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Abstract: In this study, Ag2O was synthesized on polyethylene terephthalate fabrics by using
an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on
the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction
confirmed the presence of Ag2O on the fabrics. The fabrics were characterized by Fourier transform
infrared spectroscopy, ultraviolet–visible spectroscopy, and wettability testing. Field-emission
scanning electron microscopy verified that the change of pH altered the microstructure of the
materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related
to the morphology of Ag2O particles. Thus, the surface structure of Ag2O particles may be a key
factor of the antibacterial activity.

Keywords: ultrasonic synthesis; Ag2O; morphology; polyethylene terephthalate (PET) fabric;
inhibition zone

1. Introduction

At present, microbial contamination in healthcare facilities, especially in hospitals, has caused
considerable concern among people. Infectious diseases have become a critically important
global healthcare problem, which may cause excessive loss of money and human lives [1,2].
Textile materials have become the main base of cross infections in hospitals and medical institutions
with the increasing occurrences of antibiotic-resistant bacterial strains and community-type outbreaks.
Polyethylene terephthalate (PET) can be utilized as a reusable protective textile in hospitals due
to its excellent mechanical properties, such as thermal stability, durability and reusability, ease of
processing, and cost-effectiveness [3,4]. The production and consumption of reusable PET in medical
applications, such as lab coats and privacy drapes, have constantly increased in recent years due to
the increase in demand for reusable textiles. However, PET is vulnerable to contamination of many
microorganisms, such as viruses, bacteria, and spores; some of these may survive for approximately
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90 days on PET [5,6]. Thus, contaminated PET can serve as an important medium for infectious
diseases. For this reason, effective and generable antimicrobial PET fabrics should be investigated
and developed. At present, nanoparticles (NPs) have been recognized as improving antibacterial
activity and have attracted considerable attention from scholars in their applications, such as clothing,
wound dressings, food packaging, cosmetics, and dental restorative materials [7–9]. On this basis,
PET textures treated with antimicrobial agents have been generally investigated and the results have
shown its capacity to halt the development of pathogenic microorganisms, such as parasites and
microscopic organisms [10,11]. Antimicrobial NPs present many unique benefits compared with
popular antibacterial agents. These benefits include cost-effectiveness and overcoming resistance [12].
Several antimicrobial agents (zinc, copper, and silver) have been utilized as antimicrobial varnishes on
fabric materials [13–15]. Among the previously mentioned antibacterial materials, silver nano-oxide
has been extensively used on cotton and artificial fibers, such as thin polymer films, wound pads,
polyester, and drinking water-related applications [16,17]. Notably, the antimicrobial nature of
nano-Ag2O has been widely recognized due to its wide spectrum killing and moderately low risk
to microbial resistance development [18,19]. Silver’s antibacterial properties are due to its high
valence state which causes strong electrostatic attractions between the Ag ion and bacteria [14,20,21].
The antimicrobial activity of metallic NPs is recognized to be remarkably influenced by their shape
and size, which are largely affected by preparation procedures. Several matters occur in the synthesis
of NP-coated fabrics. The remaining matters are those with expensive and advanced equipment
requirements and the difficulties of control methodology.

Ultrasonication is an effective method used to synthesize inorganic materials, counting metals,
and metal oxides [22,23]. Sonochemistry is derived from acoustic cavitation, which is the creation,
growth, and implosive collapse of bubbles within a liquid. Acoustic cavitation is the main mechanism
following the sonochemical synthesis of nanomaterials. The development and collapse of bubbles
inside the solution are related to the applied ultrasound frequency [24,25]. Other benefits of
sonochemical synthesis include convenience, environmental-friendliness, rapidity instead of fast
processes, and effectiveness [26,27]. Jimmy et al. [28] have reported that photocatalytically active
TiO2 NPs synthesized through an ultrasonic method are more profitable than that of commercial
NPs, owing to the improved oxide crystallinity with fast hydrolysis rate by ultrasound. On this basis,
a high-intensity (30 kHz) ultrasound sonochemical method has been used to synthesize and recognize
novel nanomaterials without using high temperatures and long reaction times [29].

However, only a few studies have focused on the synthesis of Ag2O nanomaterials by using an
ultrasonic technique. This study aimed to synthesize Ag2O nano-loaded PET fabrics under various pH
by using an ultrasonic method and to characterize the microstructure and antibacterial behavior of
the fabrics.

2. Materials and Methods

AgNO3 (99% w/w) and NaOH pellets (98% w/w) were obtained from a local brand company
(R&M, Semenyih, Malaysia). One mole of AgNO3 was dissolved in deionized water under magnetic
stirring for 15 min at room temperature and pH solution was adjusted by sodium hydroxide (Table 1).
PETs 5 mm in diameter were obtained from a local brand, washed with distilled water, and dried
in an air oven at 70 ◦C for 12 h. PETs were soaked in the solutions for 5 h and were mildly
stirred at 25 ◦C. The mixture consisted of aqueous solution and PETs were sonicated (30 kHz) for
15 min. PETs were removed from the solution, washed with distilled water, and dried in an oven
at 70 ◦C for 12 h. X-ray diffraction (XRD) analysis was conducted on PETs using a Bruker AXS
(GmbH Oestliche Rheinbrueckenstr, Karlsruhe, Germany) diffractometer with monochromatic Cu–Kα

radiation (λ = 0.1541 nm) at 4 mA and 40 kV. A Perkin–Elmer Spectrum 400 Fourier transform infrared
(FTIR/FTNIR) spectroscope (Akron, OH, USA) was used to evaluate the chemical composition of the
samples in the region 500–4000 cm−1. The UV–Vis absorption properties of the samples were evaluated
through absorption spectroscopy using a Perkin–Elmer Lambda-35 UV–Vis spectrophotometer. Prior
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to electron microscopy, the samples were coated with a thin layer of iridium to avoid the charging effect
instigated by the non-conductive property of the fabrics. The morphological behavior and contact
angle (CA) of the samples were assessed using a field emission scanning electron microscope (FESEM;
Zeiss Merlin, Zurich, Switzerland) and an optical tensiometer (Theta of Attension, Biolin Scientific,
Hängpilsgatan, Västra Frölunda, Sweden). Disk diffusion antibiotic sensitivity testing (Kirby–Bauer
antibiotic testing) was employed to evaluate the efficiency of PETs against Escherichia coli. Firstly, fabrics
embedded with nanoparticles at different pH were a cut as disks with a diameter of 0.5 mm. Then,
30 µL of E. coli solution (nutrient broth Himedia M001, West Chester, PA, USA) with a concentration of
16 × 107 cells/mL (OD600 of 0.2) was spread on a petri dish containing nutrient agar (Himedia M002,
West Chester, PA, USA). The fabric discs containing Ag2O nanomaterial were placed on each Petri
dish and a piece of uncoated fabric was used as a control in each set of tests. The Petri dishes were
incubated at 35 ◦C for 24 h, digital images of the plates were captured, and the inhibition zone was
calculated using an image processing software (image J.140, University of Wisconsin, Madison, WI,
USA) [20,30]; each test was repeated three times and the average results were reported.

Table 1. Sample label with different pH. Legend: PET, polyethylene terephthalate.

Sample Label Description

F1 Ag2O-coated PET fabric synthesized at pH 6.5
F2 Ag2O-coated PET fabric synthesized at pH 7.5
F3 Ag2O-coated PET fabric synthesized at pH 8.5
F4 Ag2O-coated PET fabric synthesized at pH 9.5
F5 Ag2O-coated PET fabric synthesized at pH 10.5

3. Results and Discussion

3.1. X-ray Diffraction Analysis

The XRD results of presence and purity of Ag2O crystalline grown on the surface of PETs are
shown in Figure 1. As shown in Figure 1, the characteristic peaks of a crystalline PET structure in the
fabric appeared at peaks 2θ = 16◦, 22◦, and 26◦ for the original and coated fabrics. However, Ag2O-PET
fabric samples showed characteristic diffraction peaks of Ag2O at 2θ = 26.9◦, 32.69◦, 37.94◦, 54.9◦, 65.54◦

and 69◦, which agrees with silver (I) oxide FCC crystalline phase (JCPDS 041-1104). Meanwhile, these
Ag2O peaks were clearly absent in the F1 sample due to the low quantity of materials, as previously
reported for other materials [20,31]. Furthermore, no strange diffraction peaks were detected in the
XRD patterns of all Ag2O-coated fabric samples, which confirms the existence of the high crystalline
quality of the Ag2O-coated fabric surface. For the main diffraction peak (2θ = 32.69◦), the full width at
half maximum (FWHM) became sharp and narrow for the F3, F4, and F5 samples, where the values are
0.4379075◦, 0.4278235◦, and 0.4119844◦, respectively, which shows the increase in the crystallinity of
Ag2O nanoparticles for the F4 and F5 samples with an increase in pH. The average crystalline sizes of
Ag2O NPs at different pH (6.5, 7.5, 8.5, 9.5, and 10.5) were calculated using Scherrer’s equation [31,32]
and were found to be 19.23 nm, 20.65 nm, 18.91 nm, 19.35 nm, and 21 nm, respectively. The crystalline
size of the materials moderately increased from F4 into F5 and reached the maximum value with
the highest pH. However, the decrease in crystalline size of Ag2O NPs for F3 was confirmed by
the inhibition of peak intensity and increase of FWHM. The increment in the crystalline size was
due to high nucleation rate and growth of Ag2O nanocrystallites with the accessibility of sufficient
thermal energy due to high NaOH concentration in the precursor, as has been reported in a previous
works [20,33].
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reaction with OH− on the surface of the Ag+ precursor and remarkably inhibits the growth of Ag2O. 
However, the yellow circle (Figure 2b) reveals a starfish-like morphology at high magnification, 
which is composed of a series of regular rod shapes in the range of 200–4500 nm and 160–200 nm for 
length and width, respectively. Notably, the effect of H+ ions is inferior, and Ag2O particles start 
growing from the Ag+ precursor at high pH. Therefore, the role of pH can be crucial in controlling 
the size and shape of NPs. Figure 2d (pH = 7.5) at high magnification shows that the powder 
morphology involves a large amount of semiregular spherical particles with sizes in the range of 100–
400 nm. Cavitation bubbles were generated and oscillated with high frequency with the introduction 
of ultrasound [36,37]. The oscillation of cavitation bubbles fragmented the microstructure of the rods 
into small grains and were moved by acoustic streaming. Most recently, sonofragmentation of 
particles by a shock wave has been added to the effects of a shock wave created by ultrasound 
irradiation. Zeiger et al. [38] have successfully eliminated many possible mechanisms of particle 
breakage, such as particle–particle, particle–horn, and particle–wall collisions through kinetics. 
Consequently, they inferred breakage by a particle shock wave interaction as a viable mechanism for 
the sonofragmentation of acetylsalicylic acid. In this study, particles dispersed in the liquid phase, 
stuck to one another, and formed an agglomerate structure, which resulted in poor access to the 
constituent rod-like particles in the powders (Figure 2d). The microstructure of the powders at pH = 
8.5 consisted of two different morphologies, namely, semiregular spherical and rod-shaped particles 
(Figure 2f). The growth mechanism of the Ag2O rod-shaped particles was not known at this stage. 
However, sonication irradiation at pH = 8.5 facilitated the incorporation of rod-shaped-inducing 
fragmented rods (nucleation sites) into semiregular spherical and inducing rod-shaped particles (F3). 
In fact, ultrasound-induced interparticle collisions led to a considerable enhancement of intergrain 
coupling. Notably, the moderate change from rod-shaped particles to semiregular spherical particles 
was observed in the morphology in Figure 2h. However, the rod-shaped particles were shortened to 
semi-spherical due to their lower Gibbs free energy and became homogenously dispersed, as shown 
in Figure 2j. 

Figure 1. X-ray diffraction (XRD) patterns of synthesized Ag2O with different pH.

3.2. Microstructural Observation

The size and morphology of PET fabrics after Ag2O coating can be clearly observed at two
different magnification sizes, as shown in Figure 2. The microstructures of the synthesized materials
at low magnification are similar and agglomeration particles can be observed. Although the growth
mechanism of Ag2O is difficult to determine, the details for the formation of different particle sizes may
be explained based on the literature [34,35]. In acid solution (pH = 6.5), a small particle of nano-sized
Ag2O on the PET surface was observed, as shown in Figure 2a by the yellow circle. This condition
was ascribed to the etching in acidic solution. The concentration of H+ ions increases the reaction with
OH− on the surface of the Ag+ precursor and remarkably inhibits the growth of Ag2O. However, the
yellow circle (Figure 2b) reveals a starfish-like morphology at high magnification, which is composed
of a series of regular rod shapes in the range of 200–4500 nm and 160–200 nm for length and width,
respectively. Notably, the effect of H+ ions is inferior, and Ag2O particles start growing from the Ag+

precursor at high pH. Therefore, the role of pH can be crucial in controlling the size and shape of
NPs. Figure 2d (pH = 7.5) at high magnification shows that the powder morphology involves a large
amount of semiregular spherical particles with sizes in the range of 100–400 nm. Cavitation bubbles
were generated and oscillated with high frequency with the introduction of ultrasound [36,37].
The oscillation of cavitation bubbles fragmented the microstructure of the rods into small grains
and were moved by acoustic streaming. Most recently, sonofragmentation of particles by a shock wave
has been added to the effects of a shock wave created by ultrasound irradiation. Zeiger et al. [38]
have successfully eliminated many possible mechanisms of particle breakage, such as particle–particle,
particle–horn, and particle–wall collisions through kinetics. Consequently, they inferred breakage by a
particle shock wave interaction as a viable mechanism for the sonofragmentation of acetylsalicylic acid.
In this study, particles dispersed in the liquid phase, stuck to one another, and formed an agglomerate
structure, which resulted in poor access to the constituent rod-like particles in the powders (Figure 2d).
The microstructure of the powders at pH = 8.5 consisted of two different morphologies, namely,
semiregular spherical and rod-shaped particles (Figure 2f). The growth mechanism of the Ag2O
rod-shaped particles was not known at this stage. However, sonication irradiation at pH = 8.5 facilitated
the incorporation of rod-shaped-inducing fragmented rods (nucleation sites) into semiregular spherical
and inducing rod-shaped particles (F3). In fact, ultrasound-induced interparticle collisions led to a
considerable enhancement of intergrain coupling. Notably, the moderate change from rod-shaped
particles to semiregular spherical particles was observed in the morphology in Figure 2h. However,
the rod-shaped particles were shortened to semi-spherical due to their lower Gibbs free energy and
became homogenously dispersed, as shown in Figure 2j.
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Figure 2. Field emission scanning electron microscope (FESEM) images of the samples at different
magnifications. (a,b) F1, (c,d) F2, (e,f) F3, (g,h) F4, (i,j) F5, and (k,l) uncoated.

3.3. FTIR Results

FTIR has become a popular method used to obtain data on functional groups. The FTIR spectra
in the 500–4000 cm−1 region of the original PET and Ag2O-coated fabrics are displayed in Figure 3.
FTIR shows two regions, namely, the functional group (4000–1504 cm−1) and fingerprint regions
(1504–500 cm−1). As shown in Figure 3, all the functional groups of the original PET and Ag2O-coated
fabrics are similar. Therefore, the main structure of the materials is the same. The summary of infrared
vibration is represented in Table 2 [39–41]. Although the transmittance spectra appear relatively similar
to each other, a decrease in the intensity of the F3 sample can be observed, which is attributed to
particle size/morphology, as discussed in the FESEM image (Figure 2).
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Table 2. Infrared vibration from FTIR analysis.

Wavenumber (cm−1) Vibration Characteristics Wavenumber (cm−1)
Vibration

Characteristics

3339 –H bonded OH stretch 1339 N–O stretching
2874 C–H2 groups 1247 C–O) vibrations
2361 C–H2 groups 1098 (C–O) vibrations
1712 carbonyl (C=O) stretching 1018 (C–O) vibrations
1560 phenyl groups 650–900 benzene rings
1408 methylene groups



Nanomaterials 2019, 9, 450 7 of 12

3.4. UV–Vis Tests

Figure 4 displays the UV–Vis absorption spectrum of the obtained samples at different pH.
The maximum peak of PET shifted to left with Ag2O loading, which verifies the existence of Ag2O
on the fabric (F2, F3, F4, and F5), as shown in the XRD results. The low peak intensity in the F2
sample (236 nm) may be due to low quantity of Ag2O, as discussed in the XRD results (Figure 1).
Furthermore, a sharp absorption band was noted at 237 nm, 235 nm, 234 nm, 232 nm, and 230 nm for
the Ag2O-loaded fabric at different pH values of 8.5, 9.5, 10.5, 7.5, and 6.5, respectively. The increased
absorption of the samples at pH = 8.5 compared with the rest is due to the rod morphology of NPs, as
shown in the FESEM images (Figure 2). Rokade et al. [42] have reported that the change of absorption
bands is related to morphology of particles, such as Ag2O nanopowders.
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3.5. Wettability Results

Hydrophobicity and hydrophilicity of materials, that is, surfaces with contact angles (CA) higher
and lower than 65◦, respectively, have been obtained based on captured photos and contact angle
measurements of 1 mL water droplets as a quantitative method [20,43]. Based on the literature [44,45],
surface energy and surface roughness are the main factors used to control the CA. Therefore, wettability
of the surfaces is changed based on the modifications of roughness and morphology of microstructures.
A typical PET fabric can be completely wetted by water droplets (Figure 5a) due to the presence
of hydrophilic –OH groups, as illustrated in Table 2. The loading of Ag2O particles onto the fabric
could make the fabric rough and hydrophobicity would be introduced to the PET fabric. Here, the
average CA values of PET-loaded Ag2O at different pH values (6.5, 7.5, 8.5, 9.5 and 10.5) were 95.2◦,
94.1◦, 122.1◦, 94.8◦ and 96.9◦, respectively, and uncoated had a value of ~0◦ (Figure 5). As shown in
Figure 5, the F3 sample exhibits high CA and is more hydrophobic than other samples, which confirms
that the surface was successfully modified and has obtained a self-cleaning condition. Therefore,
high hydrophobicity (CA of approximately 122.1◦ similar to Teflon coating [46]) of the PET fabric
can exhibit good self-cleaning, and is highlighted as a promising candidate for antibacterial activity.
Suryaprabha et al. [47] have reported that the self-cleaning and antibacterial properties of fabrics are
improved with an increase in CA.
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3.6. Antibacterial Tests

The inhibition zone of the obtained PET-loaded Ag2O against E. coli is shown in Figure 6, and the
values are given in Table 3. The diameter of the inhibition zone of the F3 sample is higher than that of
other samples. This result suggests that the F3 sample with nanorod morphology exhibits a remarkable
growth inhibitory effect against E. coli. The results of the present study are similar to results reported
by other researchers [20,48,49]. The observed good antibacterial activity is attributed to (a) the large
surface area of Ag2O nanorods as seen in FESEM analysis and (b) the high absorption behavior of
Ag2O nanorods as seen in UV tests. The possible mechanisms for the antibacterial activity of Ag2O are
expressed as follows: (i) Ag2O contacts and penetrates bacterial cells due to its nanometre scale and
rod-like morphology. DNA misses its repetition capability when bacteria are subjected to Ag2O NPs.
Cells are influenced by oxidative stress, which is caused by the inhibition of ATP synthesis [50,51] (the
energy currency of cells for all organisms) and occurrence of reactive oxygen species (ROS) [20,52].
ROS increases with the increase in surface area and appropriate crystal sizes. XRD results illustrate that
the crystalline size of F3 is 18.91 nm, which can support antibacterial activity. (ii) After the penetration
of nanomaterials, the bacterial enzymes deactivate by releasing atomic Ag0 and ionic Ag+ clusters,
which kill the bacterial cells and increase the inhibition zone [53,54].
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Table 3. Antibacterial activity of the samples.

Sample Label Inhibition Zone Diameter (mm)

F1 11 ± 0.3
F2 13 ± 0.1
F3 14 ± 0.2
F4 12 ± 0.3
F5 11 ± 0.3

4. Conclusions

In this study, Ag2O-loaded PET fabrics were successfully synthesized using an ultrasonic method
with AgNO3 as a precursor solution. The morphology, CA, and antibacterial activity of the fabrics were
dependent on the change of pH. A sharp band at 237 nm in the UV test with the lowest transmittance
in the FTIR results was observed at pH 8.5 with nanorod morphology, as shown by FESEM analysis.
Furthermore, the antibacterial results revealed a direct relationship with morphology. Thus, the
maximum inhibition zone obtained for the fabrics was 14 ± 2 mm because of the large surface area of
the Ag2O nanorods. The results of this study may be applicable to medical devices that are coated
with Ag2O nanorods via ultrasonic methods to improve antibacterial activity.
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