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Abstract

We describe a Fourier transform spectroscopy technique for directly measuring band structures, 

and apply it to a spin-1 spin–orbit coupled Bose–Einstein condensate. In our technique, we 

suddenly change the Hamiltonian of the system by adding a spin–orbit coupling interaction and 

measure populations in different spin states during the subsequent unitary evolution. We then 

reconstruct the spin and momentum resolved spectrum from the peak frequencies of the Fourier 

transformed populations. In addition, by periodically modulating the Hamiltonian, we tune the 

spin–orbit coupling strength and use our spectroscopy technique to probe the resulting dispersion 

relation. The frequency resolution of our method is limited only by the coherent evolution 

timescale of the Hamiltonian and can otherwise be applied to any system, for example, to measure 

the band structure of atoms in optical lattice potentials.
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Introduction

Cold-atom systems offer the possibility of engineering single-particle dispersions that are 

analogs to those present in condensed matter systems, thereby creating exotic atomic 

‘materials’, with interaction-dominated or topologically non-trivial band structures [1, 2]. 

The properties of such materials depend on their underlying band structure, and a multitude 

of techniques have been developed for measuring the single particle dispersion relation. We 

present a Fourier transform technique that employs the connection between the energy 

spectrum of a system and its dynamics. This connection has been exploited to study the 

spectrum of both condensed matter [3] and cold atom systems [4, 5] alike. We implemented 

a Fourier transform spectroscopy technique and applied it to spin–orbit coupled (SOC) 

Bose–Einstein condensates (BECs) to obtain their dispersion relation.
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Spin–orbit coupling, naturally present in two-dimensional electron systems subject to an 

electric field perpendicular to the plane, is a necessary ingredient for phenomena such as the 

spin quantum Hall effect, and plays an important role in topological materials [6, 7]. We 

engineered a Hamiltonian that has equal contributions of Rashba and Dresselhaus SOC [8], 

in an ultra-cold atomic system by coupling the internal degrees of freedom of 87Rb atoms 

using two laser fields [9]. The fields change the spin state while imparting momentum to the 

system via two-photon Raman transitions [10, 11]. The SOC term in the Hamiltonian can be 

made tunable by adding a periodic amplitude modulation in the Raman field [12].

Unlike the previous techniques used to measure the SOC dispersion in atomic systems [13], 

ours relies only on the unitary evolution of an initial state suddenly subjected to a SOC 

Hamiltonian and measuring occupation probabilities in a basis that does not diagonalize the 

Hamiltonian. In general, the initial state is not an eigenstate of the SOC Hamiltonian and 

undergoes unitary evolution. The spectral components of this time evolution are given by 

their relative energies, and using this time-domain evolution as a spectroscopic tool is useful 

for studying the energy spectrum of more complex time-dependent periodically driven 

systems [12, 14, 15], which are well suited for engineering and tuning Hamiltonians.

This article is organized as follows. First we give a general description of the Fourier 

transform spectroscopy technique. We then describe the experimental procedure used to 

generate the spin–orbit coupling interaction in 87Rb BECs and apply the Fourier 

spectroscopy technique. Lastly we show the relative energies of our system and recover the 

SOC spectrum using the effective mass of the ground state.

Operating principle of Fourier spectroscopy

We focus on a system where we can measure the occupation probabilities of a set of 

orthonormal states {|ψi〉} that fully span the accessible Hilbert space of the system. We then 

consider the time evolution of an arbitrary initial state |Ψ0〉 = Σi ai|ψi〉 as governed by a 

Hamiltonian Ĥ′({Ωi}) and observe the occupation probabilities of the {|ψi〉} states of the 

measurement basis as a function of time. When Ĥ′ is applied, the evolution of the initial 

state is Ψ t = ∑i, jaici, je
−iE′ jt /ℏ ψ ′ j , where E′ j and ψ ′ j  are the eigenenergies and 

eigenstates of Ĥ′, and ci, j t = ψ i ψ ′ j . The probability

Pk t = ψk Ψ t 2 = ∑
i, j

aici, jc j, k
∗ e

−iE′ jt /ℏ
2

(1)

of finding the system in a state |ψk〉of the measurement basis can be expressed as a sum of 

oscillatory components, with amplitude given by the magnitude of the overlap integrals

Pk t = 1 + ∑
i, j ≠ l

2 aici, jc j, kci, j′ck′, k cos 2π f j j′t , (2)
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where f j j′ = E′ j − E′ j′ /h is the frequency associated with the energy difference of two 

eigenstates of the Hamiltonian. Fourier spectroscopy relies on measuring the occupation 

probabilities of each state in the measurement basis as a function of time, and extracting the 

different frequency components fjj′ directly by computing the discrete Fourier transform. 

The bandwidth and frequency resolution of the measurement are determined by the total 

sampling time and the number of samples. For N samples separated by a time interval Δt, the 

highest resolved frequency will be fbw = 1/2Δt, with resolution Δf = 1/ΔtN. This resolution 

can be decreased if the Fourier transform is calculated using certain types of windowing 

functions that enhance signal to noise. Any higher frequency f > fbw will be aliased and 

measured in the Fourier spectrum as falias = |f − m/Δt|, where m is an integer. If interactions 

are present in the system, the dynamics get modified in a time scale given by the magnitude 

of the interactions, giving an additional constraint to the smallest frequency components that 

can be resolved with our technique.

Figure 1 illustrates the principle of Fourier spectroscopy for a three level system, initially 

prepared in the state |Ψ0〉 = |ψ2〉, subject to the Hamiltonian

H′ =

E1 0 0
0 E2 0
0 0 E3

+

0 Ω1 Ω2

Ω1
∗ 0 Ω3

Ω2
∗ Ω3

∗ 0

, (3)

where we measure the occupation probability as a function of time for each of the {|ψ1〉, |
ψ2〉, |ψ3〉} states. The three eigenenergies E′i = h f i are displayed in figure 1(a). The three 

energy differences hfjj′ between the levels determine the oscillation frequencies of the 

occupation probabilities, as can be seen in figure 1(b). Finally, a plot of the power spectral 

density (PSD) in figure 1(c) shows three peaks at frequencies corresponding to the three 

relative energies of Ĥ′.

Experiment

We begin our experiments with a 87Rb BEC [16] containing about 4 × 104 atoms in the 

52S1/2 electronic ground state, and in the |f = 1, mf = −1〉 hyperfine state. The BEC is 

confined in a crossed optical dipole trap formed by two 1064 nm beams propagating along 

ex + ey and ey − ex, which give trapping frequencies (ωx, ωy, ωz) 2π = (42(3), 34(2), 133(3)) 

Hz2. We break the degeneracy of the three mF magnetic sub-levels by applying a 1.9893(3) 

mT bias field along ez that produces a ωZ/2π = 14.000(2) MHz Zeeman splitting, and a 

quadratic Zeeman shift ò that shifts the energy of |f = 1, mF = 0〉 by − h × 28.45 kHz. We 

adiabatically transfer our BEC into |f = 1, mF = 0〉 by slowly ramping the bias field, from Bi 

= 1.9522(3) mT to Bf = 1.9893(3) mT in 50 ms while applying a 14 MHz radio-frequency 

magnetic field with approximately 20 kHz coupling strength that was ramped on 50 ms 

before the bias field. We then apply a pair of 250 μs microwave pulses that each transfer a 

2All uncertainties herein represent the uncorrelated combination of statistical and systematic errors.
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small fraction of atoms into the 52S
1/2 f = 2 manifold that we use to monitor and stabilize the 

bias field [17]. The microwave pulses are detuned by ±2 kHz from the |f = 1, mF = 0〉 ↔ |f = 

2, mF = 1〉 transition and spaced in time by 33 ms (two periods of 60 Hz). We imaged the 

transferred atoms following each pulse using absorption imaging3, and count the total 

number of atoms n1 and n2 transferred by each pulse. The imbalance in these atom numbers 

(n1 − n2)/(n1 + n2) leads to a 4 kHz wide error signal that we use both to monitor the 

magnetic field before each spectroscopy measurement and cancel longterm drifts in the field.

We induce spin–orbit coupling using a pair of intersecting, cross polarized ‘Raman’ laser 

beams propagating along ex + ey and −ex + ey, as shown in figures 2(a) and (b). This beams 

have angular frequency ωA = ωL + δ and ωB = ωL + ωZ, where 2δ is the, experimentally 

controllable, detuning from four photon resonance between mF = −1 and mF = +1. The 

geometry and wavelength of the Raman fields determine the natural units of the system: the 

single photon recoil momentum kL = 2π /λR and its associated recoil energy EL = ℏ2kL
2 /2m, 

as well as the direction of the recoil momentum kL = kLex. The Raman wavelength is λR = 

790.032 nm, so that the scalar light shift is zero.

Our system is well described by the Hamiltonian including atom–light interaction along with 

the kinetic contribution

HSOC =
ℏ2qx

2

2m + αqxFz + 4EL𝕀 + ΩRFx + 4EL − ε Fz
2 − 𝕀 + δFz, (4)

where q is the quasimomentum, Fx, y, z are the spin-1 angular momentum matrices, 

α = ℏ2kL/m is the SOC strength, and ΩR is the Raman coupling strength, proportional to the 

Raman laser intensity. The Raman field couples |mF = 0, q = qx〉 to |mF = ±1, q = qx ∓ 2kL〉, 
generating a spin change of ΔmF = ±1 and imparting a ∓2kL momentum. The eigenstates of 

ĤSOC are linear combinations of these states and |mF = 0, q = qx〉, and the set {|mF, q〉} 

constitutes the measurement basis for the Fourier transform spectroscopy.

Figure 2(c) shows a typical band structure of our spin-1 SOC system as a function of 

quasimomentum for a large and negative quadratic Zeeman shift −ε > 4EL. In this parameter 

regime the ground state band has a nearly harmonic dispersion with an effective mass m* = 

ħ2[d2E(kx)/d2x]−1, only slightly different from that of a free atom.

We engineer a highly tunable dispersion relation in which we can independently control the 

size of the gap at qx = 0 as well as the SOC strength α by adding frequency sidebands to one 

of the Raman beams. The state of the system can change from |mF = −1, q = qx + 2kL〉 to |

mF = 1, q = qx − 2kL〉 by absorbing a red detuned photon first followed by a blue detuned 

photon and vice versa, in a similar way to the Mølmer–Sørensen entangling gate in trapped 

ion systems [18]. The interference of the multiple frequency components leads to an 

3We did not apply repump light during this imaging, so the untransferred atoms in the f = 1 manifold were largely undisturbed by the 
imaging process.
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amplitude modulated Raman field giving an effective Floquet Hamiltonian with tunable 

SOC [12]. When we set the angular frequencies of the sidebands to ω = ωA + ωZ ± δω, the 

Hamiltonian in equation (4) acquires a time-dependent coupling ΩR(t) = Ω0 + Ω cos(δωt). 
This periodically driven system is well described by Floquet theory [19], and we calculate 

the spectrum of Floquet quasi-energies that are grouped into manifolds separated in energy 

by integer multiples of ħδω as shown in figure 3. We define an effective, time-independent 

Hamiltonian ĤFl that describes the evolution of the system sampled stroboscopically at an 

integer number of driving periods, with the time evolution operator U t0, t0 + T = e
−iTHFl. 

For ħδω > |ε| +12EL and |qx| ≤ 2kL so that quasi-energy manifolds are well separated as in 

figure 3(a), the Floquet Hamiltonian retains the form of equation (4) with renormalized 

coefficients and an additional coupling term:

HFl = HSOC q, Ω0, α∼, δ
∼, ε∼ + Ω

∼
Fxz, (5)

where α∼ = J0 Ω/δω α, Ω
∼ = 1/4 ε + 4EL J0 2Ω/δω − 1 , δ

∼ = J0 Ω/δω δ, and 

ε∼ = 1/4 4EL − ε − 1/4 4EL + 3ε J0 2Ω/δω . J0 is the the zero order Bessel function of the first 

kind, and Fxz is the λ
∼

4 Gell-Mann matrix that directly couples |mf = −1, q = qx + 2kL〉 and |

mf = +1, q = qx − 2kL〉 states. The experimentally tunable parameters δω, Ω and Ω0 can be 

used to tune the SOC dispersion.

We use Fourier transform spectroscopy to measure the spectrum of the SOC Hamiltonian 

(equation (5)) for three coupling regimes: (i) Ω0 ≠ 0 and Ω = 0, (ii) Ω0 = 0 and Ω ≠ 0 and 

(iii) Ω0 ≠ 0 and Ω ≠ 0. We turned on the Raman laser non-adiabatically, in approximately 1 

μs. We let the system evolve subject to ĤSOC for up to 900 μs, and then turn off the laser 

while releasing the atoms from the optical dipole trap. We can resolve individual spin 

components by applying a spin-dependent ‘Stern–Gerlach’ force using a magnetic field 

gradient. We then image the atoms using absorption imaging after a 21 ms time of flight. 

Our images reveal the atoms’ spin and momentum distribution, allowing us to measure the 

fraction of atoms in each state of the measurement basis, and thereby obtain the occupation 

probability. The density of sampling points and the maximum evolution time are chosen so 

that the bandwidth of the Fourier transform is comparable to, or larger than, the highest 

frequency in the evolution of the system while maximizing resolution. Experimental 

decoherence, which arises from magnetic field noise and small magnetic field gradients 

present in our aparatus, is an additional constraint that becomes significant around 1 ms.

In order to map the full spin and momentum dependent band structure of ĤSOC, we measure 

the time dependent occupation probabilities at a fixed Raman coupling strength and different 

values of Raman detuning δ, for the same initial state |mF = 0, qx = 0〉. For the Hamiltonian 

ĤSOC, momentum and detuning are equivalent up to a numerical factor, δ/EL = 4qx/kL, since 

the detuning term δFz and the momentum term αqxFz have the same effect in the relative 

energies. This relation follows from the Doppler shift of the light frequency experienced by 
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atoms moving relative to a light source: a stationary BEC in the laboratory reference frame 

dressed by a detuned laser field is equivalent to a moving BEC and a resonant laser field.

We control the frequency and the detuning of the Raman beams using two acousto-optic 

modulators, one of which is driven by up to three phase coherent frequencies. For each of 

the three coupling cases that we measured, we applied the Raman beams at detuning values 

within the interval ±12EL which corresponds to quasimomentum values ±3kL.

Effective mass

We recover the full spectrum of the system, rather than the relative energies, by measuring 

the effective mass of the nearly quadratic ground state of the dispersion, giving us an energy 

reference that we then use to shift the measured frequencies in the PSD. We measure the 

effective mass of the Raman dressed atoms by adiabatically preparing the BEC in the lowest 

eigenstate and inducing dipole oscillations. The effective mass of the dressed atoms is 

related to the bare mass m and the bare and dressed trapping frequencies ω and ω* by the 

ratio m*/m = (w/w*)2. We measured this ratio following [20]; we start in the |mF = 0, kx = 

0〉 state and adiabatically turn on the Raman laser in 10 ms while also ramping the detuning 

to δ ≈ 0.5 EL, shifting the minima in the ground state energy away from zero quasi-

momentum. We then suddenly bring the field back to resonance, exciting the BEC’s dipole 

mode in the optical dipole trap. We measured the bare state frequency by using the Raman 

beams to initially induce motion but subsequently turn them off in 1 ms and let the BEC 

oscillate. For this set of measurements, we adjusted our optical dipole trap to give new 

trapping frequencies (ωx, ωy, ωz) 2π = (35.6(4), 32.2(3), 133(3)) Hz, nominally symmetric 

in the plane defined by ex and ey. The Raman beams co-propagate with the optical dipole 

trap beams; therefore, the primary axes of the dipole trap frequencies are at a 45° angle with 

respect to the direction of kL.

Figure 4 shows the dipole oscillations along the ex and ey directions for the three different 

coupling regimes we explored, as well as the bare state motion. The resulting mass ratios for 

the three coupling regimes are m/m*= (i) 1.04(8), (ii) 0.71(7), and (iii) 0.62(4).

Measured dispersion

We mapped the band structure of SOC atoms for three different coupling regimes. Figure 

5(a) shows representative traces of the measured occupation probabilities for short evolution 

times along with fits to the unitary evolution given by ĤSOC with δ, Ω0, and Ω as free 

parameters. The fit parameters agree well with independent microwave and Raman power 

calibrations. In the lower two panels, where the Raman coupling strength is periodically 

modulated, the occupation probabilities oscillate with more than three frequencies since the 

full description of the system is given by the Floquet quasi-energy spectrum. Figures 5(b), 

(c) shows the occupation probabilities for the parameter regime (iii) for longer evolution 

times along with the PSD of the occupation probability of each spin state.

We use a non-uniform fast Fourier transform algorithm on a square window to obtain the 

PSD of the occupation probability since our data points are not always evenly spaced 

because of imperfect imaging shots. The heights of the peaks in the PSD are related to the 
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magnitude of the overlap integrals between the initial state and the Raman dressed states. 

Figure 5(c) shows the raw PSD of the time evolution of the system under ĤSOC for a given 

Raman coupling strength and detuning. We put together all the PSDs for the three coupling 

regimes in the spectra shown on the top three panels in figure 6. Each column corresponds to 

a different coupling regime and the colors represent the different spin states of the 

measurement basis. The spectra show that some overlap integrals vanish near δ = 0, which is 

manifested as missing peaks in the PSD. The periodic structure of the Floquet quasi-energy 

spectrum gives rise to peaks at constant frequencies of δω and 2δω independently of the 

Raman detuning, and a structure that is symmetric about the frequencies 2πf1 = δω/2 and 

2πf2 = δω.

We obtain the characteristic dispersion of a SOC system after adding a quadratic term to the 

PSD, proportional to the measured effective mass, and after rescaling the detuning into 

recoil momentum units. We combine the PSD of the time evolution of the three |mF〉 states 

to look at the spin dependence of the spectra. Figure 6 shows the measured spectra as well as 

the Floquet quasi-energies calculated for the Hamiltonian parameters obtained from our 

calibrations. The spectral lines that can be resolved with our technique depend on the 

overlap integrals of the initial state with the target Hamiltonian eigenstates. Additional 

energies can be measured by repeating the experiment with different initial states. The 

spectral lines we were able to resolve are in good agreement with the calculated energies of 

the Hamiltonian.

Conclusion

We measured the spin and momentum dependent dispersion relation of a spin-1 SOC BEC 

using a Fourier transform spectroscopy technique along with a measured effective mass of 

the ground state. We studied a periodically driven SOC system and found a rich Floquet 

quasi-energy spectrum. Our method can be applied generically to any system with long 

enough coherent evolution to resolve the energy scales of interest, and could prove 

particularly useful to study systems where it is harder to predict or compute the exact 

energies, such as cold atom realizations of disordered or highly correlated systems [21]. 

Moreover, this technique can be extended with the use of spectograms to study time 

dependent spectra, such as that of systems with quench-induced phase transitions.
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Appendix A. Recovering the SOC dispersion from the PSD

In this section we describe how we obtain a trapping frequency along an axis that is not 

defined the trap’s principal axes and how we use it to shift the PSD to obtain the absolute 

SOC spectrum from a spectrum of relative energies.

The kinetic and potential terms in the Hamiltonian including the contribution of the Raman 

and optical dipole trap are
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H⊥ =
ℏ2qx

2

2m ∗ +
ℏ2qy

2

2m + m
2 ωx′

2 x′2 + ω′y
2y′2

= ℏ2

2m ∗kx
2 + 1

2mky
2 + m

4 ωx′
2 + ωy′

2 x2 + y2 + 2xy ωx′
2 − ωy′

2 ,
(6)

where we have used x′ = x + y / 2 and y′ = x − y / 2 to rotate the dipole trap coordinates 

by 45°. For an axially symmetric trap with ωx′ = ωy′, the frequency of oscillation along the 

Raman recoil direction is

ωx
2 = m

2m ∗ ωx′
2 + ωy′

2 . (7)

Figure A1. 
(a) Floquet quasi-energy spectrum of a SOC Hamiltonian with periodic coupling strength. 

The red line represents the eigenstate that has the largest overlap with the initial |mF = 0〉 
state. The arrows indicate the energies of the states that have non-zero overlap with the 
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initial state and can be measured with Fourier transform spectroscopy. (b) PSD of the 

occupation probability and numerically calculated energy differences between the levels 

indicated by the arrows on panel (a). (c) PSD shifted by a quadratic term −ℏ2qx
2/2m ∗. The 

red box indicates the region of interest where we can recover the SOC spectrum. (d) We 

invert the frequency axis and shift it by δω.

Our trap has a small 3.4 Hz asymmetry and therefore we expect coupling between motion 

along ex and ey which becomes more significant at larger effective masses. The sampling 

times for the measurements shown in equation (4) are small compared to the trap asymmetry 

and therefore we can locally approximate the motion of the atoms by simple harmonic 

function with a frequency along ex given by equation (7).

Figure A1 illustrates in detail the steps that we take to obtain the dispersion for the 

periodically driven SOC cases. The red line in panel (a) represents a level within a Floquet 

manifold that has the largest overlap integral with the initial |mF = 0, q = 0〉 state. The peaks 

in the PSD correspond to energy differences between the marked level and the levels in 

neighboring Floquet manifolds pointed by the colored arrows. We show the theoretically 

computed energy differences on top of the measured PSD in panel (b). The lowest frequency 

dominant peaks of the PSD correspond to energy differences with the adjacent lower Floquet 

manifold. To properly recover the SOC dispersion we need to shift the PSD by a negative 

quadratic term −ℏ2qx
2/2m ∗ as we show on panel (c). We finally invert the frequency axis and 

shift it by δω. Including the effective mass to reconstruct the spectrum of the time-

independent SOC case, amounts to shifting the PSD by a positive quadratic term.

Appendix B. Effective Hamiltonian

To get the effective Floquet Hamiltonian ĤFl from the time dependent SOC Hamiltonian in 

equation (4), we apply a transformation U t  such that the time evolution is given by the 

transformed Hamiltonian H′ t = U† t H t U t − iℏU† t ∂tU t . We choose the transformation

U t = exp −i Ω
δωsin δωt Fx . (8)

Ĥ′(t) has terms proportional to sin(Ω/δω sin(δωt)), sin2(Ω/δω sin(δωt)), cos(Ω/δω sin(δωt)) 
and cos2(Ω/δω sin(δωt)) which we simplify using the Jacobi–Anger expansion for large 

values of θ

cos zsinθ = J0 z + 2 ∑
n = 0

∞
J2n z cos 2nθ ≈ J0 z

sin zsinθ = 2 ∑
n = 0

∞
J2n + 1 z sin 2n + 1 θ ≈ 0,
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to obtain the effective time independent Hamiltonian ĤFl.
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Figure 1. 
(a) Eigenenergies of a three-level system described by Ĥ′(Ω1, Ω2, Ω3). (b) The system is 

prepared in |ψ2〉and subjected to Ĥ′ at time ti. The three panels show the occupation 

probabilities of the states |ψ1〉 (blue), |ψ2〉 (black), and |ψ3〉 (red) in the measurement basis, 

for evolution times up to tf. (c) Power spectral density of the occupation probabilities from 

(b). The three peaks in the Fourier spectra correspond to the energy differences present in 

(a).
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Figure 2. 
(a) Setup. A bias magnetic field B0ez, with B0 = 1.9893 mT splits the hyperfine energy 

levels of the f = 1 manifold of 87Rb by ωZ/2π = 14 MHz. A pair of cross polarized Raman 

beams propagating along ex + ey and −ex + ey couple the atoms’ momentum and spin states. 

(b) The Raman frequencies are set to ωA = ωL + δ and ωB = ωL + ωZ. We add frequency 

sidebands to ωB, separated by ± δω. The amplitude modulation from the interference 

between the multiple frequency components results in tunable SOC. (c) SOC dispersion for 

Raman coupling strength Ω0 = 12EL and Ω = 0, on four photon resonance.
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Figure 3. 
(a) Floquet quasi-energies of a three level Hamiltonian with SOC and time periodic coupling 

strength. The quasi-energies are grouped into manifolds consisting of three levels that get 

repeated with a periodicity equal to ħδω. (b) Energy differences of the Floquet quasi-

energies. Each color represents the energy difference, separated by a fixed number of 

neighboring levels. When the number of neighboring levels is a multiple of 3, the energy 

differences are straight lines, a result of the periodic structure of the Floquet manifolds.
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Figure 4. 
Oscillation of the BEC in the dipole trap along the recoil directions ex and ey for (top) bare 

atoms, and the three parameter regimes that we explored (i)–(iii).
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Figure 5. 
(a) Occupation probability for the three states in the measurement basis |mf = −1, q = qx 

+ 2kL〉 (blue), |mf = 0, q = qx〉 (black), and |mf = +1, q = qx − 2kL〉 (red), following unitary 

evolution under ĤSOC for times up to 100 μs at different spin–orbit coupling regimes: (i) Ω0 

= 9.9EL, Ω = 04, δ = 5.8 EL, (ii) Ω0 = 0, Ω = 8.6 EL, δ = −0.7 EL, δω = ε + 12 EL, and (iii) 

Ω0 = 1.5 EL, Ω = 8.4 EL, δ = −4.7 EL, δω = ε + 17 EL. (b) Occupation probability for long 

pulsing up to 800 μs for parameters as in (iii). (c) Power spectral density of the occupation 

probability. We subtract the mean value of each probability before taking the Fourier 

transform to remove peaks at f = 0. The peaks in the PSD then correspond to the relative 

eigenenergies of ĤSOC.
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Figure 6. 
(a) Power spectral density of the time dependent occupation probability for each state in the 

measurement basis for three coupling regimes: (left) Ω0 = 9.9EL, Ω = 0, (center) Ω0 = 0, Ω = 

8.6EL, δω = −ε + 12EL, and (right) Ω0 = 4.9EL, Ω = 8.4EL, δω = −ε + 17EL. Each panel is 

normalized to peak amplitude to highlight small amplitude features in the PSD of the 

periodically driven SOC, and the highest value on the frequency axis corresponds to the FFT 

bandwidth. (b) Spin-dependent SOC dispersion for three different coupling regimes. We 

combine the PSD of the occupation probability of the states |mF = ±1, qx = ∓2kL〉, and shift 
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each frequency by an amount proportional to the squared quasimomentum and the effective 

mass. The dashed lines are the calculated Floquet energies for the Hamiltonian using our 

calibration parameters.
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