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Synergistic Pd/Cu-catalyzed enantioselective
Csp2–F bond alkylation of fluoro-1,3-dienes
with aldimine esters
Huimin Yu1, Qinglong Zhang1 & Weiwei Zi 1,2✉

Due to high bond dissociation energies of Csp2–F bonds, using fluorinated compounds in

Csp2–Csp3 cross-coupling is difficult. Here the authors report a protocol for enantioselective

Csp2–Csp3 coupling of dienyl fluorides with aldimine esters, enabled by synergistic copper

and palladium catalysis. This reaction represents the first example of asymmetric Csp2–Csp3

cross-coupling involving an inert Csp2–F bond and provides expeditious access to chiral

α-alkenyl α-amino acids with high enantioselectivity. Control experiments suggest that the

Csp2–F bond activation occurs through a pathway involving PdH migratory insertion and

subsequent allylic defluorination, rather than by direct oxidative addition of the Csp2–F

bond to Pd(0). The detailed mechanism is further investigated by DFT calculation and the

enantioselectivity is rationalized.
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Transition-metal-catalyzed enantioselective cross-coupling
reactions between Csp2–X compounds (X= halogen) and
enolizable carbonyl compounds are commonly used

transformations for asymmetric construction Csp2–Csp3 bonds1–7.
Many successful examples of this method have been reported,
including pioneering work by the research groups of Ma1,
Hartwig2, and Buchwald3,6, who used chiral-ligand-bearing tran-
sition metals such as Cu and Pd to achieve enantiocontrol (Fig. 1a).
These reactions initiated with oxidative addition of Csp2–X bond to
the Pd(0) or Cu(I), followed by ligand exchange and reductive
elimination to form the Csp2–Csp3 bond. Halogenated compounds
with Csp2–I, Csp2–Br, and even Csp2–Cl bonds are suitable reac-
tion substrates. However, because Csp2–F bonds have high energies
(120–129 kcal/mol for olefinic C–F bonds), fluorinated compounds
have rarely been used as coupling partners8–15.

Recently, C–F activation has been an important research topic in
synthetic organic chemistry16–20. One of the most successful stra-
tegies in this area is using transition-metal-mediated or -catalyzed
metal-Nu insertion/β–F elimination process21. Trifluoro-, difluor-
oalkenes have been intensively investigated for this purpose during
the past few years22–30; however, monofluoroalkenes are rarely
explored class of compounds for similar C–F activation reactions
(Fig. 1b). Moreover, despite those achievements in defluorinative
carbon–carbon and carbon–heteroatom bond formation, enantio-
selective variants have seldom been realized. We envisioned that if
an ingenious insertion/β–F elimination mechanism was designed
together with a suitable chiral induction strategy, the aforemen-
tioned challenged defluorinative Csp2–Csp3 coupling might be
achieved.

In this work, we report a Cu/Pd cooperative system31 for
enantioselective Csp2–Csp3 cross-coupling between dienyl fluor-
ides and aldimine esters (Fig. 1c). Experimental and computa-
tional studies revealed that this reaction involved a unique Pd-H
insertion/allylic defluorination process. This work not only
represents the first example of enantioselective defluorinative
Csp2–Csp3 coupling but also provides a highly efficient catalytic
method to prepare chiral α-alkenyl α-amino acids (α-AAs), which

are important synthetic targets32–36 because of their potential
biochemical and pharmacological activities37.

Results and discussion
Reaction development. Our studies begin with investigating the
reaction of dienyl fluoride E-1a with aldimine ester38–40 2a to
generate α-alkenyl, α-methyl α-AA 3aa. Using the stereocontrol
exhibited by Cu-azomethine ylides in two-metal catalytic
systems41–43, we designed a synergistic Pd/Cu catalyst system44–55

for controlling the stereochemistry of the newly formed chiral
center by means of an appropriate combination of ligands on the
two metals during the coupling step (Table 1). First, we tested
Phosferrox Cu complex L1-Cu with Pd catalysts bearing a
bisphosphine ligand (dppe, dppp, Xantphos, or DPEphos;
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Fig. 1 Transition-metal-catalyzed asymmetric Csp2–Csp3 cross-coupling reactions. a Enantioselective Csp2–Csp3 cross-coupling of Csp2–I (Br, Cl) Bonds.
b C–F bond Activation by Nu-M Insertion/β-fluorine elimination. c This work: C–F bond activation by Pd-H insertion/allylic defluorination for Csp2–Csp3

cross-coupling.

Table 1 Optimization of catalyst system for the cross-
coupling reaction.

Entrya Pd catalyst Cu catalyst Yield [%]b ee [%]c

1 L4-Pd L1-Cu <5 n.d.
2 L5-Pd L1-Cu <5 n.d.
3 L6-Pd L1-Cu <5 n.d.
4 L7-Pd L1-Cu <5 n.d.
5 L8-Pd L1-Cu 53 96
6 L9-Pd L1-Cu 50 98
7 L10-Pd L1-Cu 73 99
8 L11-Pd L1-Cu 87 96
9 L11-Pd L2-Cu 75 98
10 L11-Pd L3-Cu 86 99
11 ent-L11-Pd L3-Cu 82 93
12 L11-Pd — n.r. n.d.
13 — L3-Cu n.r. n.d.

n.d. not determined, n.r. no reaction.
aReaction conditions: (i) 1a (0.2 mmol), 2a (0.1 mmol), Pd catalyst (4 mol%), Cu catalyst (5 mol
%), Et3N (200mol%), THF (0.5 mL), 30 °C, 24 h; (ii) citric acid (10 wt%, 4 mL).
bIsolated yields are provided.
cThe ee values were determined by HPLC using a column with a chiral stationary phase.
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L4-Pd–L7-Pd, respectively) and found that none of these combi-
nations catalyzed the desired reaction (entries 1–4). In contrast,
BINAP-ligated catalyst L8-Pd afforded 3aa in 53% yield with 96%
ee (entry 5). SEGPHOS- and Biphep-derived catalysts (L9-Pd–L11-
Pd, entries 6–8) were also examined, and L11-Pd gave the best
yield of the product. Subsequent tests of L11-Pd in combination
with other Cu catalysts (L2-Cu and L3-Cu, entries 9 and 10)
revealed that L11-Pd/L3-Cu gave the best results (86% yield, 99%
ee). A slight decrease in enantioselectivity was observed when the
opposite enantiomer of the Pd catalyst (ent-L11-Pd) was used
together with L3-Cu (entry 11). This result implies the enantios-
electivity was mainly controlled by the chiral Cu catalyst but
the mismatched chirality between the two catalysts was slightly
deleterious to the enantiocontrol.

Substrate scope. Having developed an effective dual-metal cata-
lyst system, we investigated the substrate scope of the reaction,
starting with dienyl fluorides 1 bearing various R1 and R2 sub-
stituents (Fig. 2). Phenyl rings with a methyl group (3ba, 3ca), a
fluorine atom (3da–3fa), a chlorine atom (3ga), a trifluoromethyl
group (3 ha), or a methoxy group (3ia) were well tolerated,
regardless of the location of the substituent, affording the
corresponding coupling products in 71–87% yields with

enantioselectivities exceeding 98% ee. Replacing the phenyl ring
with a different aromatic ring—naphthyl (3ja), furyl (3ka),
thiophenyl (3la), or indolyl (3ma)—had little influence on the
reaction outcome, the corresponding α-alkenyl, α-alkyl α-AAs
were obtained with excellent enantioselectivities. An alkyl-
substituted substrate (R1= cyclohexyl) furnished 3na in 63%
yield, albeit with a reduced ee (94%). Even though allylic ethers
are commonly sensitive to Pd owing to the possibility of C–O
bond cleavage, a substrate with an allylic BnO ether moiety was
well tolerated in this reaction system, giving 3oa in 60% yield with
99% ee. A 1,4-disubstituted dienyl fluoride (R1= Ph, R2=Me)
was also investigated, which afforded the desired product 3pa
in 50% yield with >99% ee. To determine the stereochemistry of
the product, we converted 3aa to its p-toluenesulfonamide
derivative and confirmed its structure by means of X-ray crys-
tallographic analysis, which allowed us to assign the absolute
configuration as 2 S.

Next, we probed the scope of aldimine esters substrate (Fig. 3).
When R4 was methyl, R3 could be Et (3ab), nBu (3ac), or
phenylethyl (3ad). Heteroatom-tethered alkyl chains were also
well-tolerated, as indicated by the formation of coupling products
3ae–3ag in moderate to good yields with good enantioselectivities.
In addition, we investigated compounds with various alkyl R4
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Fig. 2 Substrate scope with respect to the dienyl fluorides. Reaction conditions: (i) 1a (0.4 mmol), 2a (0.2 mmol), L11-Pd (4 mol%), L3-Cu (5 mol%),
Et3N (200mol%), THF (0.5 mL), 30 °C, 24 h; (ii) citric acid (10 wt%, 4mL). Isolated yields are provided. The ee values were determined by HPLC on a
column with a chiral stationary phase. aL11-Pd (8 mol%), L3-Cu (10mol%), THF (0.2 mL), 40 °C, 120 h.
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groups (3ah–3aj), revealing that the reaction was not sensitive to
the steric bulk of the ester. An aldimine ester derived from glutamic
acid also reacted smoothly but gave lactam 3ak in 58% yield
with 92% ee, as a result of cyclization during the acidic workup.
α-Amino-γ-butyrolactone derived imine underwent reaction with

1a to give 3al in moderate yield. In addition to aldimine ester, cyclic
ketimine ester and oxazoline ester were also compatible reaction
partners. As shown in the formation of 3am and 3an, both the
yields and enantioselectivities were well maintained for these types
of nucleophiles. Phenylalanine derived aldimine ester 2o failed to
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undergo this transformation due to the steric bulk, and substrate 2p
bearing allyl group only gave complexed products, probably
because the isomerization of the terminal olefin moiety.

Synthetic application. The reaction was scaled up to more than
one mmol scale with a reduced catalyst loading [L11-Pd (2 mol%)
and L3-Cu (2.5 mol%)] and the yield and enantioselectivity were
well maintained (Fig. 4a). To demonstrate the utility of the
reaction, the coupling products were transformed to other chiral
scaffolds. Protection (S)-3aa with p-tolylsulfonyl group gave
(S)-4aa, and the latter was treatment with NBS/Na2CO3 in
acetonitrile to elaborate the bromoamination product 5aa in 75%
yield (Fig. 4b). The internal alkene moiety of (S)-4aa could be
selectively cleaved with K2Os(OH)4/NMO, followed by NaIO4,
affording aldehyde (S)-6aa in 86% yield (Fig. 4c). Moreover,

protection the amine of (S)-3oa with benzoyl group gave (S)-4oa,
which was further subjected to sequential dihydroxylation/lacto-
nization conditions to furnish densely functionalized lactone 5oa
with good diastereoselectivity (Fig. 4d).

Mechanistic studies. To gain insight into the mechanism, we
carried out some control experiments. We found that reactions of
both >20:1 and 1:1 E/Z-1a gave >20:1 E/Z-3aa with essentially
identical yields and ee values (Fig. 5a). On the other hand, when
1a with the E/Z ratio of 1:1.1 was subjected to the reaction, the
absolute amount of the Z-1a and E-1a was monitored (Fig. 5b).
Interestingly, the concentration of Z-1a and E-1a are both
decreased during the reaction; however, the E-1a has a faster
consumption rate than Z-1a did. Most importantly, an inflection
point appeared around 5 h in the E-1a consumption curve. These
results indicate a possibility that E-1a preferentially reacted under
the optimized conditions at the early stage, and Z-1a gradually
isomerized to E-1a. In addition, when dienyl bromide 4a or
dienyl chloride 4b was subjected to the reaction conditions,
almost none of the coupling product (3aa) was observed (Fig. 5c).
Consequently, we reasoned that direct oxidative addition of the
Csp2–F bond to Pd(0) was probably not involved in the reaction
pathway56,57. Finally, the reaction between 1a and deuterium-
labeled 2a resulted in the incorporation of a total 30% of the
deuterium at the terminal carbon of the double bond in the
coupling product (Fig. 5d). As a result, we speculated that a Pd–D
insertion process might be involved in the reaction, which would
lead to deuterium enriching at the terminus of the alkenes58.

Based on the above-described results, as well as our previous
studies59,60 on synergistic Pd/Cu-catalyzed coupling reactions of
aldimine esters with unsaturated compounds, we proposed that
this coupling reaction proceeds based on a mechanism involving
the Cu and PdH cycles shown in Fig. 6. In the Cu catalytic cycle, Cu
acts as a Lewis acid to activate aldimine ester 2a to form metallated
azomethine ylide II, which serves as a nucleophile in the coupling
reaction. Allylation of II with pre-palladium catalyst L11-Pd forms
the L11-Pd(0), which then undergoes oxidative addition with
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Et3NH+ to generate the PdH catalyst (Fig. 6a). In the PdH catalytic
cycle (Fig. 6b), PdHmigratory insertion into the C=C bond of the
vinyl fluoride moiety of E-1a generates fluorinated Pd-allyl III61–64.
An allylic substitution reaction between III and metallated
azomethine ylide II affords Pd intermediate IV and regenerates
the Cu catalyst. Intermediate IV undergoes rapid allylic defluor-
ination, giving allyl-Pd V, which is converted to VI via β-H
elimination. Product 3aa dissociates from VI, and the PdH
regenerated65–67. For Z-1a, the anti-anti η3-Pd-allyl VII is generated
after PdH migratory insertion, which equilibrates to thermodyna-
mically more stable syn-anti η3-Pd-allyl III through η3-η1-η3

isomerization (Fig. 6c). Therefore Z-1a would then undertake the
same catalytic cycle to form the same E-type product 3aa. This
proposed mechanism was highly consistent with the controlled
experiments in Fig. 3. Moreover, we observed a [M+H]+ signal at
252.1393 in the HRMS spectrum of the reaction mixtures. This result
indicates the formation of IX, which comes from the dissociation of
Pd(0) from intermediate IV (Fig. 6d).

Computational studies. To further understand the mechanism,
we performed DFT calculation to investigate the energy profile of
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this reaction. Stoichiometric reaction of L3-Cu and substrate 2a
with DBU, only one isomeric Cu-azomethine ylide was formed, as
indicated by a single 31P NMR signal at −16.09 (Fig. 7). The
structures of Cu-azomethine ylide featuring a (R)- or (S)- metal
chirality were calculated and we found the former is 2.9 kcal/mol
stable than the latter. Therefore, we rationalized that Cu(R)-Nu
rather than Cu(S)-Nu was the form for nucleophile and therefore
its structure was adopted for the remaining DFT calculation
(Fig. 8).

As proposed in Fig. 8, the PdH was initially formed via
oxidative protonation of Pd(0) with Et3NH+. The transition state
for this step was located as TS-1, which has an energy barrier of
15.0 kcal/mol. After being coordinated by substrate 2a, the
resulting intermediate Int-2 occurs migratory insertion of the
Pd–H bond into the terminal olefin moiety to afford π-allyl-Pd
species Int-4. The energy barrier for this step is only 1.1 kcal/mol;
however, the reserved β–H elimination step requires activation
energy of 29.7 kcal/mol (Int-4→ TS-3→ Int-2). Therefore, the
Pd–H migratory insertion is not a reversible process. The
resulting Int-4 accepts nucleophilic attach from the si-face of
the metallated azomethine ylide Cu-Nu, to give C–C bond
formation intermediate Int-6. Dissociation of LCu from Int-6
affords species Int-7, which then undergoes allylic defluorination.
The direct nucleophilic displacement/ionization mechanism for
the defluorination transition state (TS-8A) has a high energy
barrier of 28.0 kcal/mol. But a Et3NH+ mediated process, of
which the transition state was located as TS-8B, only requires an
activation barrier of 12.2 kcal/mol. The resulting Int-9 then
occurs β–H elimination step via TS-10 with an energy barrier of
27.5 kcal/mol to elaborate product (2 S)-3aa and regenerates the
PdH catalyst.

To elucidate the enantioselectivity, the approach from the re-
face of Cu-Nu during the C–C bond formation was also
calculated and the transition state is identified as TS-5-II (Fig. 9a).
Comparing the energies of TS-5 and TS-5-II, the latter is
disfavored over the former by 5.0 kcal/mol, which is in agreement
with the experimental result that (2 S)-3aa is formed with 99% ee.
In the transition state structure TS-5-II, the oxazoline ring group
on the phosferrox ligand has a very short distance away from t-Bu
groups of DTB-Biphep and which leads to significant steric
interaction between the two ligands (Fig. 9b). This repulsive
interaction likely contributes to the higher energy observed for
this competing transition state. In contrast, in the transition state
structure TS-5, the electrophile approaches from the si-face of
Cu-Nu which avoids the steric repulsion between the oxazoline
ring and t-Bu groups. Moreover, an attractive C–H ∙ ∙ ∙Ar
interaction is observed in TS-5, which also contributes to a
lower energy (Fig. 9c).

In summary, the first enantioselective defluorinative Csp2–Csp3

cross-coupling was achieved by means of synergistic Cu/Pd-
catalyzed asymmetric coupling between aldimine esters and dienyl
fluorides. This reaction has a wide substrate scope and shows
good to excellent enantioselectivities and it provide an efficient
catalytic method for preparing chiral α-vinyl, α-alkyl α-amino acid
derivatives. Both experimental and computational studies revealed
that the reaction is initiated by a PdH migratory insertion, which
is followed by nucleophilic allylic substitution by a Cu-azomethine
ylide to form the C–C bond. Then a Pd/Et3NH+-mediated
allylic defluorination undergoes, subsequently followed by a β–H
elimination to elaborate the coupling product and regenerate the
PdH catalyst.

Methods
General procedure for coupling of dienyl flurides and aldimine esters. In glove
box, Cu(MeCN)4PF6 (3.7 mg, 0.01 mmol, 5 mol%) and chiral ligand (S,Sp)-L3
(5.3 mg, 0.011 mmol, 5.5 mol%) were dissolved in dry THF (0.4 M, 0.5 mL) and

stirred at room temperature for 0.5 h. To the solution, substrate aldimine esters 2
(0.2 mmol), Et3N (0.4 mmol), dienes 1 (0.4 mmol) and palladium catalyst L11-Pd
(10.1 mg, 0.008 mmol, 4 mol%) were added sequentially. The reaction mixture was
stirred at 30 °C for 24 h. To the reaction mixture was added citric acid solution
(4 mL, 10 wt%) and the mixture was stirred for 2 h. The mixture was neutralized
with solid K2CO3 and extracted with EtOAc (10 mL × 3). The combined extracts
were dried over MgSO4 and concentrated in vacuo to afford a residue. The residue
was then purified by SiO2 column chromatography to give the desired product.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information Files as well as from the
corresponding author on request. The Cartesian coordinates for the calculated structures
are available within the Supplementary Data 1. The X-ray crystallographic coordinates
for structure reported in this study have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2036502 (p-
toluenesulfonamide derivative of 3aa). These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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