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Particle Shape Influences Settling 
and Sorting Behavior in Microfluidic 
Domains
Hakan Başağaoğlu1, Sauro Succi2, Danielle Wyrick3 & Justin Blount4

We present a new numerical model to simulate settling trajectories of discretized individual or a mixture 
of particles of different geometrical shapes in a quiescent fluid and their flow trajectories in a flowing 
fluid. Simulations unveiled diverse particle settling trajectories as a function of their geometrical 
shape and density. The effects of the surface concavity of a boomerang particle and aspect ratio of a 
rectangular particle on the periodicity and amplitude of oscillations in their settling trajectories were 
numerically captured. Use of surrogate circular particles for settling or flowing of a mixture of non-
circular particles were shown to miscalculate particle velocities by a factor of 0.9–2.2 and inaccurately 
determine the particles’ trajectories. In a microfluidic chamber with particles of different shapes and 
sizes, simulations showed that steady vortices do not necessarily always control particle entrapments, 
nor do larger particles get selectively and consistently entrapped in steady vortices. Strikingly, a change 
in the shape of large particles from circular to elliptical resulted in stronger entrapments of smaller 
circular particles, but enhanced outflows of larger particles, which could be an alternative microfluidics-
based method for sorting and separation of particles of different sizes and shapes.

Flow and transport of engineered particles of different geometrical shapes are encountered in diverse biomedical 
applications. In targeted drug deliveries, the shape of engineered drug cargos has shown to have intriguing effects 
on their transport in blood vessels, adhesion onto channel walls, and targeting ability toward malignant cells1. For 
example, ellipsoidal microparticles displayed longer blood circulation times than spherical particles due to less 
efficient phagocytosis by macrophages in the reticuloendothelial system2. Hexagonal nanoparticles more effec-
tively mitigated phagocytoses and remained in blood circulation longer than spherical particles3. Unlike spherical 
particles, boomerang-shaped particles displayed a preferred direction of Brownian motion4, which could have 
implications in design of new microscopic particles to deliver drugs or self-assemble into complex materials. A 
theranostic plasmonic shell-magnetic core star-shaped nanomaterial was used for targeted isolation and detection 
of rare tumor cells from a blood sample5. As for the adhesion kinetics of such engineered particles on channel 
walls, nanorod particles were numerically shown to adhere to channel walls easier than spherical particles due, in 
part, to larger surface area contacts with the channel walls as they tumble near the walls6.

In applications relevant to the design of biomedical devices, microfluidic devices with different geometric designs 
have been proposed to isolate circulating tumor cells (CTC) from healthy cells in blood samples through, for example, 
vortex-aided particle separation7,8, which could be useful for early cancer diagnosis and monitoring metastatic progres-
sion or the efficiency of cancer treatments9. Although the performance of the microfluidic devices in the segregation of 
CTC has been commonly tested with surrogate spherical particles, tumor cells often exhibit patient-specific arbitrary 
shape profiles, which do not conform to the spherical particle representation for tumor cells10,11.

The effect of non-spherical particle shapes on particle trajectories has been recently addressed in numerical 
simulations. Settling dynamics and patterns of thin disks12,13 in an infinitely long viscous fluid domain and set-
tling behaviors of individual spherical, cubical, or tetrahedral particles in an infinitely long fluidic domain with 
periodic lateral boundaries14 were numerically investigated. However, to the best of our knowledge, numerical 
simulations of settling of a mixture of different-shaped particles (DSP), involving angular- and curved-shaped 
particles, in a bounded domain is unprecedented. Similarly, numerical simulations of flow trajectories of a mix-
ture of DSP is very limited or perhaps non-existent in the literature.
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The extension of the lattice Boltzmann (LB) method for simulating flow of suspended bodies is a fast-growing 
area of LB research15, following the pioneering work of of Ladd16,17. Considering broad uses of DSP in biomedi-
cal applications and the abundant experimental evidence for their shape-dependent distinct flow and transport 
behaviors, we extended the LB model (LBM) presented originally by Nguyen and Ladd18 to simulate the settling 
and flow of DSP, including discretized angular-shaped particles (DAsP), involving star, boomerang, hexagonal, 
triangular, rectangular, and discretized curved-shaped particle (DCsP), involving circular and elliptical particles, 
consistent with the aforementioned shapes of engineered particles used in biomedical applications. The DSP-LBM 
is suitable for simulating settling and flow trajectories of any arbitrary-shaped particles, such as tumor cells.

The primary purpose of this paper is to introduce the DSP-LBM and demonstrate its performance in simulat-
ing the settling or flow of individual or a mixture of DSP under various combinations of properties associated with 
the particles, flow regimes, and the microfluidic domain geometry. Using the DSP-LBM and a single chamber of 
the microfluidic device geometry in ref.7 we numerically investigated the validity of recent findings and implica-
tions in microfluidic research. These findings and implications involve: (i) when a large number of particles are 
released into a fluid in a microfluidic device, larger particles get selectively trapped by vortices, whereas smaller 
particles avoid entrapments; (ii) steady vortex structures can be used to quantify vortex-controlled, size-based 
separation of particles; and (iii) non-circular particles may be represented by circular particles in vortex-aided 
particle segregation via microfluidic devices with different geometric peculiarities.

Methods
In the LB method19–22, the mesodynamics of the Newtonian fluid flow can be described by a single relaxation time 
via the Bhatnagar-Gross-Krook (BKG) equation23
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local fluid density, ρ, and velocity, u, at the lattice node are given by ρ = ∑ fi i and ρ τρ= ∑ +fu e gi i i , where g is 
the strength of an external force25. A D2Q9 (two-dimensional nine velocity vector) lattice21 was adopted in 
numerical simulations. Through the Chapman-Enskog approach, the LB method for a single-phase flow recovers 
the Navier-Stokes equation in the limit of small Knudsen number for weakly compressible fluids, in which 
∇ ⋅ ∼u 0 and ∂tu + (u ⋅ ∇)u = −(∇P/ρ) + ν∇2u + g with the fluid kinematic viscosity, ν τ= Δ − .c t( 0 5)s

2 . 
Pressure, P, is computed via the ideal gas relation, ρ=P cs

2 .
The extension of the LBM to the DSP-LBM involves (i) geometric description of DSP to locate the vertices for 

DAsP or boundary nodes for DCsP, (ii) calculations of the position of intra- and extra-particle boundary nodes 
in the vicinity of arbitrary-shaped particle surfaces across which the particle and fluid exchange momentum, 
and (iii) calculations of new positions of the center of mass of a particle and its vertices based on particle-fluid 
hydrodynamics.

Geometric Description of 2D Different-shaped Particles.  Similar to geometric construction of sur-
faces of a circular-cylindrical particle (hereafter, circular particle) by Ladd18, we used discretized particle surfaces 
for 2D curved (e.g., circular)- and angular (e.g., hexagonal)-shaped particles in the DSP-LBM. A schematic rep-
resentation of non-circular particle geometries are shown in Fig. 1, which are subsequently used to locate vertices 
of DAsP and boundary nodes of DCsP. We provide geometric descriptions for the star-shaped and elliptical par-
ticles next, but geometric descriptions of the remaining particles are provided in Supplementary Information-1.

The star-shaped particle geometry is represented by five isosceles triangles connected to a pentagon at the 
center, as shown in Fig. 1a. The geometry is constructed by two circles; the bigger circle with a radius of RS 
encloses the star-shape and the smaller circle with a radius of RP that passes through the corners of the pentagon. 
These two circles are related via RS = ψRP, in which ψ = cos(π/5) + [sin(π/5)]/[tan(π/10)]. The surface area of the 
star-shaped particle, AS, is given by AS = χ(RS)2, in which χ π ψ π ψ= +sin tan[ ( /5)/ ][5/ ( /10] 4 )2 2 . The star-shaped 
particle has five vertices located on the outermost tip of the triangles (vS1 − vS5), in addition to five vertices located 
on the corners of the inner pentagon (vP1 − vP5) (Fig. 1a). The coordinates (xi, yi) of vSi, and vPi, where iε1,5, are 
computed by Eq. 2 and Eq. 3, respectively,
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where α̂ is the initial tilt angle of the particle in the clockwise direction. xc = (xc, yc) is the center of mass of a par-
ticle, = ∑ =x xc N i

N
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1  and = ∑ =y yc N i

N
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1
1 , where N is the number of vertices (NVer) for DAsP or the number of bound-

ary nodes (NBnd) for DCsP. The mass of the star-shaped particle per unit particle thickness is given by 
mp =  χ(RS)2ρ p.  The moment of  inert ia,  I s,  for the star-shaped part icle  was computed by 
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pentagon, a = 2RPsin(π/5), h is the height of an isosceles triangle, h = a/[2tan(π/10)], AP is the area of the 
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pentagon, = + +A a(1/4) 5 (5 2 5 )P
2, AT is the area of the triangle, AT = ah/2, λ = Rpcos(π/5), and σ = [cos(

π/5) + cos(2π/5)]2 + [0.5 + sin(π/5) + sin(2π/5)]2.
Different from a star-shaped particle, the elliptical particle geometry is described by boundary nodes, Nbnd, 

along the discretized curved surfaces, the length of its long- and short-axes (c and d), and the initial tilt angle, α̂ 
(Fig. 1b). The coordinates of its boundary nodes are computed by
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in which Φi = 2π(i − 1)/(NNbd − 1). The mass of an elliptical particle per unit particle thickness is given by 
mp = AEρp, in which the surface area and its moment of inertia are computed by AE = πcd/4 and = +I c d( )E

m
16

2 2 , 
respectively.

Intra-Particle Boundary Nodes (IPBN) and Extra-Particle Boundary Nodes (EPBN).  The wind-
ing number algorithm26 was implemented to determine whether a lattice node xk = (xk, yk) is enclosed by a pol-
ygon in Fig. 1, described by a series of boundary nodes for DCaP or vertices for DAsP along the particle surface. 
The algorithm computes the number of times the polygon winds around xk, which is referred to as the winding 
number, m(xk). xk is not enclosed by a polygon if m(xk) = 0. In the DSP-LBM, xk and xk + ei form a intra-particle 
boundary nodes (IPBN) and extra-particle boundary nodes (EPBN) pair if m(xk) ≠ 0 and m(xk + ei) = 0. The 
IPBNs and EPBNs for a discretized hexagonal particle and the momentum exchanges between the particle and 
the fluid at the mid-point of hydrodynamic links connecting an IPBN and an EPBN are shown in Fig. 2.

Particle-fluid Hydrodynamics.  Particle-fluid hydrodynamic calculations rely on momentum exchanges 
between the fluid and the mobile DSP, following the approach in refs18,27 in which the population densities near 
particle surfaces are modified to account for momentum-conserving particle-fluid collisions. Particle-fluid 
hydrodynamic forces, Frb

, at the boundary nodes located halfway between the intra-particle lattice node, rv, and 
extra-particle lattice node, rv + ei, are computed by16,28,29
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Figure 1.  A schematic representation of non-circular particle geometries in the DSP-LBM. α > ˆ 0  and α > 0  
represent the initial tilt angle in the clockwise and counterclockwise directions. α = °ˆ 0  in (a).
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The translational velocity, Up, and the angular velocity of the particle, Ωp, are advanced in time according to 
the discretized Newton’s equations of motion, ρ ρ+ Δ ≡ + + −

ρ
Δ Δt t t tU U F g( ) ( ) ( ) ( )p p

t
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t
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, where mp is the particle mass, Ip is the moment of inertia of the particle, and 
ub =  Up +  Ωp ×  (rb −  rc). The new position of the center of mass of a particle is computed as 
xc(t + Δt) = xc(t) + Up(t)Δt. The population densities at rv and rv + eiΔt are updated to account for particle-fluid 
hydrodynamics in accordance with16
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New Locations of Vertices or Boundary Nodes.  The locations of vertices or boundary nodes are 
updated in each time step. The distance di = (dix, diy) between the ith vertex (or a boundary node) and the center 
of mass of a particle, xc is computed via di = xi − xc. After xc(t + Δt) is computed, new positions of vertices (or 
boundary nodes) are updated via
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in which ϒi is the angle between (xi − xc) and +x. For a hexagonal particle, for example, ϒi = α + (i − 1)π/3 for 
iε1,6.

Model Validation.  The DSP-LBM was validated with two benchmark problems. First, the settling trajectory 
of a circular particle in an initially quiescent fluid in a bounded domain (Fig. 3a) computed by the DSP-LBM was 
compared against the finite-element (FE) solutions by Feng et al.30 at two different Reynolds numbers, Re = 8.33 
and Re = 1.03 (here, Re = 2RUs/ν, where R is the particle radius and Us is the settling (terminal) velocity of the 
particle). In ref.30 the values of R and ν in FE simulations were not provided, but only Re values were reported. In 
the DSP-LBM simulations, the length of the bounded flow domain was set to ∼ W30  (adopted in all settling sim-
ulations in this paper), where W is the channel width perpendicular to the main settling direction, and 
R = 385 μm, ν = 0.01 cm2, and |g| = 981 cm/s2. ρp/ρ was adjusted to meet the reported Re values in ref.30. For 
Re = 8.33, DSP-LBM (with ρp/ρ = 1.07) and FE solutions are in good agreement (Fig. 3b), although the DSP-LBM 
solution for Re = 6.65 (with ρp/ρ = 1.05) matched the FE solution for Re = 8.33 better. The FE solution for 
Re = 1.03 was in a good agreement with the DSP-LBM solution (with ρp/ρ = 1.01) for Re = 1.68 (Fig. 3c).

In the second validation test, the DSP-LBM simulation of the settling trajectory and angular rotations 
θ α= + Ω Δˆ t( )p  of an elliptical particle in an initially quiescent fluid in a bounded domain (Fig. 3d) was com-

pared against numerical solutions by Xia et al.31. In these simulations, c/d = 2, W/c = 4 (Fig. 3d), density ratio of 
ρp/ρ = 1.1, α = °ˆ 45 , ν = 0.01 cm2/s, c = 0.1 cm, and |g| = 981 cm/s2. Figure 3e,f show that settling trajectory and 
angular rotations of an elliptical particle computed by DSP-LBM are in good agreement with the simulation 
results by Xia et al.31.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Figure 2.  (a) IPBNs and EPBNs of a discretized hexagonal particle geometry in the DPS-LBM. Blue lines are 
the hydrodynamic links along which the particle and fluid exchange momentum. (b) Momentum exchange 
between the particle and fluid at a boundary node marked by a square.
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Results
Settling Trajectories of Different-Shaped Particles.  The DSP-LBM was used to simulate the settling 
trajectories and velocities of DSP as a function of particle density. The same problem set-up in Fig. 3d was used, 
but the elliptical particle was replaced by particles of different shapes. The blockage ratio is defined as W/Re, in 
which Re is the equivalent radius of a circular particle that has the same surface area of a non-circular particle. 
In these simulations, Re = 3.5 × 10−2 cm, the surface area of the particle is Ap = 3.9×10−3 cm2, and g = 981 cm/s2.

The same Ap was specified for all DSP by setting Rs = 15.4, and Rp = 5.9 for the star particle; B =15, ζ = π/3, 
φ = π/6 for the boomerang particle; L = 10.1 for the hexagonal particle; a = 24.8 for the triangular particle; 
l = 23.1, w = 11.5 for the rectangular particle; R = Re = 9.2 for the circular particle; and c = 26, d = 13 for the ellip-
tical particle (Fig. 1). Here, the length parameters are expressed in l.u. (1 l.u. = 3.846 × 10−3 cm) and angles are 
described in radians. The initial orientation of the particles are shown in Fig. 4.

DSP-LBM simulation results in Fig. 5 unveiled three distinct shape-dependent-particle behaviors in a con-
fined channel for ρ/ρp = 1.05: (i) the boomerang and triangular particles exhibited an initial large displacement 
from the centerline toward the channel wall at y = W, followed by oscillatory trajectories about the centerline 
while displaying the largest cumulative angular rotations; (ii) after a large displacement toward the wall at y = 0, 
the elliptical and rectangular particles with the same aspect ratio [(c/b) = (l/w) = 2] drifted toward the centerline 
and displayed nearly zero angular rotations as they gradually oriented their principal axis normal to the gravita-
tional field; and (iii) the hexagonal and star particles settled near the centerline similar to a circular particle, but 
they displayed non-zero cumulative angular rotations, unlike the circular particle.

As ρ/ρp increased from 1.05 to 1.10 (i.e., higher inertial effect), the particles exhibited more oscillations in 
their settling trajectories as they gradually drifted to the mid-channel. The most striking finding was the effect of 
the small triangular chip (BDC in Fig. 1c) on the settling trajectory of the boomerang particle. For ρ/ρp = 1.10, 
the small chip was responsible for the persistent periodicity in the boomerang particle’s settling trajectory, differ-
ent from slowly decaying oscillations in the triangular particle’s settling trajectory. Thus, DSP-LBM simulations 
revealed that a small chip in the boomerang geometry is a key design criteria, controlling the amplitude and 
frequency of the oscillations in settling trajectories of the boomerang particle.

Figure 3.  Numerical validations of the DSP-LBM with two benchmark problems, involving settling of a circular 
particle in (a–c) and an elliptical particle in (d–f).

Figure 4.  A schematic representation of initial orientations of non-circular particles in the settling simulation. 
The center of mass of the particles was initially located on the mid-channel (y = W/2) near the inlet.
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The other design criteria for engineered DSP may include the (linearized) surface concavity of the boomerang 
particles and the aspect ratio of rectangular particles. The effect of the surface concavity of the trailing edge of the 
boomerang particle, controlled by its inner angle (φ) on its settling trajectory, is shown in Fig. 6a for ρ/ρp = 1.10, 
W/Re = 11.3, ζ = 60°, and Ap = 3.9×10−3 cm2. DSP-LBM simulations show that the boomerang particle displayed 
gradually vanishing oscillations in its settling trajectory, similar to the triangular particle, if xc was located inside 
the polygonal surface (for φ = 10° and 20°). The boomerang particle exhibited periodic oscillations in its settling 
trajectory if xc was located on the polygonal surface (for φ = 30°) or outside the polygonal surface (for φ = 40°). 
The oscillation frequency,ϑ, dropped from 1.27 s−1 to 1.13 s−1 as xc moved from the polygonal surface (D in 
Fig. 1c) to an exterior point outside the polygonal surface.

The effects of the aspect ratio of a rectangular particle on its settling trajectories are shown in Fig. 6b for 
ρ/ρp = 1.10 and W/Re = 9.2. Although rectangular particles with different aspect ratios drifted toward the same 

Figure 5.  Settling trajectories and cumulative angular rotations of DSP with ρ/ρp = 1.05 (a–b) and with 
ρ/ρp = 1.10 (c–d). W/Re = 11.3 in these simulations.

Figure 6.  Settling trajectories of (a) boomerang particles with different surface concavity of its trailing edge 
(simulations were performed with ρ/ρp = 1.10, W/Re = 11.3, ζ = 60° and A = 3.9 × 10−3 cm2), and (b) rectangular 
particles of different aspect ratios (simulations were performed with ρ/ρp = 1.10 and W/Re = 9.2).
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equilibrium position at the centerline at ∼x W/ 6, the rectangular particle with the largest aspect ratio exhibited 
the largest initial displacement from the centerline and more frequent and largest oscillations in its settling trajec-
tory, which could be critical in multi-particle flows.

The effects of particle shape on the settling (terminal) velocity of an individual particle are provided in 
Supplementary Information-2. As shown in Supplementary Information-3, the overall settling trajectories of 
DSP in these simulations are deemed to be independent of grid resolution for all practical purposes.

Flow Trajectories of Individual Particles of Different Shapes.  In the DSP settling problems discussed 
above, the fluid was initially quiescent. To simulate shape-dependent flow trajectories of DSP, the particles whose 
initial orientations shown in Fig. 4 were released into a Poiseuille flow from a point 20% off the centerline after the 
steady-flow field was established. A neutrally-buoyant spherical particle in a Poiseuille flow typically exhibits the 
Segre-Silberberg effect32 with an equilibrium settling position between the channel wall and centerline, in which the 
equilibrium position varies with Re33,34 (here, Re = 2RUss/ν, where Uss is the average steady fluid velocity prior to 
releases of the particles). For ∼ .Re 0 1 and W/Re = 6.6, the equilibrium position of the neutrally-buoyant spherical 
particle was on the centerline in a tube33,35. Consistent with these findings, different equilibrium positions of a circu-
lar particle in a Poiseuille flow computed by DSP-LBM as a function of Re are shown in Supplementary 
Information-4. Among them, Re = 35.2, corresponding to the average steady fluid velocity of 4.97 cm/s prior to the 
particle release, was chosen and the flow trajectories of DSP were simulated (Fig. 7). At Re = 35.2, the circular parti-
cle exhibited slowly diminishing overshots about the centerline in its flow trajectory due to combined effects of 
inertial and wall effects. At much higher Re, however, the wall effect may be confined to near-wall layers only36.

When compared to the settling trajectories of DSP (Fig. 5), the flow trajectories of the DSP are more sensitive 
to the particle shape in a flowing fluid. DSP followed distinct flow trajectories at Re = 35.2 before they drifted to 
their equilibrium position at ∼x W/ 25. Only DCsPs exhibited overshots in their flow trajectories. Although the 
settling trajectories of the elliptical and rectangular particles with the aspect ratio of 2 were similar, their flow 
trajectories were different, revealing the significant effect of the (discretized) curved particle surface on particle 
trajectories in a shear flow. Similarly, the settling trajectories of the star and hexagonal particles were similar, 
unlike their trajectories in a shear flow. Uniform and repetitive oscillations in the settling trajectories of boo-
merang and triangular particles were replaced by non-uniform oscillations in their trajectories in a shear flow. 
Circular, star, hexagonal, and boomerang particles displayed the largest cumulative angular rotations at Re = 35.2 
while the boomerang and triangular particles exhibited the largest cumulative angular rotations as they settled.

Settling and Flow of a Mixture of DSP.  The effect of particle shapes on the settling and flow behavior of a 
mixture of DSP was numerically demonstrated here for the first time. Four simulations were setup, through which 
trajectories and velocities of seven settling or flowing DSP were compared to those of seven circular particles. All par-
ticles, regardless of their shapes, had the same surface area with Re = 385 μm. The interparticle distance at the release 
location was 4Re and the width and length of the domain was 40Re × 80Re. The fluidic domain was bounded in the 
settling simulation. A periodic boundary condition was implemented at the inlet and outlet for the flow simulation for 
which Re = 38. Steric interaction forces, based on two-body Lennard-Jones potentials27, were used to avoid unphysical 
overlapping of particles when they are in near contact, as described in Supplementary Information-5.

Figure 8a,b show that use of multiple surrogate circular particles in place of a mixture of non-circular particles 
led to not only misrepresentation of settling trajectories of DSP, but also underestimation of their settling veloci-
ties by a factor of up to 2.2 (large velocity ratios near the bottom boundary can be ignored as some particles rested 
on the bottom while the others continued to roll, which resulted in large velocity ratios). Similarly, Fig. 8c,d show 
that if non-circular particle shapes are overlooked, lateral displacements in computed trajectories significantly 
differed and particle velocities deviated by a factor of ∼ . − .0 9 1 2. Accurate displacements and velocities are crit-
ical in the design of engineered particles for targeted drug deliveries. Figure 8 demonstrated that non-circular 
shapes of particles have pronounced effects on the settling and flow behaviors of a mixture of DSP and their rep-
resentation by circular shapes introduces errors in calculations of particles trajectories and travel times.

Figure 7.  (a) Flow trajectories and (b) cumulative angular rotations of DSP at Re = 35. W/Re = 11.3 and 
ρp/ρ = 1.0.
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Discussion
In the preceding sections, DSP-LBM simulations demonstrated significant effects of particle shapes on the settling 
or flow trajectories of an individual particle or a mixture of DSP. Using the DSP-LBM, we investigated here the 
validity of recent findings and implications in microfluidic analyses: (i) would steady vortex structures alone be 
used to quantify vortex-controlled size-based sorting of particles? (ii) would larger particles be selectively 
entrapped in steady vortex regions despite the cumulative effects of particle-fluid hydrodynamics on the fluid 
velocity in relatively dense suspensions? and (iii) would the findings from vortex-controlled size-based separation 
of circular particles be extensible to non-circular particles in microfluidics? To answer these questions, DSP-LBM 
simulations were setup using a single chamber of the microfluidic geometry in ref.7. After the steady-flow field 
was established, 10 large particles of 0.38 μm in diameter and 30 small particles of 0.19 μm in diameter were 
released into a microfluidic chamber from random locations at the inlet. The dimensions of the microfluidic 
domain and the steady flow field are shown in Fig. 9. The fluid was water with ν = 0.01 cm2/s and cs = 1,460 m/s, 
and the particles were neutrally buoyant. The average flow rate, uavg, of 52.14 m/s at the inlet in a single-chambered 
microfluidic chamber produced vortex structures, similar to the vortex structures in a multi-chambered micro-
fluidic device with ∼u 1, 700avg  m/s in Fig. 3 of ref.7.

Although steady vortex structures were previously envisioned to trap particles in microfluidic devices7,8, 
Fig. 10 shows that vortices in a flowing fluid including mobile particles are indeed unsteady, even if the pres-
sure differential at the inlet and outlet is held constant in time. Symmetry breaks in the flow domain with ini-
tially symmetric vortex structures, disappearance or changes in the location of vortices, and formation (birth) 
of new vortices as a result of cumulative effects of interparticle and particle-fluid hydrodynamics are evident 
from Fig. 10. Particle motion in this case is largely determined by momentum exchanges between the particles 
and unsteady discrete vortices, similar to the underlying reasoning of a steadily swimming fish in a water with 
discrete vortices37, for which Lagrangian coherent structures are typically used to decompose unsteady fluid flows 
into dynamically different regions. In brief, for the initial flow condition given in Fig. 9 as in ref.7 the flow field 

Figure 8.  (a) Comparison of settling trajectories of seven DSP (in solid lines) to seven circular particles (in 
dashed lines) in an initially quiescent fluid in a confined domain, (b) the ratio of the settling velocity of a 
different-shape particle to its circular-shape counterpart released from the same point. (c) Comparison of flow 
trajectories of seven DSP (in solid lines) to seven circular particles (in dashed lines) in a Poiseuille flow with 
Re = 38, (d) the ratio of the translational velocity of a different-shaped particle to its circular-shape counterpart 
released from the same point. tT is the total simulation time.
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involving multiple mobile particles was inherently transient, which contradicts the use of steady vortex regions7,8 
in assessing particle entrapments in microfluidics devices. Moreover, the sorting mechanism related to correla-
tions between the lateral displacements of particles to their sizes38 is not applicable for multi-particle simulations 
in a fluidic domain in Fig. 9.

Next, DSP-LBM simulations were used to investigate if the larger circular particles are selectively trapped 
in unsteady vortex regions (Fig. 10). Particles leaving the flow domain were allowed to re-enter from the inlet. 
Simulations continued up to 7.4 μs, which was long enough for some particles to travel through the entire 
domain 8 times, referred to as 8 loops here. Flow trajectories of some of the large and small particles are shown 
in Supplementary Information-6. Table 1 reports that large circular particles left the flow domain on average 39% 
more often than small particles in Fig. 10. Thus, as compared to small particles, large particles had smaller resi-
dence times and were less-frequently trapped by transient vortices, different from earlier findings7,8 that relied on 
the assumption of particle entrapments by steady vortices. However, the use of steady vortex structures to assess 
particle entrapments may still be valid for microfluidics involving dilute suspensions in lower Re flows.

Finally, the effect of the geometric shape of the large particles on the vortex entrapments of small and large 
particles were investigated for the microfluidic domain shown in Fig. 9. In DSP-LBM simulations, the shape of 
the large particles was either circular, elliptical (with an aspect ration of 1.2), or hexagonal with the surface area 

Figure 9.  Steady-flow field in a subsection of microfluidic geometry in ref.7. All dimensions are scaled with 
respect to the large particle diameter, D. Small circles attached to particles are used to trace angular rotations of 
particles.

Figure 10.  Transient vortex structures.
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of 0.11 μm2, while the small particles were circular. This simulation was setup to mimic a small number of large, 
non-circular tumor cells dispersed in a large number of small, circular healthy cells. Figure 11 shows that the par-
ticle shape affected the residence time of all particles in the microfluidic domain. For example, although Particle 
38 was permanently trapped in the microfluidic domain if the large particles were circular, it traveled through the 
microfluidic domain 8 times if the large particles were hexagonal. Moreover, Table 1 shows that large hexagonal 
particles, when compared to the simulation with large circular particles, resulted in shorter average residence 
times for all particles with 5% and 7% increases in the number of loops for small and large particles, respectively. 
Strikingly, the use of large elliptical particles, instead of large circular particles, resulted in 36% enhanced entrap-
ments for smaller particles, while 21% less entrapments for larger particles. Although these findings require fur-
ther systematic experimental and numerical analyses to confirm, DSP-LBM simulations showed for the first time 
that by changing the shape of large particles from circular to elliptical, the smaller particles could be selectively 
entrapped by transient vortices while the larger particles could be effectively flushed out, which is in contrast to 
current and proposed uses of microfluidics for vortex-controlled, size-based separation of rigid particles.

In brief, considering strong disparities between flow trajectories of the circular and non-circular particles in 
microfluidic domains, the use of surrogate spherical particles to mimic tumor cells of abnormal shapes10,11 in 
microfluidic experiments as in ref.7 could lead to misleading assessments on the performance of the microfluidic 
designs proposed to isolate CTCs from healthy cells in biofluids. Here, we demonstrated that DSP-LBM could 
serve as a useful numerical tool for such analyses.
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