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Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease (ESRD).
Existing treatments cannot control the progression of diabetic nephropathy very well. In
diabetic nephropathy, Many monocytes and macrophages infiltrate kidney tissue.
However, the role of these cells in the pathogenesis of diabetic nephropathy has not
been fully elucidated. In this study, we analyzed patient kidney biopsy specimens, diabetic
nephropathy model animals. Meanwhile, we cocultured cells and found that in diabetic
nephropathy, damaged intrinsic renal cells (glomerular mesangial cells and renal tubular
epithelial cells) recruited monocytes/macrophages to the area of tissue damage to defend
against and clear cell damage. This process often involved the activation of different types
of macrophages. Interestingly, the infiltrating macrophages were mainly M1 (CD68+iNOS+)
macrophages. In diabetic nephropathy, crosstalk between the Notch pathway and NF-kB
signaling in macrophages contributed to the polarization of macrophages. Hyperpolarized
macrophages secreted large amounts of inflammatory cytokines and exacerbated the
inflammatory response, extracellular matrix secretion, fibrosis, and necroptosis of intrinsic
kidney cells. Additionally, macrophage depletion therapy with clodronate liposomes and
inhibition of the Notch pathway in macrophages alleviated the pathological changes in
kidney cells. This study provides new information regarding diabetic nephropathy-related
renal inflammation, the causes of macrophage polarization, and therapeutic targets for
diabetic nephropathy.

Keywords: diabetic kidney disease, macrophages, kidney inflammation, renal fibrosis, necroptosis, diabetic
nephropathy, Notch, NF-kB
Abbreviations: DKD, diabetic kidney disease; ESRD, end-stage renal disease; NICD, Notch intracellular domain; TNF, tumor
necrosis factor; IL, interleukin; iNOS, inducible nitric oxide synthase; WB, Western blot; TUNEL, terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labelling; IHC, immunohistochemistry; IF, immunofluorescence; LSCM, laser scanning
confocal microscope; HG, high glucose (35mM); NG, Normal glucose (5.5mM).
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GRAPHICAL ABSTRACT

Ma et al. Macrophages and Diabetic Nephropathy
INTRODUCTION

Diabetes has become a global public health problem because of
its increasing prevalence. According to the latest statistics from
the International Diabetes Federation (IDF), in 2019,
approximately 10% of people worldwide had diabetes, with the
disease affecting approximately 463 million adults (aged 20-79
years) (1). Diabetes is associated with various microvascular and
macrovascular complications, including diabetic nephropathy
and diabetic retinopathy etc. (2, 3). According to the United
States Renal Data System (USRDS) Annual Data Report, diabetic
kidney disease (DKD) is the most common cause of end-stage
renal disease (ESRD) (4).

The pathogenesis of diabetic nephropathy is complicated and
has not been fully elucidated. According to the traditional view,
the pathogenesis of diabetic nephropathy involves genetic
factors, hemodynamic effects, serum glucose level and/or lipid
metabolism disorders (3, 5). With additional research, the role of
macrophages (mjs) in the pathogenesis of diabetic nephropathy
has attracted increasing attention. In DKD, numerous
monocytes/macrophages accumulate in the glomerulus and
renal interstitium. Infiltration by various inflammatory cells
and the massive release of inflammatory factors may play an
important role in the development of DKD. Several studies have
confirmed a large number of infiltrating macrophages in the
diabetic kidney, and the number of infiltrating macrophages
positively correlates with multiple pathological changes in
inherent kidney cells in diabetic nephropathy (6–10).

Macrophages are an important source of inflammatory
cytokines (11) and can be classically (M1) or alternatively
Frontiers in Immunology | www.frontiersin.org 2
(M2) activated as needed. Inflammatory M1 macrophages
express high levels of proinflammatory cytokines and toxic
reactive oxygen intermediates, such as tumor necrosis factor
(TNF)-a, interleukin (IL)-1b, IL-6, IL-12, and IL-23, to promote
inflammation and/or protect against harmful stimuli and express
inducible nitric oxide synthase (iNOS). In contrast, M2
macrophages display immunomodulatory properties, exhibiting
various functions, including the production of anti-
inflammatory cytokines such as IL-10, IL-4 and IL-13 and the
specific expression of arginase-1 (Arg-1) (11–14). Additionally,
various proinflammatory factors secreted by polarized
macrophages can cause tissue inflammation and aggravate
tissue damage (15).

Current research indicates that multiple pathways are
involved in the polarization of macrophages (16). Among
them, the Notch signaling pathway has been widely reported to
be activated in various infection-related macrophages (17–21).
The Notch pathway is a highly conserved signaling pathway in
various organisms that regulates cell proliferation, metabolism,
differentiation, and cell survival (18). In mammals, exist four
Notch receptors (Notch1-4) and five ligands (Delta-like ligand
[DLL] 1, 3, and 4 and Jagged ligand 1 and 2). Each Notch
receptor comprises two functional domains: The Notch
extracellular domain (NECD) and the Notch intracellular
domain (NICD). The NECD comprises 29-36 epidermal
growth factor (EGF) motifs, which mediate the interaction
between the ligand and receptor. The NICD has transcriptional
activity, it can enter the nucleus and activate downstream
pathways (18, 22). In diabetic nephropathy, whether the
activation of macrophages is related to the Notch signaling
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pathway and how the downstream pathway exerts its effect
are unclear.

Necroptosis is a newly discovered programmed cell death
(PCD) pathway. Necroptosis is driven by a signaling cascade
involving receptor interacting protein kinase 1 (RIP1), receptor
interacting protein kinase 3 (RIP3), and pseudokinase mixed
lineage kinase domain-like protein (MLKL). Following organelle
and cellular swelling, dying cells rupture and release their
intracellular components (23). Usually, necroptotic cells exhibit
the same morphological characteristics as necrotic cells (24).
Previous studies have shown that cells undergo necroptosis to
fight infection (25). Additional studies have shown that
necroptosis plays an important pathogenic mechanism in
various diseases, such as myocardial infarction and stroke,
atherosclerosis, ischemia-reperfusion injury, pancreatitis, and
inflammatory bowel disease (26–28). To date, many studies
have reported that the inflammatory factor TNF-a, a
physiologically and pathologically significant cytokine, induces
necroptosis in tissue cells (26–28). Recent studies have confirmed
that necroptosis occurs in several types of kidney diseases, like
crystal nephropathy (29), acute renal injury (30) and in
podocytes of diabetic nephropathy (31), but the mechanism of
necroptosis driven by macrophages in other kidney cells under
diabetic nephropathy remains unclear and need to be
further verified.

In this study, we analyzed kidney biopsy tissues from patients
with diabetic nephropathy, diabetic nephropathy model animals,
and cultured cells to explore whether an interaction exists
between the Notch pathway and inflammatory NF-kB pathway
in macrophages in diabetic nephropathy. Further clarify the
relationship between macrophages and kidney intrinsic cell
damage in diabetic nephropathy involves the inflammatory
response, the increase of extracellular matrix protein, and
intrinsic cell death.
MATERIALS AND METHODS

Blood and Kidney Sample Collection From
Patients With Diabetic Nephropathy
Between July 2019 and May 2020, patients aged 18-75 years who
had undergone renal biopsy at the First Affiliated Hospital of
China Medical University were recruited. Biochemical analysis
data for the patients were obtained from hospital admission
records. In total, 19 patients (10 male and 9 female) were
diagnosed with DKD by kidney biopsy. The exclusion criteria
were as follows: age <18 years; the presence of other types of
kidney disease; pregnancy; infection; genetic disease. The
experimental design was approved by the Ethics Committee of
the First Affiliated Hospital of China Medical University
(approval number: 20202562). Each enrolled patient agreed to
participate in the experiment and signed the consent form.

Animal Experiments
The animal protocol used in this study was approved by the
Institutional Animal Care and Use Committee (IACUC) of
China Medical University (approval number: 16052M).
Frontiers in Immunology | www.frontiersin.org 3
BKS.Cg-leprdb/leprdb mice and BKS.Cg-leprdb/+ (SPF-grade)
mice were purchased from the Institute of Model Animals of
Nanjing University and raised in the Laboratory Animal Centre
of China Medical University. The mice were allowed to eat and
drink freely and were housed under a 12-hour light/dark cycle.
When the mice were 8 weeks of age, tail vein blood was collected,
and the fasting blood glucose levels were measured to confirm
spontaneous hyperglycemia. When the blood glucose is greater
than 16.7mM, it is considered to have diabetes. Urine samples
were collected when the mice were 10th week of age, and the
urine albumin-creatinine ratio (UACR) was measured. If UACR
was greater than 3 mg/mmol, it was considered to have diabetic
nephropathy. From the 10th week, the macrophage-depletion
group was administrated intraperitoneal injection of the
macrophage scavenger clodronate liposomes (CL, F70101C,
FormuMax, USA) once a week to deplete macrophages. The
mice were fasted for more than 8 hours for measuring blood
glucose and urine (during which they were allowed to drink
water). The body weight was measured weekly, and the tail vein
blood glucose levels were measured every four weeks.
Additionally, every four weeks, metabolic cages were used to
obtain mouse urine samples to test urine creatinine and urine
albumin levels. When the mice were 20 weeks of age, they were
sacrificed, and blood and tissue samples were collected.

Kidney Pathology
Human kidney tissues were fixed in formaldehyde-acetic acid-
ethanol solution (FAA), and the mouse tissue was fixed in 4%
paraformaldehyde. After routine dehydration and embedding,
3-mm sections were obtained and subjected to hematoxylin-eosin
(H-E), Masson’s trichrome, periodic acid-Schiff staining (PAS),
periodic acid-silver methenamine (PASM), and Congo red staining.
Staining was performed according to the manufacturer’s
instructions at the Institute of Renal Pathology, The First
Affiliated Hospital of China Medical University. A Leica
microscope was used to acquire images for subsequent analysis.
Glomerulosclerosis index (GSI) was graded on a scale of 0 to 4 (0:
normal; 1: involvement of <25% of the glomerulus, 2: involvement
of 25–50% of the glomerulus; 3: involvement of 51–75% of the
glomerulus and 4: involvement of >75% of the glomerulus). The GSI
was obtained by 3 experienced renal pathologists independently
scoring 30-50 glomeruli, and the average value was used as the final
data (32).

Cell Culture
The mouse macrophage cell line RAW 264.7, the mouse
mesangial cell line SV40 MES-13, and the mouse renal tubular
epithelial cell line TCMK-1 were purchased from American Type
Culture Collection (ATCC) and cultured in Dulbecco’s modified
Eagle’s medium (DMEM; HyClone, USA) containing 10%
endotoxin-free fetal bovine serum (FBS; Biological Industries),
which had undergone a complement removal process. In this
study, we used 5.5 mM glucose culture medium for the normal
glucose (NG) condition or 35 mM glucose for the high glucose
(HG) condition. Before high glucose stimulation, we
synchronized the cells with serum-free medium for 12 hours,
then adjusted the glucose concentration to a high glucose level
February 2022 | Volume 13 | Article 835879
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(35mM) and stimulate the cells for 48 hours. The glucose
concentration was chosen based on previous studies from our
group (33, 34). All cells were cultured at 37°C and 5% CO2 for
subsequent experiments.

Cell Transfection
We constructed various Notch1 knockdown siRNAs and
transfected them into recipient cells using the jetPRIME®

transfection system (Polyplus, USA) according to the
manufacturer’s instructions. We used RT-qPCR to identify the
siRNA with the highest knockdown efficiency for subsequent
studies (Supplement Figure 5).

To overexpress NICD1, we obtained the mouse NICD1 protein
sequence from previous study (35) and constructed an NICD1
overexpression pcDNA3.1(+) plasmid. After transfection,
NICD1 overexpression was verified by WB analysis and
RT-qPCR, and the overexpression plasmid was used in
subsequent experiments.

Luciferase Assay
RAW264.7 cells from each group were transfected with an NF‐kB
luciferase reporter (D2206; Beyotime, China, Supplement
Figure 4) using the jetPRIME® transfection system (Polyplus,
USA) according to the manufacturer’s instructions. Next, the cells
were lysed, and luciferase activitywasmeasuredusing theLuciferase
Reporter Assay System (RG005, Beyotime, China).

Immunohistochemistry (IHC),
Immunofluorescence (IF), and Laser
Scanning Confocal Microscope
Analysis (LSCM)
For IHC, tissue sections were subjected to routine antigen
retrieval, incubated with 3% hydrogen peroxide to block
endogenous peroxidase activity, blocked with BSA, incubated
with the primary antibody overnight (Supplement Table 2, the
list of antibodies used in this study and dilution ratio), rinsed
with PBS 3 times, incubated with the corresponding secondary
antibody, and treated with DAB for color development. After
nuclei were counterstained, the sections were sealed with neutral
balsam, and images were obtained using a Leica microscope. The
staining sections were then reviewed and scored as follows by 2
pathologists: the staining color was scored as no positive staining
(negative, 0), light-yellow particle (+, 1), brown-yellow particle
(++, 2), and brown particle (+++, 3). The positive staining
number score: positive cells with <25% staining was scored as
negative staining 1; cells with 25-50% staining was scored as 2;
cells with 51-75% staining was scored as 3; and cells with 76-
100% staining was scored as 4. The final score was defined as
staining color score multiplied by staining number score.

For IF and LSCM, tissue sections were subjected to antigen
retrieval, blocked with 3% hydrogen peroxide at room
temperature, blocked with BSA, and incubated with the
primary antibody overnight at 4°C (Supplement Table 2, the
list of antibodies used in this study and dilution ratio). After
washing 3 times with PBS, the sections were incubated with the
corresponding secondary antibody, washed 3 times with PBS,
and treated with CY3-Tyramine Signal Amplification (TSA)
Frontiers in Immunology | www.frontiersin.org 4
and/or FITC-TSA. The cell nuclei were counterstained with
DAPI, the sections were sealed by using the anti-fluorescence
quencher, and images were taken under a Leica fluorescence
microscope (for IF) or Nikon Ti-E A1 microscope (for LSCM).

Terminal Deoxynucleotidyl Transferase-
Mediated dUTP Nick-End Labelling
(TUNEL) Staining
Kidney sections were subjected to routine deparaffinization,
antigen repair with proteinase K, and permeabilization with
0.1% Triton, and then TDT enzyme, dUTP, and buffer mixture
were added to the sections according to the instructions of the
TUNEL kit (C1086; Beyotime, China). After incubation for 2
hours in a 37°C incubator, DAPI was used to counterstain the
nuclei. The sections were sealed with anti-fluorescence quencher,
and images were captured under a Leica fluorescence microscope.

Flow Cytometry
In total, 1×105 resuspended cells were collected according to the
manufacturer’s instructions, and Annexin V-FITC and PI
staining solution were added for staining. After incubation at
room temperature for 20 minutes in the dark, a BD FACSVia
flow cytometry system was used for detection. The test results
were analyzed using FlowJo 10 software.

Transmission Electron Microscopy (TEM)
Pieces of mouse kidney tissues (1 mm3) were rinsed 3 times in
PBS, immediately placed in Glutaraldehyde Fixed Solution
(2.5%, electron microscopy grade) 4°C overnight, then rinsed 3
times in PBS, placed in 1% osmium acid and fixed at room
temperature in dark for 2 hours. After fixation, the tissues were
dehydrated in gradient alcohol solutions. The dehydrated
samples were embedded in embedding agent and polymerized
for 48 hours. The resin blocks were cut to ultrathin sections.
Then the sections were stained and observed under a
transmission electron microscope (Hitachi HT7800, Japan),
and images were collected for analysis.

RNA Extraction and Real-Time
Quantitative Polymerase Chain
Reaction (RT-qPCR)
Total RNA was extracted from animal tissues and cells using a
Qiagen RNeasy Kit (74104, Qiagen, Germany) according to the
manufacturer’s instructions. The RNA was reverse transcribed
using the Takara PrimeScript™ RT reagent Kit with gDNA
Eraser (RR047; Takara Co., Japan), we constructed specific
primers (Supplement Table 1, the primer sequences), and real-
time quantitative PCR was performed using Takara TB Green®

Premix Ex Taq™ II (RR820, Takara Co., Japan). The 2-delta delta
CTmethod was used to calculate the relative expression levels, and
each group of experiments was repeated more than 6 times.

Western Blot (WB) and
Co-Immunoprecipitation
Total protein was extracted using RIPA lysis buffer. For co-
immunoprecipitation, the lysate containing 200 mg of total
protein and specific antibody (1 mg) were incubated overnight at
February 2022 | Volume 13 | Article 835879
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4°C with continuous rotation. After that, add 50 ml protein A+G
agarose beads (P2055, Beyotime co. China) and incubate for 3
hours at 4°C. The beads were washed five times with lysis buffer.
Resuspend the pelleted beads in 30 ml 2X SDS sample loading
buffer and boil at 95°C for 10 minutes. The proteins were then
separated using SDS-PAGE. Immunoblotting was performed
using specific antibodies (Supplement Table 2, the list of
antibodies used in this study and dilution ratio). Semiquantitative
analysis was conducted using ImageJ software. All the results were
collected from experiments that were repeated more than 6 times.

Statistical Analysis
Data with a normal distribution are presented as the mean ±
standard deviation. Data from multiple groups were compared
using one-way ANOVA, and differences between groups were
subjected to Fisher’s least significant difference test for multiple
comparisons. Differences were considered significant at p<0.05.
SPSS 23.0 statistical software was used for analyses.
RESULTS

The Kidneys of Patients With Diabetic
Nephropathy Exhibit Macrophage Cell
Infiltration and Pathological Damage
We recruited patients with diabetic nephropathy that was
confirmed by kidney pathological biopsy from July 2019 to May
2020 at The First Hospital of China Medical University. The
patients, 10 of whom were male and 9 of whom were female,
were aged 48.9 ± 18.3 years. The average serum creatinine level was
328.7 ± 198.2 µmol/L, and the average estimated glomerular
filtration rate (eGFR) was 15.2 ± 14.4 ml/min/1.73 m2. We
evaluated kidney biopsy specimens from the patients and used
kidney tissues from patients undergoing nephrectomy due to
trauma as normal controls. We observed infiltrating monocytes/
macrophages in the kidney tissues of patients with diabetic kidney
disease (Figure 1AH-E andFigure 2B). Analysis ofmesangial cells
and themesangialmatrix revealed diffusehyperplasia,mainly of the
matrix (H-E and PAS staining), and Masson’s staining showed
significant interstitial fibrosis (Figure 1A). We also found granular
degeneration and vacuolar degeneration of renal tubules, shedding
of the brush border of renal tubular epithelial cells, atrophy of
tubular cells and tubular cell death (Figure 1A).

Inflammatory M1 Macrophages Infiltrate
the Kidneys of Patients With
Diabetic Nephropathy
To investigate the polarized phenotype of macrophages, paraffin
sections of tissues from patients with DKD were assessed by
double immunofluorescence (IF) staining. Many infiltrating M1
macrophages (CD68+/iNOS+) were found in the interstitium of
the patients’ renal tissues (Figure 1B). The normal control
tissues showed little or no CD68 and/or iNOS costaining
(Figure 1B). Additionally, fewer M2 macrophages (CD68
+/Arg-1+) were found in the tissues from patients with
diabetic nephropathy (Supplement Figure 1). All together,
Frontiers in Immunology | www.frontiersin.org 5
these results indicate that many macrophages infiltrate the
kidney tissues of patients in DKD and the infiltrating
macrophages are mainly M1 macrophages.

Necroptosis Accompanies Renal Tubular
Cell Death in Patients With Diabetic
Kidney Disease
Pathological examination of the kidney revealed that some patients
with DKD exhibited renal tubule degeneration and cell death. To
determine the underlying cause, we performed TUNEL staining
and used IHC to assess the activity of the RIP1/MLKL necroptosis
pathway in kidney tissue (Figures 1C, D). These results confirmed
that renal tubular cells underwent necroptosis during DKD.

Macrophage Depletion Improves Urine
Protein Levels and the Renal Function of
db/db Mice
Toverify our clinicalfindings, we used classic type 2 diabetesmodel
animals, BKS.Cg-leprdb/leprdb mice (db/db n=10) for follow-up
studies (Figure 2A). The blood glucose levels of the db/db mice
were significantly higher than those of the normal control mice
(BKS.Cg-leprdb/+, db/m, n=10) at the 8 weeks, and proteinuria was
observed at 10 weeks. Proteinuriawas accompanied by a significant
increase in theUACR,whichwashigher in the db/dbmice than that
in the normal control mice (db/m) (Figure 2F). Furthermore, we
constructedananimalmodelbychronicallydepletingmacrophages
in db/db mice. Specifically, we administered CL weekly by
intraperitoneal injection beginning at the age of the 10 weeks to
chronically deplete macrophages from tissues (Figure 2A).
Interestingly, after depleting macrophages, the blood glucose and
proteinuria levelsof themicewere significantly improvedcompared
with the db/db group (Figures 2C, F). Then, we collected serum
samples from mice at the 20 weeks and found that the serum
creatinine and urea nitrogen levels of the mice were also improved
compared with the diabetic nephropathy (db/db) group
(Figures 2D, E). However, the body weights of the mice did not
change,which is similar to that of a previous study (Figure2B) (36).

Meanwhile, Depletion of macrophages significantly alleviates
pathological damage of kidney tissue in mice with diabetic
nephropathy. To explore the effect of macrophages on pathological
damage in diabetic kidney tissue, we collected the kidney samples of
mice fromeachgroup, and subjected theparaffinsection toH-E,PAS,
Masson, and PASM staining for pathological analysis. The results
showed mononuclear/macrophage cell infiltration (Figure 3A; H-E
staining), mesangial cell proliferation, mesangial matrix secretion,
andglomerulosclerosis index (GSI) scorewere significantly increased
in the kidneys of diabetic mice (Figure 3A; PAS staining &
Supplement Figure 3). Masson’s staining also showed that the area
of the tubular interstitial matrix increased, and the degree offibrosis
increased compared with the normal control group (db/m)
(Figure 3A; Masson’s staining). Interestingly, macrophage
depletion therapy (CL treatment) significantly improved the
abovementioned pathological changes. Transmission electron
microscopy (TEM) images showed that the basement membrane
was thickened (Figure 3A; TEM; red arrow), foot process fusion and
abolished in the diabetic group (Figure 3A; TEM; yellow arrow).
February 2022 | Volume 13 | Article 835879
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CLtreatmentalsoalleviated thesepathological changes, asmentioned
above (Figure 3A TEM).

Macrophages Infiltrated in the Kidneys of
Diabetic Nephropathy Mice Are Mainly the
M1 Phenotype
To further investigate the polarization of macrophages in the
mouse kidney, we subjected mouse kidney paraffin sections to
IHC for F4/80 and double IF for CD68/iNOS (M1 macrophage
markers) and CD68/Arg-1 (M2 macrophage markers) to detect
infiltrating macrophages in mouse kidneys and determine their
polarization states. Infiltrating macrophages (F4/80+ and CD68+)
Frontiers in Immunology | www.frontiersin.org 6
were found in the glomeruli and renal tubules area (Figures 3B, C)
in the diabetic nephropathy group compared with those in the
normal control group. IF costaining showed that most of the
infiltrating macrophages were M1 macrophages (Figure 3C), and
M2 macrophages were relatively rare (Supplement Figure 2).

Macrophage Depletion Reduces the
Expression Levels of Chemokines in
Kidney Tissue
To further explore the causes of macrophage infiltration in kidney
tissue, we performed enzyme-linked immunosorbent assay
(ELISA) of the chemokine monocyte chemoattractant protein-1
A B

C D

FIGURE 1 | Macrophages infiltrate the kidneys of patients with diabetic kidney disease and are closely related to cell death. (A) Staining of kidney specimens
included hematoxylin-eosin staining (H-E), periodic acid-Schiff staining (PAS), Masson’s trichrome staining (Masson), and periodic acid-silver methenamine staining
(PASM). Magnification: ×400 (B) CD68/iNOS double immunofluorescence staining. Magnification: ×200 (C) Immunohistochemistry of kidney samples. Magnification:
×400. (D) TUNEL method to detect cell death in the kidney. Magnification: ×400.Normal, normal control; DKD, diabetic kidney disease.
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(MCP-1) in mouse blood serum and RT-qPCR analysis of the
chemokines monocyte chemoattractant protein-1 (MCP-1),
chemokine ligand 8 (CCL8), chemokine (C-X-C motif) receptor 4
(CXCR4), and chemokine (C-X-C motif) ligand 12 (CXCL12) in
mouse kidney tissues. The levels of chemokines were significantly
increased in the diabetic nephropathy group compared with those
in the control group (Figures 4A, B). After CL treatment, the levels
of chemokines in the kidney decreased significantly (Figures 5A,
B). This finding suggests that macrophages may be key players in
the recruitment of inflammatory cells.

Macrophage Depletion Alleviates Renal
Tubular Necroptosis
Through pathological staining of tissue, we also found that in
diabetic nephropathy, the renal tubular cells of the mice showed
vacuolar degeneration, death, and shedding (Figure 3A). A
Frontiers in Immunology | www.frontiersin.org 7
significant increase was also found in the number of TUNEL-
positive cells (Figure 5A). Subsequently, we subjected mouse
kidney paraffin sections to IHC and found that the TNF-a level
in tubular cells in the diabetic nephropathy group was significantly
increased (Figures 5B, C).Western blot (WB) analysis also showed
that the necroptosis pathway-related molecules TNF-aR, RIP-1,
RIP-3, and MLKL were expressed in the diabetic kidney and
increased significantly (Figure 5C). After injection of CL to
deplete macrophages, the levels of TNF-a and necroptosis
pathway-related molecules TNF-aR/RIP1/RIP3/MLKL in renal
tissues were significantly decreased (Figures 5D, E).

Renal Inflammation and Fibrosis Improved
After Macrophage-Depletion Therapy
Immunohistochemical staining of mouse kidney paraffin
sections and WB analysis of kidney extracted proteins revealed
A

B C

E F

D

FIGURE 2 | Macrophage depletion alleviates blood glucose, improves kidney function and relieves albuminuria in diabetic mice. (A) Schematic of the mouse
experimental protocol. (B) Body weight of the mice. (C) Blood glucose levels of the mice. (D) Serum creatinine levels of the mice. (E) Blood urea nitrogen (BUN) levels of
the mice. (F) Urine albumin-creatinine ratios of the mice. NC, normal control group (db/m); DN, DN group (db/db); CL, CL treatment (db/db+CL treatment). #p < 0.05 vs.
the normal group (db/m), ##p < 0.01 vs. the normal group (db/m), *p < 0.05 vs. the DN group (db/db), **p < 0.01 vs. the DN group (db/db) ns, no significance.
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that the levels of the inflammation-indicating factors IL-1b and
IL-18 in diabetic nephropathy mouse kidney tissues increased
significantly, and the levels decreased significantly after CL
treatment. These results indicate that macrophage-depletion
therapy alleviates tissue inflammation (Figure 6). Previous
research has confirmed that fibrosis is a manifestation of
persistent inflammation (37). Next, we examined the levels of
transforming growth factor beta (TGF-b), extracellular matrix
proteins collagen IV (Col IV) and fibronectin (FN) in the tissues
(Figure 6). WB and IHC revealed that the levels of Col IV and
FN in diabetic nephropathy tissues increased significantly
(Figures 6C, D). Macrophage depletion significantly improved
the levels of Col IV, reduced TGF-b expression and the level of
FN in the glomeruli compared with those in the diabetic
nephropathy group (Figure 6).
The Notch Pathway Plays an Important
Role in Proinflammatory Macrophage
Polarization in Diabetic Kidneys
As mentioned, the Notch signaling pathway plays an important
role in macrophage polarization and phenotype maintenance. To
Frontiers in Immunology | www.frontiersin.org 8
further explore whether the polarization of renal macrophages
under high glucose is related to the Notch pathway, we cultured
classic mouse macrophage line RAW264.7 in vitro. Under
st imulation with HG, macrophages underwent M1
polarization, as indicated by increased expression of iNOS,
TNF-a, and IL-1b, and the expression level of Notch1 in
macrophages significantly increased compared with those
cultured in normal glucose (Figures 7A, B).

NICD, an activation product of the Notch signaling pathway,
can promote the expression of various nuclear receptors and
target genes. Members of the NF-kB family, as a family of nuclear
receptors, are likely to be affected by Notch pathway activation.
Through WB analysis, we found that the expression of the
classical NF-kB molecules IkB kinase b (IKK-B) and NF-kB
p65 was significantly upregulated in the cells (Figure 7B).
Additionally, WB analysis revealed that the expression of the
downstream inflammatory factors IL-1b and TNF-a was
significantly higher in the cells cultured under HG conditions
than in the normal control (Figure 7B).

To further explore whether Notch pathway activation
influences NF-kB expression in HG stimulated macrophages, we
constructed 3 siRNAs to knock down the Notch1 gene and
A B

C

FIGURE 3 | Macrophage depletion improves kidney damages and reduces M1macrophage infiltration in diabetic mice. (A) Histopathologic Staining and transmission
electron microscopy (TEM) of mouse kidney tissue. Hematoxylin-eosin (H-E) staining (magnification: 200×); periodic acid-Schiff (PAS) staining (magnification: 400×);
Masson’s trichrome (Masson) staining (magnification: 200×); periodic acid-silver methenamine (PASM) staining (magnification: 400×); transmission electron microscopy
images (magnification: 4000×). (B) F4/80 immunohistochemical staining of the mouse kidney. Original magnification: 200×. (C) CD68/iNOS coimmunofluorescence staining
of mouse kidney tissue. Original magnification: 400×. Normal: db/m group, DN: db/db group, CL Treatment: db/db + clodronate liposome treatment.
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selected one siRNA with the strongest effect one (siRNA #3) for
follow-up experiments (Supplement Figure 5). Next, we assessed
the activity of the NF-kB signaling pathway. After NICD1 activity
was inhibited, the expression of the NF-kB pathway-related
molecules IKK-B and p65 and the downstream inflammatory
factors IL-1b and TNF-a was significantly downregulated.
However, the NF-kB/IKK-B inhibitor SC-514 (10 µM; SF0029;
Beyotime, China) had little effect on the expression of Notch1.
Additionally, we constructed a plasmid to specifically overexpress
NICD1. After overexpression, even in NG culture medium,
macrophages were tending to the M1-like-phenotype, as in HG
medium, and the levels of p65 and IKK-B were increased.
Additionally, the levels of the downstream inflammatory factors
TNF-a and IL-1b were significantly increased (vs. the normal
control group) (Figure 7B).

To explore this mechanism underlying this phenomenon
induced by exposure to HG conditions, we transfected an NF-
kB luciferase reporter gene plasmid (D2206; Beyotime, China;
Supplement Figure 4) into RAW264.7 cells to assess the
mechanism of crosstalk between Notch1 and NF-kB under HG
conditions. Using a luciferase reporter system, we found that
after Notch1 was knocked down under HG culture conditions,
NF-kB activity was significantly reduced, as shown in the
Figure 7D. However, after NICD was overexpressed, NF-kB
pathway activity was significantly enhanced, even under NG
conditions (Figure 7D). Meanwhile, the interaction between
Notch and NF-kB p65 was also detected by reciprocal co-
immunoprecipitation(co-IP). The results showed that Anti-
Notch1 monoclonal antibody co-precipitated p65, while anti-
NF-kB p65 monoclonal antibody also co-precipitated Notch1.
More convincingly, Notch1 knockdown decreased whereas
Frontiers in Immunology | www.frontiersin.org 9
NICD overexpression increased the association between
Notch1 and NF-kB p65 (Supplement Figure 6).

Additionally, we performed double IF staining for Notch1
and NF-kB p65 and used laser scanning confocal microscopy
(LSCM) for cytoplasmic and nuclear localization analysis.
Notch1 expression increased significantly under HG conditions
and was accompanied by a significant increase in phosphorylated
p65 that entered the nucleus. After Notch1 was knocked down,
the fluorescence intensity of p65 decreased significantly.
Furthermore, after NICD was overexpressed in cells cultured
in NG, the nuclear p65 level also increased significantly. The
above research results indicate that Notch1 overexpression can
activate NF-kB p65, a key molecule of the NF-kB pathway, and
then mediate the expression of its downstream inflammatory
pathway members (Figure 7C).
Mesangial Cells Cocultured With
Macrophages Aggravate the
Inflammatory Response and
Extracellular Matrix Secretion
Subsequently, we explored the mechanism of the interaction
between macrophages and renal intrinsic cells under HG
conditions in vitro. We cocultured RAW264.7 macrophages and
intrinsic renal cells (SV40 MES-13 mouse mesangial cells and
TCMK-1 mouse renal tubular epithelial cells) in a Transwell®

system (Corning, USA) in vitro (Figure 8A) under normal or HG
conditions. We also performed single culture systems of mesangial
cells and tubular cells under normal or HG conditions.

In macrophages and mesangial/tubular cells cocultured group
under HG conditions, the level of MCP-1 in the cell culture
A B

FIGURE 4 | Macrophage depletion significantly reduces the levels of chemokines in blood serum and tissues. (A) MCP-1 level in mouse serum. (B) mRNA
expression of various chemokines in mouse kidney tissue. NC, normal control group (db/m); DN, diabetic nephropathy group (db/db), CL treatment: db/db +
clodronate liposome treatment. #p < 0.05 vs. the normal group, ##p < 0.01 vs. the normal group, *p < 0.05 vs. the DN group, **p < 0.01 vs. the DN group.
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supernatant was increased significantly (vs. that in the single-
cultured group) (Figure 8B). Additionally, we extracted protein
from the RAW264.7 cells of each group for WB analysis and
found that the protein expression level of IL-1b was also
significantly increased in the coculture group compared with
that in the single-culture group (Figure 8C). Next, we extracted
protein from the cocultured mesangial (MES) cells. In MES
cocultured under HG conditions, the levels of the
inflammatory factors IL-1b and IL-18 were significantly
increased (vs. those in cocultured with macrophages under NG
conditions) (Figure 8C). Additionally, the expression levels of
the extracellular matrix proteins FN and Col IV also increased
significantly in mesangial cells (Figure 8C). After Notch1 was
knocked down in macrophages with siRNA, the levels of the
inflammatory factors IL-1beta and IL-18 and the extracellular
Frontiers in Immunology | www.frontiersin.org 10
matrix proteins FN and Col IV in mesangial cells cocultured
under HG conditions were significantly decreased (vs. those in
cocultured with macrophages under HG) (Figure 8C).

HG Activate Necroptosis Pathway in Renal
Tubular Cell In Vitro
Next, we conducted in vitro studies focus on the death of renal
tubular cells, which was found in human kidney pathological
biopsy and mouse kidney tissue sections as described before. To
investigate the mechanism of TCMK-1 cells death induced by
HG, we examined the activation of RIP1/RIP3/MLKL
necroptosis pathway. The results showed that after treatment
with HG, the level of necroptosis markers RIP1, RIP3, MLKL and
phospho-MLKL (p-MLKL, phospho S345) was increased
significantly (vs NG) (Supplement Figure 7).
A C

B

D

E

FIGURE 5 | Macrophage depletion reduces the necroptosis of renal tubular cells in diabetic mice. (A) TUNEL assay to detect cell death in renal tubulointerstitium of
mouse, with counterstaining of cell nuclei (DAPI, blue). Original image magnification: 200×. (B) Immunohistochemical staining shows the levels of TNF-a in kidney
tissue. Original image magnification: 200×. (C) Immunohistochemistry score of TNF-a. (D, E) Necroptosis pathway proteins RIP-1, RIP-3, and MLKL in the tissue
were detected using western blotting, and GAPDH was used as the loading control. NC: normal control group (db/m), DN: diabetic nephropathy group (db/db), CL
treatment: db/db + clodronate liposome treatment. #p < 0.05 vs. the normal group (db/m), ##p < 0.05 vs. the normal group (db/m), *p < 0.05 vs. the DN group (db/
db), **p < 0.01 vs. the DN group (db/db).
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To further confirm the mechanism of renal tubular
necroptosis in response to HG stimulation, we analyzed the
necroptosis pathway with using the pan-caspase inhibitor
benzyloxy carbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-
fmk, C1202, Beyotime, China) and necroptotic inhibitor
Necrostatin-1 (Nec-1, SC4359, Beyotime, China). Western
blots showed necroptosis markers RIP1, RIP3, MLKL and p-
MLKL expressions were significantly elevated after co-treatment
with HG + 20 m M z-VAD-fmk group compared to the cell
treated only with HG (Supplement Figure 7). On the contrary,
the treatment of cells with 50 mM Nec-1 significantly inhibit the
expression of RIP1, RIP3, MLKL and p-MLKL, but not effect
caspase3. Interestingly, z-VAD-fmk induced cell necroptosis can
be rescued by Nec-1(Supplement Figure 7). These results
suggested that the inhibition of apoptosis by z-VAD-fmk could
promote the necroptosis of cells induced by HG.

Macrophages Aggravate the Necroptosis
of Renal Tubular Cells in HG
Furthermore, We cocultured RAW264.7 and TCMK-1 under
HG conditions (Figure 8A). TNF-a is a widely recognized
cytokine that mediates cellular necroptosis (38, 39). Then, we
Frontiers in Immunology | www.frontiersin.org 11
extracted protein from RAW264.7 cells from each group and
used WB analysis to determine the TNF-a level in each group.
Macrophages produced a large amount of TNF-a under HG
stimulation (vs. NG), and the TNF-a level in the macrophages
cocultured with renal tubular cells under HG conditions was
higher than that in macrophages cocultured with tubular cells
under NG (Figure 8C RAW264). Additionally, after Notch1 was
knocked down in macrophages, the level of TNF-a decreased
significantly (vs. macrophages under HG conditions).
Furthermore, we cocultured Notch1 knockdown macrophages
with tubular cells, and the level of TNF-a was significantly
reduced (vs. macrophages cocultured with TCMK-1 under
HG) (Figure 8C RAW264).

To exclude the involvement of apoptosis in renal tubular cell
death and more clearly assess necroptosis of renal tubular cells,
we pretreated TCMK-1 mouse renal tubular epithelial cells for 2
hours with the z-VAD-fmk (20 µM). Subsequently, the cells were
routinely cultured or cocultured with macrophages. WB detected
the levels of classic necroptosis pathway molecules RIP1/RIP3/
MLKL/p-MLKL. The levels of the necroptosis pathway marker
proteins RIP1, RIP3, MLKL and p-MLKL were significantly
increased in the HG group compared with the NG group
A

C

B D

FIGURE 6 | Macrophage depletion reduces the level of inflammation and fibrosis in the kidneys of diabetic mice. (A, B) Immunohistochemistry and Immunohistochemistry
score were used to evaluate the levels of the inflammation and fibrosis indicators IL-1b, TGF-b, and FN in mouse kidney tissue. (C, D) Western blot and semiquantitative
analyses of the levels of inflammation and fibrosis indicators in the kidney tissue of mice. NC, normal control group (db/m); DN, diabetic nephropathy group (db/db), CL
treatment: db/db + clodronate liposome treatment. ##p < 0.01 vs. the normal group (db/m), **p < 0.01 vs. the DN group (db/db).
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(Figure 8C TCMK). After coculture with macrophages in HG,
the levels of RIP-1, RIP-3 and MLKL in tubular cells increased
significantly (vs. those in the HG group) (Figure 8C TCMK).
When the cells were cocultured with Notch1-knockdown
macrophages in HG, the expression levels of RIP-1, RIP-3 and
MLKL were decreased significantly (vs. macrophages cocultured
with TCMK-1 under HG) (Figure 8C TCMK).

Subsequently, PI/Annexin V stain flow cytometry was used to
analyze cell death. The values represent the percentage of cells in
each region (PI+ annexin V−: necroptosis, PI+ annexin V+:
necroptosis + late apoptosis, PI− annexin V+: apoptosis). The
results revealed that the amount of necroptotic renal tubular cells
in the HG group was significantly increased compared with that
in the NG group. After coculture with macrophages, necroptosis
of tubular cells was promoted. After coculture with Notch1
knockdown macrophages, necroptosis was suppressed
(Figure 8D). Collectively, these results indicate that the Notch
Frontiers in Immunology | www.frontiersin.org 12
pathway plays an important role in macrophages and in
mediating renal tubular damage in diabetic nephropathy.

DISCUSSION

Diabetic kidney disease (DKD), formerly known as diabetic
nephropathy (DN), is a major cause of kidney failure worldwide
(3, 4). However, the mechanisms by which diabetic nephropathy
develops have not been fully elucidated, and the onset and
progression of diabetic nephropathy cannot be prevented, despite
strict control of blood glucose, blood pressure, and serum lipid
levels. With the development of technologies for the pathological
analysis of kidney biopsy, the degree of macrophage infiltration in
diabetic kidney tissue has drawn attention (7–9). Renal
macrophages are closely related to the degree of renal damage,
the accumulation of renal interstitial matrix protein and the degree
of interstitial fibrosis (7–9). Furthermore, the number of infiltrating
A

C

D

B

FIGURE 7 | Activation of the Notch signaling pathway plays a crucial role in the M1 polarization of macrophages in HG stimulation. (A) Immunofluorescence (IF) of
inducible nitric oxide synthase (iNOS). (B) Western blot and semiquantitative analyses. (C) Confocal microscopy analysis of Notch1 and NF-kB p65 co-IF staining,
magnification: 1000×. (D) Luciferase Activity of NF-kB-responsive luciferase reporter gene in HG stimulated Raw 264.7 cells. NG, normal glucose; HG, high glucose;
Notch KD/si, Notch1 Knockdown; NICD-OE, NICD over expression. #p < 0.05 vs. the normal glucose (NG) group, ##p < 0.05 vs. the normal glucose (NG) group.
*p < 0.05 vs. the high-glucose (HG) group, **p < 0.01 vs. the high-glucose (HG) group. ns, no significance.
February 2022 | Volume 13 | Article 835879

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ma et al. Macrophages and Diabetic Nephropathy
A

C

D

B

FIGURE 8 | Coculture of macrophages and intrinsic renal cells under high glucose condition significantly aggravates inflammation, fibrosis, and necroptosis of
intrinsic renal cells. (A) Schematic of the coculture experiments. (B) The concentration of MCP-1 in the supernatants of different group cells was determined by
ELISA. (C) Western blot and semiquantitative analyses. (D) Cell death was assessed by Annexin V-FITC/PI staining and analyzed by flow cytometry. NG, normal
glucose; HG, high glucose; KD, knockdown; OE, over expression; Co, coculture. #p < 0.05 vs. the normal glucose (NG) group, ##p < 0.01 vs. the normal glucose
(NG) group, **p < 0.01 vs. the high-glucose (HG) group, &p < 0.05 vs. the high-glucose coculture group, &&p < 0.01 vs. the high-glucose coculture group.
ns, no significance.
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macrophages in the kidney and degree of renal macrophage
infiltration positively correlate with the level of proteinuria, a
decline in renal function in 5 years and disease prognosis (7–9).
Diabetic nephropathy is now considered as a chronic inflammatory
disease involving macrophages. Our study demonstrated that M1
macrophages in the kidney can secrete proinflammatorymediators
such as IL-1b and TNF-a. Additionally, MCP-1, an important
mediator of macrophage recruitment (40), increased in mesangial
cells and tubular cells cultured under HG conditions. Interestingly,
after coculture with macrophages, MCP-1 expression further
increased, suggesting the existence of a malignant feedback loop
in diabetic nephropathy (Supplement Figure 8). Therefore, we
propose that under HG conditions, damaged intrinsic kidney cells
recruit macrophages into kidney tissue to address tissue damage,
but high glucose levels result in macrophage proinflammatory
polarization and further produce more inflammatory cytokines.
Besides, cell-cell interactions and polarization of macrophages
caused further damage to intrinsic cells (Supplement Figure 8).
Furthermore, we found that macrophage depletion in a classic type
2 diabetic animal model may effectively break this malignant
feedback loop. In animal experiments, this effect was initially
observed. Macrophage depletion reduced urine microalbumin,
blood serum creatinine, blood serum urea nitrogen, and kidney
chemokine levels and improved pathological damage to the kidney
indiabeticnephropathymice.The sameeffectwas also confirmed in
our in vitro experiments.

Macrophages play a pivotal role in kidney injury, inflammation,
and fibrosis (41). According to current research, fibrosis is the final
result of chronic inflammation (42). Inflammatory macrophages
induce fibrosis in response to tissue injury (43, 44).M1macrophages
secrete large amounts of proinflammatory factors, such as IL-1b, IL-
6, and IL-10. These cytokines are closely related to inflammation in
many tissues. These inflammatory factors are important regulators of
the renal inflammatory response and renal interstitial fibrosis (45).
Our studyalso confirmed thesefindings.Aftermacrophagedepletion
in vivo, the expression levels of inflammatory factors in the kidney
tissues of mice were significantly downregulated, pathological
changes in the kidney were significantly improved, and the levels of
markersof renalfibrosiswere significantly reduced. Invitro,we found
that mesangial cells cocultured with macrophages in a high-glucose
environment secreted more of the extracellular matrix proteins FN
and Col IV and inflammatory factors IL-1b and IL-18 than that
cocultured with macrophages under normal glucose conditions. We
considered that in the state of diabeticnephropathy, the excessive and
abnormal M1 polarization of macrophages may aggravate fibrosis
and loss function of kidney.

Macrophage depletion therapy with clodronate liposomes, as a
classic method of depletingmacrophages, has been used in the study
of variousdiseasemodels.The current study shows thatCL treatment
can improve blood glucose homeostasis and insulin sensitivity in
obese mice, and attenuate lung injury in rats with severe acute
pancreatitis (36, 46). Meanwhile, in the unilateral ureteral
obstruction (UUO) mouse model, CL can significantly improve the
level of renal fibrosis (47). In our study, we also constructed a long-
term continuousmacrophage-depleted diabetic nephropathymouse
model. It provides a theoretical reference for the long-term
Frontiers in Immunology | www.frontiersin.org 14
continuous removal of macrophages. While clodronate liposomes
deplete all types ofmacrophages as well as dendritic cells (48). It is an
urgent need to find a tissue-specific clearance method to target
macrophages in specific tissue.

Notch receptors and their ligands are constitutively expressed
in macrophages. The Notch signaling pathway is a highly
evolutionarily conserved signaling pathway that was first
identified in Drosophila. Notch participates in many cellular
processes and plays diverse roles. Notch receptors are produced
in the endoplasmic reticulum and transported to the cell
membrane (49, 50). The interaction between a receptor and its
transmembrane ligand causes the proteolytic cleavage of the
receptor by the gamma-secretase complex. The cleavage of the
receptor results in the release of NICD, which translocate to
the nucleus, to exerts its effects. Most evidence has shown that
after NICD enters the nucleus, it interacts with the specific
transcription factor and DNA-binding protein CSL and then
mediates the various effects of downstream factors (51).

However, the latest research has revealed that, in addition to the
classic Notch signaling pathway described above, Notch signaling
also induces the expression of different genes through crosstalk with
other signaling pathways, including the winglessMMTV integration
sites (Wnt), transforming growth factor-b (TGF-b), Toll-like
receptor (TLR) pathways and signaling pathways induced by
hypoxia (52, 53). Specifically, Monsalve et al. found that during
NF-kB signaling in lipopolysaccharide (LPS)-treated murine
macrophages, Notch-1 expression is upregulated (54). Activated
NICD increases the degradation of NF-kB inhibitors and enhances
the nuclear translocation and DNA binding of NF-kB, which
enhance NF-kB activation in the nornal and LPS-induced
macrophage cells. (54). Our study also confirmed the upregulation
of Notch-1 expression in macrophages under HG conditions.
Luciferase reporter gene, Co-IP and double IF staining experiments
have also confirmed that the increase in Notch1 activation further
enhances the activity of the NF-kB pathway and its nuclear
translocation, leading to an increase in the production of
downstream inflammatory mediators.

Recent studies have shown that renal tubular atrophy, tubular
cell death and interstitial inflammation promote the development
of kidney pathological changes in diabetic nephropathy (55–58),
however, themechanism remains unclear. Some evidence indicates
that apoptosis is closely related to a decrease in the number and
death of renal tubular cells (59–62), and other evidence indicates
that when stimuli are strong, necrosis-like reaction is an important
mechanism of renal tubular cell death (63, 64). Interestingly,
necroptosis, as a kind of necrosis-like reaction, has emerged as
another important mode of cell death during renal tubular damage
(29, 65). In this study,we confirmed that renal tubular cells undergo
necroptosis in diabetic nephropathy and obtained the same results
in experiments in vitro bymeasuring RIP1, RIP3, andMLKL levels,
which are the sensitive biomarkers of the necroptosis signaling
pathway (65). Furthermore, after coculture with macrophages, the
levels of these marker proteins were further increased, indicating
that macrophages may participate and promote the necroptosis of
renal tubular cells. This phenomenon can be inhibited by the
necroptosis inhibitor necrostatin-1.
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The necroptosis signaling pathway can be induced by several
death ligands, such as TNF, TNF-related apoptosis-inducing ligand
(TRAIL), Fas (CD95) and TLRs. TNF has been confirmed to
promote the necroptosis of renal tubular cells (65). Based on the
evidence, monocytes andmacrophages are one of the main sources
of TNF and may further promote necroptosis. Therefore, the
relation between macrophages and necroptosis have attracted our
attention.We found that under HG conditions, the level of TNF-a
in macrophages increased significantly. After coculture with
intrinsic kidney cells, the level of TNF-a was improved. We
further found that this phenomenon is related to kidney cells
necroptosis, which is different from apoptosis. It can trigger tissue
inflammatory response, thereby aggravating the increase in the
secretionofproinflammatory factorsbymacrophages.These results
further prove the hypothesis of the malignant feedback loop we
mentioned previously.

In conclusion, in diabetic nephropathy, damaged kidney cells
recruit macrophages to alleviate tissue damage. Subsequently, the
recruited macrophages are polarized to the proinflammatory M1
phenotype, participate in multiple pathological processes of
diabetic nephropathy, including kidney inflammation and
fibrosis, and mediate the death of intrinsic kidney cells. The
Notch pathway plays an important role in macrophage
polarization. When this pathway is activated and can engage in
crosstalk with key NF-kB molecules. Furthermore, secretion of
downstream inflammatory factors increases, and tissue damage
is aggravated (Supplement Figure 8). Interestingly, targeting the
Notch pathway and macrophage depletion can alleviate tissue
damage. Our findings may provide a new direction and new
target from the perspective of macrophage and inflammation to
treat diabetic nephropathy in the future.
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