. Although an unbound dataset was not considered in this 

study, our future research will also include how to improve 

the prediction accuracy of an unbound dataset.
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