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In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In
combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts
of oxidative stress for the decline of kidney function and development of cardiovascular complications. We discuss the impact
of mitochondrial alterations and dysfunction, a pathogenic role for hyperuricemia, and disturbances of vitamin D metabolism
and signal transduction. Recent antioxidant therapy options including the use of vitamin D and pharmacologic therapies for
hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents
(noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies.

1. Introduction

In chronic kidney disease both chronic and recurring acute
inflammation are frequent. Underlying diseases, like autoim-
mune diseases, medication, uremic toxins, infections, and
hemodialysis therapy are causal. The immune cells involved
in those inflammatory processes produce free radicals in
form of reactive nitrogen and reactive oxygen species. Over-
all, an imbalance between those free radicals and the available
antioxidant capacity exists in chronic kidney disease (for
review see Small et al., 2012, and Tucker et al., 2015, [1,
2]). Chronic kidney disease (CKD) denotes the presence of
structural and/or functional abnormalities of the kidneys,
with or without a reduction in glomerular filtration rate,
with implications for health, lasting for more than three
months [3]. The global prevalence of CKD in adults over
20 years of age was around 10% in men and 12% in women
in a recent analysis [4]. The causes underlying CKD in a
given population differ depending on ethnicity, region [5, 6],

and age [7]. In children, congenital and hereditary disorders
predominate. To this group belong cystic kidney diseases and
obstructive uropathy. In adults, for example, in the United
States the leading causes for CKD resulting in end-stage renal
disease are diabetic nephropathy (type 2 diabetes mellitus
accounts for around 30%, type 1 for around 6%), vascu-
lar diseases (like hypertension and ischemic renal disease)
accounting for around 25%, glomerular diseases (including
focal segmental glomerulosclerosis) accounting for around
18%, renal carcinoma, cystic diseases and tubulointerstitial
disease [8].

CKD is characterized by a gradual loss of kidney function.
It progresses through an initial lesion, the occurrence of
repair mechanisms in which nephrons are lost, and the
increase of activity of remaining nephrons that may be detri-
mental for nephron function. This disturbance frequently
shows a pattern characterized by reduced glomerular filtra-
tion, disturbed salt and water balance, and loss of endocrine
functions [9]. The development of fibrosis in the glomeruli
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and in the tubulointerstitial space is considered as common
pathological alteration in CKD [10].

CKD is significantly linked to premature cardiovascular
disease development. At the same time, cardiovascular dis-
ease (CVD) is the most common cause of death in CKD [11–
13].

Underlying mechanisms comprise traditional cardiovas-
cular risk factors that are common also in CKD patients
like advanced age, hypertension, and diabetes mellitus. But
since those traditional risk factors do not sufficiently account
for the high cardiovascular risk in CKD CKD-associated
risk factors have received much attention. The latter include
malnutrition, inflammation, uremic toxins, proteinuria, bone
and mineral metabolism abnormalities, persistent neurohor-
monal activation, and oxidative stress [14–16]. Currently, the
following oxidative stress related mechanisms are thought
to be especially important for the pathogenesis of CVD
in CKD: protein-bound uremic toxins initiating oxidative
stress-inflammation-fibrosis processes [16, 17], advanced gly-
cation end products resulting in receptor-mediated and
receptor-independent increase of oxidative stress, inflam-
mation and vascular damage [18], chronic activation of the
renin-angiotensin-aldosterone and sympathetic nervous sys-
tem resulting in, also, oxidative stress-inflammation-fibrosis
processes [19], and activation of the innate immune sys-
tem leading to microinflammation and vascular dysfunction
[20]. Mitochondrial dysfunction, causing increased oxidative
stress and ATP depletion, is gaining attention in CKD and is
discussed more in depth further down in this review.

Systemic oxidative stress is proposed to play a central
role not only in the pathogenesis of CVD but also in
kidney function decline and premature aging in CKD. Recent
excellent reviews provided detailed overview over the current
knowledge about the underlying molecular mechanisms
and possible therapeutic interventions [21–23]. Especially in
end-stage renal disease evidence-based therapeutic strate-
gies to improve survival are limited (for review see [24]).
The latest Cochrane review about “antioxidants for chronic
kidney disease” in 2012 stated that “antioxidant therapy in
CKD does not reduce the risk of cardiovascular and all-
cause death” but “it is possible that some benefit may be
present, particularly in those on dialysis” [25]. Antioxidant
interventions in CKD, employing either antioxidant sub-
stances, substances that possess antioxidant effects among
their mechanisms of action, or lifestyle interventions have
been reviewed in depths recently: bardoxolone methyl [26],
N-acetylcysteine [27, 28], vitamin E [27, 29], statins [30],
renin-angiotensin-aldosterone system interventions [19, 31],
interventions targeting gut-derived endotoxins and uremic
toxins [16, 32, 33], and exercise training [34]. Selected
substances and interventions with mechanistic and clinical
information are given as supplementarymaterial (see Supple-
mentary Table 1 in SupplementaryMaterial available online at
http://dx.doi.org/10.1155/2016/6043601).

Nevertheless, the causal connection of oxidative stress
to the genesis of cardiovascular disease in chronic kidney
disease has also been controversially discussed [35, 36].Those
discussions were based on the one hand on the inconclusive
results concerning the connection between supposed

markers of oxidative stress and cardiovascular events and
mortality in clinical studies [35, 36]. On the other hand,
the up to date limited success of antioxidant therapies
on cardiovascular outcomes in CKD patients but also in
other populations demands a more differentiated view on
oxidative stress-related pathogenic concepts and asks for
new therapeutic approaches [37].

Our review therefore focuses on selected recent aspects
in the discussion of pathogenic concepts and therapeutic
approaches to oxidative stress in chronic kidney disease.

2. Mitochondrial Alterations in Chronic
Kidney Injury and CKD

2.1. Mitochondrial Alterations in Chronic Kidney Injury.
Reactive oxygen species (ROS) production has been clearly
associated with the development of CKD and mitochon-
dria are among the major ROS sources in renal diseases
(reviewed in [38]). In fact, it has been found in several
studies that oxidative stress in CKD patients enhances as
the disease progresses [39–41]. Mitochondria are important
in mammalian cells since these organelles supply all the
necessary biological energy derived from the breakdown
of carbohydrates and fatty acids, which is converted to
adenosine triphosphate (ATP) via the process of oxidative
phosphorylation. However, mitochondria also participate in
cellular mechanisms associated with cell damage and cell
death signaling [42–44]. The high energy demands of the
kidney and other organs as brain and heart depend heavily
on functional mitochondria. The kidney cells, particularly
the mitochondria-rich proximal tubule epithelial cells, have
high ATP requirements to facilitate active reabsorption of
macromolecules [45–47]. About 80% of the oxygen con-
sumed for ATP production supports active sodium trans-
port while the basal metabolic rate accounts for only 15–
20% of the oxygen consumption rate [48]. Mitochondrial
content is closely regulated by mitochondrial biogenesis (the
increase in the number of preexisting mitochondria) and
mitophagy (the removal of damaged or dysfunctional mito-
chondria through autophagy). Both processes act tomaintain
mitochondrial homeostasis since mitochondrial biogenesis
increases net mitochondrial mass to preserve mitochondrial
functions by compensating for loss of damagedmitochondria
by mitophagy [49–51]. Although mitochondria have their
own DNA (mtDNA) most of the proteins that localize in
mitochondrial membranes are nuclear gene products. Mito-
chondrial biogenesis involves the coordinated participation
and expression of the genes localized in mitochondria and
nuclei. Nuclear respiratory factors 1 and 2 (NRF1 and NRF2)
are nuclear-encoded transcription factors that act on the
nuclear genes coding for constituent subunits of the oxidative
phosphorylation system and also regulate the expression of
many other genes involved in mtDNA replication [52].

Peroxisome proliferator-activated receptor gamma
(PPAR𝛾) coactivator-1 alpha (PGC-1𝛼) is a nuclear-encoded
transcriptional coactivator that regulates the expression of
nuclear-encoded mitochondrial proteins, including NRF1
and NRF2 [51, 53]. PGC-1𝛼 is predominantly expressed
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Table 1: Markers used to evaluate mitochondrial biogenesis, mitochondrial dynamics, and mitophagy.

Mechanism Marker Function (site)

Mitochondrial
biogenesis

Subunit 1 of mitochondrial NADH dehydrogenase
mitochondrial (MT-ND1).

Subunit of NADH dehydrogenase (mitochondrial inner
membrane).

Mitochondrial transcription factor A (TFAM). Activator of mitochondrial transcription
(mitochondria).

Nuclear respiratory factors 1 and 2 (NRF1, NRF2) and
estrogen receptor alpha (ERR𝛼).

Transcription factors for mitochondrial biogenesis
(nuclei).

Peroxisome proliferator-activated receptor gamma,
coactivator 1 alpha (beta) (PGC1𝛼, PGC1𝛽).

Transcriptional coactivator that regulates the genes
involved in mitochondrial biogenesis (nuclei).

Mitochondrial
dynamics

Dynamin related protein 1 (Drp-1).
Mitochondrial fission protein 1 (Fis1). Mitochondrial fission.

Sirtuin 3 (SIRT3). Decreases mitochondrial fission.
Optic atrophy 1 protein (OPA1).
Mitofusin-1 (Mfn1) protein.
Mitofusin-2 (Mfn2) protein.

Mitochondrial fusion.

Mitophagy

Pten-induced kinase 1 (PINK1). PINK1 activity causes the parkin protein to bind to
depolarized mitochondria to induce autophagy.

Parkin protein. Mediates the targeting of proteins for degradation.
Mitochondrial E3. Ubiquitin ligase 1 (Mul1). Activator of mitophagy.
FoxO1/FoxO3 transcription factors. Activators of mitophagy.

in proximal tubules, indicating the effectiveness of PGC-
1𝛼 in proximal tubular homeostasis [54]. Enforced over-
expression of PGC-1𝛼 in cultured proximal tubular cells
increased mitochondrial number, respiratory capacity, ATP
concentration, and mitochondrial proteins [55].

Autophagy, derived from the Greek word meaning “self-
eating,” is a catabolic pathway involving the degradation
of cellular components by the hydrolases of lysosomes to
maintain homeostasis and cell integrity [56, 57]. Dysreg-
ulated autophagy has been linked to many human patho-
physiologies. Accumulating body of evidence implicates that
autophagy regulates many critical aspects of normal and
disease conditions in the kidney [44, 58].

Imbalance between mitochondrial biogenesis and the
mitophagy process results in progressive development of
numerous pathologic conditions associated with mitochon-
drial dysfunction characterized by the increase of mitochon-
drial ROS production, mitochondrial permeability transition
(MPT) pore opening, and apoptosis [44, 59, 60].

It has been widely demonstrated that mitochondrial mor-
phology plays an important role in cellular functions and that
it is affected by the occurrence and rates of fission and fusion
events [61]. Fission is the division of mitochondria within
a cell to form separate mitochondrial compartments, while
fusion is the merging of two or more mitochondria to form
a single compartment. Dynamin-related protein (Drp-1) and
mitochondrial fission protein 1 (Fis1) promote mitochondrial
fission to create new mitochondria and to remove damaged
mitochondria when cells are under stress [62, 63]. Mitochon-
drial fusion involves fusion of both the outer mitochondrial
membrane and inner mitochondrial membrane, a process
depending on mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and
OPA1 (a dynamin-related protein with GTPase activity) [64].
It has been observed that defects in these proteins are closely

related with alterations in both mitochondrial function and
shape and as a consequence are associated with human
diseases. For example, loss of function withMfn2mutation is
related to Charcot-Marie-Tooth disease type 2A while OPA1
mutation is related to optic atrophy [65]. Until recently it
has been appreciated that the equilibrium between fission
and fusion events is important for mitochondrial function
and distribution and, therefore, is pivotal for cell survival
and health of the organism. Disturbances on this balance
have a fundamental role in mitochondrial fragmentation and
dysfunction [44, 65] and have been involved in a number
of biological processes including cell division, apoptosis,
autophagy, and metabolism. During cell injury, the equilib-
riumbetweenmitochondrial fusion and fission shifts tomito-
chondrial fission and mitochondrial fragmentation occurs.
This results in alterations in mitochondrial structure and
morphology [66].These changes might thereby contribute to
kidney disease [67, 68]. Table 1 shows a list of markers used to
evaluate mitochondrial biogenesis, mitochondrial dynamics
(fission and fusion), and mitophagy.

2.2. Mitochondrial Alterations in CKD. Kidney cells contain
abundant mitochondria, therefore mitochondrial dysfunc-
tion has a fundamental role in the development of kidney
diseases. Many reports indicate the role of mitochondria in
progression of CKD (reviewed in [69]). In the rat model
of 5/6 nephrectomy Nath et al. [70] reported an increase
in the rate of oxygen consumption in surviving nephrons
and Fedorova et al. [71] observed in renal cortex of the
same model a decrease in the expression in medium-chain
acyl-coenzyme A dehydrogenase (MCAD) and cytochrome
c oxidase subunit IV (COXIV) proteins as well as in the copy
number ofmtDNA. Sun et al. [72], using electronmicroscopy
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and confocal microscopy, reported alterations in mitochon-
drial structure andmitochondrial fragmentation in apoptotic
tubular cells in kidneys from diabetic mice. Additionally,
they reported cytochrome c release associated with apoptotic
processes in tubular cells exposed to high glucose. These
data reveal an association between mitochondrial dynamics
and apoptosis in the progression of diabetic nephropathy. In
fact, it is well known that oxidative stress induces apoptosis,
a key process for the loss of functional tissue in CKD
(reviewed in [1]). In this context, Daehn et al. [73] showed
that apoptosis of podocytes in mice with glomeruloesclerosis
secondary to adriamycin was associated with mitochondrial
oxidative stress. Scavenging of ROS-derived mitochondria
was able to protect podocytes and prevent renal failure and
glomerulosclerosis. Furthermore, Chen et al. [74] showed
that the protective effect of the antifibrotic drug pirfenidone
of tubulointerstitial damage in 5/6 nephrectomized rats was
associated with prevention of mitochondrial damage and
with the decrease in tubular cell apoptosis and oxidative
stress.

On the other hand, Wang et al. [75] found mitochondrial
fission and fragmentation in renal cells in a conditional gene
knock-out and knock-in mouse model in response to Drp-
1 phosphorylation and activation by Rho-associated coiled
coil-containing protein kinase 1 (ROCK1). Mitochondrial
cytopathies (MC) are inherited mtDNA or nuclear DNA
(nDNA) mutations in genes that affect mitochondrial func-
tions. A single cell contains hundreds of mtDNA copies and,
therefore, as a consequence of fission and fusion processes,
the normal mtDNA may mix with mutant mtDNA. When
the amount of mutant mtDNA copies surpasses the basal
level a cell dysfunction occurs [69]. These alterations in
kidneys result in focal segmental glomerular sclerosis (FSGS),
tubular defects [69], cystic kidney disease [76–78], and renal
carcinoma [79, 80].

Genetic defects connected to renal diseases include
tRNA-LEU mutations (e.g., 3,243 A>G point mutation). So,
in coenzyme Q10 (CoQ10) deficiency mutations of COQ1-
PDSS2, COQ2, COQ6, and COQ9 have been reported. For
impaired complex III assembly a mutation in BCS1L has
been described and also a mutation in COX10 was reported
leading to complex IV inactivation [69]. Mitochondria are
also involved in epithelial to mesenchymal transition of
renal tubular epithelial cells, a phenotypic conversion that
contributes to the pathogenesis of renal interstitial fibrosis
[69, 81]. Renal biopsies frompatients showing simultaneously
mitochondrial myopathy, encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS) syndrome and FSGS often
show dysmorphicmitochondria in podocytes (epithelial cells
with interdigitated foot processes that surround the glomeru-
lar capillaries) and effacement of podocyte foot processes.

Based on the fact that mtDNA mutations in podocytes
were associated with FSGS in two children, Güçer et al. [82]
postulated that podocytes with atypical mitochondria have
a role in the development of glomerular diseases. FSGS is
associated with genetic alterations and is characterized by
alteredmitochondria in podocytes and podocytes effacement
[69]. Studies in mice subjected to aldosterone-induced renal
injury show a decrease in mtDNA copy number, loss of

mitochondrial membrane potential (Δ𝜓m), drop of ATP
production, and oxidative stress [83, 84]. These changes
occur before proteinuria and podocyte process fusion can
be observed. Podocyte foot process effacement also has been
observed under high glucose conditions, probably through
phosphorylation of Drp-1 by ROCK1 [75]. Mitochondrial
alterations are also observed in arteriolar hyalinosis [85] as
well as in steroid-resistant nephrotic syndrome [86]. So, it
is clear that alterations in mtDNA may induce alterations in
microvasculature and in podocytes, which are fatal insults to
the kidney. Studies in peripheral blood mononuclear cells of
CKD patients receiving peritoneal dialysis show decreased
expression of NRF1 and PGC1-𝛼 and of several PGC1-𝛼
downstream target genes as mitochondrial transcription fac-
tor A (TFAM), cytochrome c oxidase subunit 6C (COX6C),
cytochrome c oxidase subunit 7C (COX7C), mitochondrial
Hinge protein ubiquinol-cytochromeC reductaseHinge gene
(UQCRH), and MCAD [87]. In addition, Dugan et al. [88]
found decreased protein and mRNA levels of PGC1𝛼 in kid-
neys of diabetic mice, which were prevented by the treatment
ofmicewith the adenosinemonophosphate-activated protein
kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-
1-𝛽-D-ribofuranoside (AICAR). Moreover, Granata et al.
[89] reported an increase in ROS production, DNA oxida-
tive damage and mitochondrial cytochrome c oxidase sub-
unit 1 (COX1) expression, upregulation of 11 genes related
to the oxidative phosphorylation system (ATP50, ATP51,
and ATP5J: components of the ATP synthase complex V,
NDUFS5, NDUFA6, NDUFA1, and NDUFB1: subunits of
mitochondrial complex I, COX6C/COX7C: subunits ofmito-
chondrial complex IV, and UQCRH and UQCRB: subunits
of mitochondrial complex III), and a decrease in complex
IV activity in peripheral blood mononuclear cells of CKD
patients receiving hemodialysis. Granata et al. [89] concluded
that CKD patients receiving hemodialysis had an impaired
mitochondrial respiratory system.

The mitochondrial function at different stages of CKD
remains to be fully studied. It has been found that, at early
stages of 5/6 nephrectomy (24 h), renal dysfunction and
mitochondrial oxidative stress are associated with decreased
mitochondrial adenosine diphosphate induced respiration
and low activity of respiratory complexes I and V. The mito-
chondrial alterations were prevented by the administration of
the antioxidant curcumin [Aparicio-Trejo et al., manuscript
submitted]. In contrast, it has been found on day 30 after
5/6 nephrectomy that renal mitochondrial bioenergetics
was unaltered [90]. These data suggest that mitochondrial
alterations are not similar along the development of CKD.

Many evidences indicate that mitochondrial dysfunction
may be involved in the pathophysiology of kidney diseases
although the mechanism responsible for the changes of
mitochondrial dynamics under disease conditions is largely
unknown. Future experiments should be directed to unravel
these mechanisms as well as to design strategies to atten-
uate renal diseases using as a target the attenuation of
mitochondrial alterations [91]. In addition, more studies are
needed to evaluate the time-course changes of mitochondrial
parameters along the development of CKD to establish the
kinetic of these changes.
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Figure 1: Integrative scheme of the mechanisms that cause kidney
and heart damage secondary to mitochondrial dysfunction. Mito-
chondrial dysfunction represented by mitochondrial permeability
transition pore opening, mitochondrial uncoupling/fragmentation,
mitochondrial membrane potential loss, cytochrome C release, and
decreased ATP synthesis, among other mitochondrial alterations,
causes oxidative stress that leads to inflammatory state. Both
conditions result in renal and cardiac damage that often occurs
at the same time and establishes a intercommunication through
hemodynamic and nonhemodynamic mechanisms.

2.3. Cardiovascular Disease, Oxidative Stress, and Mitochon-
drial Deregulation. Mitochondrial alterations also have been
found in hearts when renal function declines (Figure 1).
Using an experimental model of cardiorenal syndrome,
Sumida et al. [92] reported mitochondrial fragmentation,
increased dynamin-related protein 1 (DRP-1) expression,
apoptosis, and cardiomyocyte dysfunction in hearts of mice
subjected to bilateral renal ischemia reperfusion. The inhibi-
tion of DRP-1 attenuated significantly the changes observed
in the heart. The study of Hernández-Reséndiz et al. [93]
is another example of interrelation between kidney and
heart. Rats with 5/6 nephrectomy exhibited elevated systolic
blood pressure, proteinuria, cardiac dysfunction, oxidative
stress, activation of apoptotic mitochondrial pathway, and
alterations in cardiac mitochondrial integrity (inability to
retain calcium and fall in transmembrane potential). All these
cardiac, systemic, and mitochondrial alterations were pre-
vented by the administration of curcumin. Moreover, Taylor
et al. [94] also demonstrated a cross-talk between the kidneys
and the heart using the 5/6 nephrectomy model in rats. They
found that state 4 respiration was enhanced. In addition,
after ischemia reperfusion uremic mitochondria showed a
significant increase in state 4 respiration and reduction in
respiratory control ratio and uremic cardiomyocytes were
more vulnerable to H

2
O
2
-induced stress.

3. Hyperuricemia, Oxidative Stress, and CKD

Uric acid is the product of purine metabolism in primates
including man and is an essential antioxidant for these
organisms, for they have lost uricase activity during evolu-
tion. It has been suggested that this particular antioxidant
system could have replaced the lost capability for vitamin
C synthesis, therefore, allowing humans to evolve as uric

acid increased longevity [95] and provided neuroprotection
[96]. Due to the similarity of uric acid to the caffeine
molecule, that characteristic also enabled it to act as a mental
stimulant [97], therefore, providing an advantage for the
development of human intelligence. Another benefit of an
increased concentration of uric acid in humans is that it
stimulates the activity of the renin-angiotensin system. This
effect facilitated the maintenance of blood pressure during
the evolution to bipedalism under the low sodium diets,
prevalent during human evolution [98]. Humans are prone
to conserve uric acid, and its renal excretion is limited to
8–10% of the filtered load. Like other antioxidants, uric
acid may assume prooxidant roles [99] and this effect could
partially explain why epidemiologic studies have associated
hyperuricemia with hypertension, metabolic syndrome, and
chronic kidney disease [100–106].

Hyperuricemia has been arbitrarily defined in men
>7mg/dL and in premenopausal women >6.5mg/dL. How-
ever, serum uric acid concentrations are greatly influenced
by diet, mainly by red meat, seafood, alcohol, and fructose
consumption. Therefore, as these dietary items became more
affordable for the general population, the concentrations
of uric acid “considered” normal have been progressively
increasing from the beginning of the twentieth century
[107].

Despite its described role as an antioxidant, the first
response to uric acid exposure is a rapidly increase in
oxidative stress in endothelial cells, proximal tubule epithelial
cells, mesangial cells, vascular smooth muscle cells, hep-
atocytes, and adipocytes [108–115]. Although the effect of
hyperuricemia on renal podocytes has not been directly
addressed it is likely that uric acid may have effects on
these cells similar to other renal cell types, such as the
activation of NALP3 inflammasome [116] and NOX-4 [117].
These studies showed that it is the uric acid which enters into
cells that is responsible for increasing intracellular oxidative
stress through a mechanism that includes the activation of
NADPH oxidase [118]. Interestingly, some of the deleteri-
ous effects induced by hyperuricemia are similar to those
associated with increased oxidative stress such as reduced
nitric oxide bioavailability and endothelial dysfunction, vas-
cular hypertrophy, and inflammation and activation of the
renin-angiotensin system [119]. The harmful effects of mild
hyperuricemia on kidney function have been documented.
Hyperuricemic nephropathy is induced in the laboratory rat
by the inhibition of liver uricase. This maneuver induced
hypertension, renal vasoconstriction, glomerular hyperten-
sion, arteriolopathy, tubulointerstitial fibrosis, and inflam-
matory infiltration. In this model, the renal and vascular
damage was mediated by soluble uric acid, in contrast to
gouty nephropathy which is mediated by uric acid crystal
deposition [120]. The role of oxidative stress as pathogenic
mechanism induced by uric acid was further documented,
for the treatment of hyperuricemic rats with an antioxidant
prevented hypertension as well as the renal functional and
structural alterations induced by hyperuricemia [117]. In
addition, deposition of uric acid crystals in proximal tubule
cells is also associated with increased oxidative stress and
activation of the NRLP3 inflammasome [116].
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Since hyperuricemia strongly correlates with other
metabolic factors (obesity, dyslipidemia, and insulin resis-
tance) its role as a true cardiovascular risk factor in healthy
individuals is still under discussion [121]. But increased
serum uric acid levels have been found to be an independent
risk factor for hypertension, diabetes, chronic kidney disease,
and congestive heart failure; moreover, hyperuricemia has a
predictive value for the development of vascular and kidney
disease in these conditions [122–125].

In CKD patients, a 6-year follow-up found that hyper-
uricemia showed a J-shaped independent association with
all-cause mortality; therefore both abnormally low and high
levels of serum uric acid increased the mortality risk [126].
Interestingly, low concentration of serum uric acid is a
consequence of malnutrition and high comorbidity burden;
this suggests that systemic oxidative stress may be a causative
factor for increasing the mortality in these patients [127].
In hyperuricemic hemodialysis patients, reduction of serum
uric acid with febuxostat decreased oxidative stress and
improved endothelial dysfunction [128].

Hyperuricemia increases as GFR declines in CKD
patients. Moreover, gout increases the risk of cardiovascular
events and all-cause mortality in hemodialysis patients [129].
Interestingly, it was shown in renal biopsies of CKD patients
that hyperuricemia was associated with vascular alterations
consistent with arteriolopathy, a lesion frequently observed
in experimental studies [130]. Nevertheless, some others have
reported nonsignificant associations between hyperuricemia
and progression of kidney disease [131, 132]. Accordingly,
there is an increasing interest in determining the efficacy
of treating hyperuricemia in CKD patients. The use of
allopurinol, febuxostat, and topiroxostat therapies decreased
serum uric acid and slowed the progression of CKD in five
small trials [133–137]. As the debate continues about the role
of uric acid as a causative factor or only a marker of renal
dysfunction [138], the need for clinical studies including a
greater number of patients is evident. In this regard, currently
a major NIH trial, including six academic centers, is ongoing
to determine if lowering uric acid with allopurinol may
provide benefit in type 1 diabetic subjects with early evidence
of renal disease (PEARL) [139].

Whether hyperuricemia could confer risk for developing
CKD in normal subjects is also a relevant issue. A recent
meta-analysis, which included more than 190,000 non-CKD
individuals, found that hyperuricemia is an independent
predictor for the new-onset of CKD [140]. In addition, the
treatment of hyperuricemia provides benefit for controlling
risk factors associated with the development of CKD. Thus,
in adolescents with early onset of essential hypertension and
obese subjects with prehypertension, allopurinol treatment
significantly reduced systolic and diastolic blood pressure
[141, 142].

In conclusion, the role of hyperuricemia as a true risk
factor for the development of CKD is still under debate. The
discussion is complicated by the fact that the noxious effects
of uric acid occur inside the cell; thus, serum uric acid might
not fully reflect this phenomenon. More studies to disclose
the impact of hyperuricemia in the pathogenesis of CKD are
warranted.

4. Antioxidant Potential of Vitamin D in
Chronic Kidney Disease

Chronic kidney disease (CKD) is accompanied by reduced
plasma concentrations of 25-dihydroxyvitamin D and 1,25-
dihydroxyvitamin D to varying extent.

Vitamin D is taken up with the diet or produced in the
skin after exposure to ultraviolet rays of sunlight [143]. In
the liver vitamin D is hydroxylated to 25-hydroxyvitamin
D probably by the cytochrome P-450 CYP2R1 [144]. A
further hydroxylation step to 1,25-dihydroxyvitamin D is
achieved through 1-alpha-hydroxylase (cytochrome P-450
27B1) activity [145]. This takes place in the kidney and in
a multitude of extrarenal cells. Renal 1,25-dihydroxyvitamin
D production mainly serves endocrine purposes like regu-
lation of bone and calcium-phosphate metabolism. Vitamin
D effects on the immune system or cell proliferation are
supposed to be mainly due to auto- and paracrine actions of
1,25-dihydroxyvitamin D produced in extrarenal cells [146].
The effects of vitamin D are mediated to a large extent
through binding to a nuclear receptor, the vitaminD receptor
[147].

Numerous groups have reported important insights about
the connection between the vitaminD receptor and oxidative
stress or oxidative damage. In their vitamin D receptor
knock-out model Kállay et al. showed that a significant
increase of oxidative DNA damage occurred with complete
loss of vitamin D receptor [148]. Aortic smooth muscle cells
from vitamin D receptor knock-out mice showed increased
NADPH oxidase-dependent superoxide anion production
[149]. Interestingly, curcumin that shows a variety of antiox-
idant effects (for review see [150]) was also shown to be a
vitamin D receptor ligand and increased the expression of
vitamin D responsive element containing genes [151, 152].

Another important molecular link between the vitamin
D system and oxidative stress or oxidative damage is the
alpha klotho protein that was originally identified to be an
antiaging factor [153]. The kidney is an important source
of circulating alpha klotho and both kidney and circulating
alpha klotho amount are reduced inCKD [154–156]. Circulat-
ing alpha klotho concentrations can be increased by vitamin
D receptor agonists through vitamin D receptor-mediated
gene expression [154, 157]. Antioxidant effects of alpha klotho
have been widely described. Alpha klotho protected lung and
lung epithelial cells through increased antioxidant capacity
while alpha klotho deficiency in acute kidney injury increased
oxidative damage to these cells due to decreased antioxidant
capacity [158, 159]. In aortic smoothmuscle cells alpha klotho
upregulated antioxidant enzymes and glutathione [160]. In
retinal pigment epithelium the production of reactive oxygen
species was reduced by alpha klotho [161]. Together, alpha
klotho and 1,25-dihydroxyvitamin D promote antioxidation
(for review see [162]).

In animal models vitamin D deficiency resulted in oxida-
tive and nitrosative stress and was suggested to enhance
contrast media nephrotoxicity by an oxidative stress-related
mechanism [163–165]. In humans with chronic hepatitis
vitamin D insufficiency was associated with increased global
oxidative stress markers [166].
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In cell and animal studies protective effects of vita-
min D against oxidative stress or oxidative damage were
reported by a multitude of research groups. In skin cells
1,25-dihydroxyvitamin D treatment was able to reduced UV-
induced DNA damage [167]. The pretreatment of human
umbilical vein endothelial cells with 1,25-dihydroxyvitamin
D significantly reduced acetoacetate-induced oxidative stress
and inhibited superoxide anion generation [168, 169]. Also,
gene ontology analysis of vitamin D receptor activation in
human vascular smooth muscle cells revealed modulation of
genes related to antioxidant activity [170].

In CKD proteinuria (>500mg/day) seems to be causally
connected to CKD progression. Alterations in kidney
podocyte function or loss of podocytes can contribute to
proteinuria. Effects of vitamin D on podocyte function were
extensively studied in cellular and animal models [171–173].
In a rat model of diabetic nephropathy Song et al. found an
amelioration of podocyte injury by calcitriol [174]. Garsen
et al. showed reduced proteinuria by 1,25-dihydroxyvitamin
D treatment connected to reduced heparanase expression in
podocytes [175]. In two animal models of kidney injury 1,25-
dihydroxyvitamin D reduced podocyte urokinase receptor
expression and proteinuria [176]. In a mouse model of
HIV-associated nephropathy a downregulation of vitamin D
receptor in renal tissue was observed, and HIV also in vitro
downregulated vitamin D receptor expression in podocytes.
In parallel, reactive oxygen species generation and DNA
damage were upregulated, effects that could be reduced by
vitamin D receptor agonist treatment [177].

Considering the abovementionedmechanisms, it is inter-
esting now to have a look at vitamin D interventions in CKD.
Several groups investigated vitamin D effects on markers of
oxidative stress or enzymes with pro- or antioxidant activity.
Most studies investigating vitamin D receptor agonist effects
were performed with paricalcitol. Husain et al. reported
that in uremic rats paricalcitol treatment reduced uremia-
induced cardiac NADPH oxidase upregulation, increased
uremia-impaired cardiac glutathione content, and improved
the uremia-dependent reduction of cardiac copper/zinc
superoxide dismutase activity [178]. Also in a uremic rat
model, paricalcitol improved the uremia-dependent down-
regulation of renal copper/zinc superoxide dismutase protein
and reduced uremia-induced oxidative stress in the kidney
[179]. Another vitamin D receptor agonist, doxercalciferol,
decreased inflammation and oxidative stress in a dietary
fat-induced renal disease mouse model [180]. In humans
direct investigation of vitamin D effects on tissue-specific
oxidative stress is less feasible. Therefore in clinical studies
mainly global parameters of oxidative stress or damage were
investigated. One uncontrolled study with paricalcitol in
hemodialysis patients reported a significant reduction of
global parameters of oxidative stress and an increase of
parameters of antioxidant capacity [181]. A recent random-
ized controlled trial of effects of paricalcitol in CKD stages 3
and 4 over 3 months did not show a significant influence on
global markers of inflammation or oxidative stress [182].

Vitamin D effects on oxidative stress in CKD are thought
to be related to effects on uremia-dependent changes of
inflammatory state, antiproliferation, and immune function

and hence to nonclassical vitamin D actions. It was therefore
considered as reasonable to improve 25-dihydroxyvitamin D
supply for extrarenal production of 1,25-dihydroxyvitamin
D [183]. The results obtained from clinical studies testing
this approach were conflicting. Markers of oxidative stress
were not assessed directly but markers of immune cell
activation and inflammation might be regarded as indica-
tors. In an 8-week and a 12-week randomized controlled
trial with cholecalciferol in hemodialysis patients no sig-
nificant effects on inflammatory markers and cytokines
could be detected [184, 185]. In three uncontrolled trials
in hemodialysis patients, cholecalciferol therapy between 8
weeks and 1 year caused significant reductions of inflam-
matory markers and cytokines [186–188]. In CKD patients
not on hemodialysis treatment a randomized controlled trial
over one year did not show a sustained effect on cytokines
and markers of inflammation [189]. An uncontrolled trial
with 28 weeks of cholecalciferol treatment showed a signif-
icant reduction of urinary transforming-growth-factor-beta
1 [190]. The varying results of cholecalciferol interventions in
CKD might be due to differences in methodology. Also, yet
unrecognized differences in patient characteristics could be
involved.

The overall discrepancy between vitamin D effects on
oxidative stress markers and inflammation between pre-
clinical and clinical studies which applies to some extent
to both cholecalciferol and vitamin D receptor agonists is
probably based on the multitude of disturbances of vitamin
D metabolism and signal transduction in CKD. Uremia-
dependent impairment of 1,25-dihydroxyvitamin D produc-
tion also in extrarenal cells, uremia-dependent impairment
of 25-hydroxyvitamin D uptake and intracellular transport
in those cells, the reduced expression of vitamin D receptor
protein in CKD, and the disturbed interaction of vitamin D
receptors with DNA in uremia can contribute to the lesser
than expected effects of vitaminD therapy inCKD (for review
of mechanisms see [191, 192]).

More research is needed in the future, to determine in
individual CKD patients those factors that result in a positive
response to vitamin D treatment with respect to oxidative
stress or inflammation. Also, new treatment strategies, which
specifically target disturbances of vitamin D metabolism in
CKD, for example, the reduction of vitamin D receptor
protein, might be promising.

5. Emerging Therapies for
Diabetic Nephropathy

Diabetes mellitus (DM) is a metabolic disorder characterized
by chronic hyperglycemia. The chronic exposure to high
glucose concentrations damages certain tissues and organs
like the kidneys, for example, by noninsulin dependent
glucose uptake. Interactions of hemodynamic, metabolic,
and humoral factors are all thought to be involved in
the pathogenesis of diabetic nephropathy (DN) [193, 194].
Hyperglycemia activates prooxidant, profibrotic, and proin-
flammatory pathways leading to endothelial dysfunction,
mesangial matrix accumulation, podocyte detachment and
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Figure 2: Role of sodium-glucose cotransporter 2 in blood glucose control in basal and hyperglycemic conditions and effects on blood
glucose.

loss, glomerular basement membrane thickening, vacuoliza-
tion in tubular epithelial cell, tubular atrophy, fibrosis, and
tubulointerstitial inflammation (see Figure 2) [195–197].

The available antidiabetic agents have been developed to
target one or more of the underlying defects or processes
involved in DN. However, currently, therapies have not been
fully effective, which makes it necessary to search for new

therapeutic options for the management of this disease. Of
these options, antioxidant-based therapies and inhibitors
of sodium-glucose cotransporter 2 (SGLT2 inhibitors) are
recent developments.

In basal condition, ninety percent of glucose filtered by
the glomerulus is reabsorbed by the low-affinity/high capac-
ity cotransporter SGLT2, which is expressedmainly on S1 and
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Table 2: Long term effects of SGLT2 inhibitors as approved glucose-lowering agents.

Inhibitor Diabetes Effects References
Canagliflozin Type 2 Reduces GFR, HbA

1C, BW, BP, FPG. [266, 267]
Dapagliflozin Type 2 Reduces GFR, BP, BW, HbA

1C, albumin and stabilizes insulin dosing. [268–272]

Empagliflozin Type 1
Type 2

Reduces GFR, plasma NO, HbA
1C, arterial stiffness, heart failure hospitalization,

cardiovascular death. [207, 273–275]

Ipragliflozin Type 2 Reduces HbA
1C, BW, FPG and improves liver function and lipid profile. [276–278]

Glycated haemoglobin,HbA1C, glomerular filtration rate, GFR, fasting plasma glucose, FPG, body weight, BW, blood pressure, BP, and nitric oxide, NO.

S2 segment of renal proximal tubules (Figure 2). However,
during hyperglycemia the blood glucose concentrations are
high, which is associated with an increased ability to reabsorb
filtered glucose [198–201], due to an increase in SGLT2
expression [201–206]. This mechanism is counterproductive
for the patient since glucose in plasma increases. Chronic
exposure of renal cells to high glucose concentrations there-
fore causes a chronic vicious circle and is harmful (Figure 2).

SGLT2 inhibitors are a new class of drugs with a
unique action mechanism that is insulin-independent and
depends on plasma glucose and renal function. The use of
SGLT2 inhibitors (dapagliflozin, canagliflozin, empagliflozin,
and ipragliflozin) significantly reduces hyperglycemia, body
weight, glycated hemoglobin (HbA

1C), blood pressure (BP),
hyperinsulinemia, inflammatory markers (interleukin-6 (IL-
6), tumor necrosis factor 𝛼 (TNF-𝛼), monocyte chemotactic
protein-1 (MCP-1), and C-reactive protein (CRP)), hyperfil-
tration, natriuresis, oxidative stress (OS), and glycosuria [202,
203, 207–210]. The therapeutic advantages of using SGLT2
inhibitors in clinical practice are summarized in Table 2.

Additional therapeutic benefits induced by SGLT2
inhibitors could be mediated by an indirect effect on blood
glucose, which may be the most important mechanism
associated with improvement of renal function and other
complications related toDN (Table 2).These data suggest that
SGLT2 inhibitorsmay have a renoprotective effect in diabetes.
However, certain adverse events or potential risk related to
increased glycosuria including a higher frequency of urinary
infections, genital fungal infections, volume depletion, and a
low risk of hypoglycemia have been described.

Recently, traditional, complementary, and alternative
medicines are considered to cope with the mechanisms
involved in the progression of DN, mainly against OS and
hyperglycemia. The use of herbal medicinal plants especially
those used in folk medicine for the treatment of DM is
common in the world. Among these are foods commonly
consumed or their derivatives such as garlic, curcumin,
moringa, cinnamon, resveratrol, and sulforaphane.

Garlic (Allium sativum) is a common cooking spice used
as a folk remedy, which has been experimentally described
to have antidiabetic potential. The garlic extract showed a
significant improvement in blood glucose, fasting plasma
glucose (FPG), HbA

1C, serum insulin levels, lipid peroxida-
tion, total antioxidant level (TAL), catalase activity (CAT),
urine, and serum biochemical parameters such as albumin,
urea nitrogen, and creatinine compared to that of diabetic
rats. Further, garlic supplemented diabetic rats showed less

glomerular glycation, loss of microvilli of proximal tubules,
extravasation of red blood cells, thickness of the glomerular
basement membrane, and expression of VEGF and ERK-1
compared to diabetic rats, attenuating mesangial expansion
and glomerulosclerosis [211–215].The use of garlic derivatives
including S-allyl cysteine and allicin has been found effective
in lowering blood glucose levels, improving OS markers
(CAT, superoxide dismutase (SOD), and glutathione) and
protecting cell protein and cell membranes [216, 217]. Other
studies reported that garlic downregulates expression of
angiotensin II AT1 receptors (AT1) and receptor for advanced
glycation end products (RAGE) in renal cortical glomeruli
and tubules [214, 218].

Although experimental studies described antidiabetic
effects of garlic, human studies are inconclusive but showed
a compelling antioxidant effect. Aged garlic extract intake
(3 g/day) did not affect blood glucose, HbA

1C, or the lipid
profile but did reduce levels of serum advanced glycation end
products (AGEs) and lipid hydroperoxide in patients [219]. In
contrast, other studies describe that garlic extract improves
blood lipid profile, strengthens TAL, and decreased lipid
peroxidation, BP, RAGE, and secretion of IL-1 and TNF in
patients [220, 221].

Curcumin is a yellow pigment from Curcuma longa,
commonly consumed as a flavor and coloring food. In
experimental diabetes curcumin has been shown to improve
blood glucose, HbA

1C, lipid profile, serum creatinine, blood
urea nitrogen (BUN), and kidney/body weight ratio and to
significantly reduce blood concentrations of IL-6, MCP-1,
TNF-𝛼, and OS, which was evidenced by its effects on
8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde
(MDA), 3-nitrotyrosine (3-NT), GSH, and antioxidant
enzymes levels (SOD, CAT, and heme oxygenase-1 (HO-
1)) [222–227]. Curcumin decreased ROS production and
apoptosis via dephosphorylation of caveolin-1 (cav-1) in
kidneys and in podocytes in vitro [226].

Clinical studies report that curcumin can effectively
prevent the prediabetes population from developing T2DM,
attenuate proteinuria, and exert immunomodulatory effects
on circulating concentrations of IL-1𝛽, IL-4, IL-8, TGF, and
VEGF [228–230]. In a recent study curcumin did not improve
proteinuria, GFR, or lipid profile. However, curcumin attenu-
ated lipid peroxidation and enhanced the antioxidant capac-
ity in plasma [231]. On the other hand, the combination of
garlic extract and curcumin decreased HbA

1C, FPG, and 2-
hour postprandial blood glucose but the treatment did not
affect liver and kidney function [232].
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It has been suggested that the beneficial effects induced
by curcumin involve the downregulation of Wnt/𝛽-catenin
signaling as well as PKC-𝛼 and PKC-𝛽1 activities, phospho-
rylated ERK1/2 in renal glomeruli, and enhanced nuclear
translocation of Nrf2 and preservation of the activity of
antioxidant enzymes [90, 233, 234]. Curcumin acts through
normalizing the expression levels of various factors impor-
tant during DN progression. This includes normalization of
the levels of NOX4, p67phox, TGF-𝛽, CTGF, osteopontin,
vimentin, desmin, SREBP-1, iNOS, synaptopodin, connexin
43, erythropoietin, p300, and extracellular matrix proteins
[227, 233, 234].

Moringa (Moringa oleifera L.) is the cultivated species of
the genus Moringa of the family Moringaceae. The moringa
extract demonstrated a beneficial effect on body weight,
blood glucose concentration, renal function, lipid peroxida-
tion, and activities of SOD, CAT, GST, and GSH in renal
tissue, as well as TNF and IL1 concentrations in serum [235–
239]. In addition, immunoglobulins (IgA, IgG), FPG, and
HbA
1C were also decreased, and the histology of both kidney

and pancreas were restored with moringa treatment [235].
Clinical studies showed that moringa significantly

decreased FPG, hyperglycemia, total cholesterol, triglyce-
rides, low-density lipoprotein- (LDL-) cholesterol, and
VLDL-cholesterol [240–242]. Moreover, the data revealed
significant increases in serum GPx and SOD, with decreases
in MDA [243].

One of themost widely used spices in the food and bever-
age industry is cinnamon.The administration of cinnamon to
diabetic rats decreased blood glucose and lipid peroxidation
and improved lipid profile and GPx, SOD, and CAT activities
in the kidney [244]. Cinnamon also protects the kidney by
reducing glomerular expansion, eradicating hyaline casts,
decreasing the tubular dilatations, and restoring nucleus
and cytoplasm material of both glomerulus and Bowman’s
capsule [245, 246]. Procyanidin-B2, the active compound of
cinnamon, inhibits in vitro and in vivo AGE formation and
accumulation in diabetic kidney. Interestingly, procyanidin-
B2 prevented the loss of expression of nephrin and podocin
[247].

Cinnamon seems to have a moderate effect in reduc-
ing FPG, HbA

1C, blood triglyceride levels, and OS mark-
ers in patients [248–250]. It has been described that the
antidiabetic effect of cinnamon may be due to enhanced
insulin receptor phosphorylation and the translocation of
glucose transporter-4 (GLUT4) [251]. Another mechanism
that explains the effects of cinnamon is an increase in
the expression of peroxisome proliferator-activated receptor
(PPAR), alpha and gamma receptors, thereby increasing
insulin sensitivity [252].

Resveratrol (trans-3,4,5-trihydroxystilbene), a polyphe-
nolic compound naturally existing in grapes, has shown
antioxidant activity. Resveratrol treatment ameliorates hyper-
glycemia, renal production of ROS, apoptosis, inflammation,
and renal dysfunction in diabetes [253–258]. Moreover,
resveratrol prevented the reduction in podocyte number and
the disruption of both podocyte foot processes and basal
infoldings [257]. In diabetic patients resveratrol significantly
decreased BP, FBG, HbA

1C, total cholesterol, and insulin

resistance, while HDL was significantly increased compared
to their baseline levels [259, 260].

The protective effects of resveratrol, with respect to cell
apoptosis and ROS include activation of AMP-activated
protein kinase (AMPK), silent information regulator T1
(SIRT1), and PPAR𝛾 coactivator 1𝛼 (PGC-1𝛼) and the con-
sequent effects on its target molecules PPAR𝛼-oestrogen-
related receptor and the phosphatidylinositol-3 kinase-
protein kinase B–O forkhead box 3a pathway in diabetes
[256]. Also, antioxidant effects of resveratrol in diabetes
are related to the Nrf2/Keap1 pathway and downstream
regulatory proteins [257].

Recently, it was reported that resveratrol decreased
mesangial cell proliferation, glomerular basementmembrane
thickness, fibrosis and the expression of plasminogen acti-
vator inhibitor (PAI-1), ICAM-1, protein kinase B (Akt),
vascular endothelial growth factor (VEGF), and its type 2
receptor Flk-1 and inhibited the nuclear factor-kappa B (NF-
𝜅B) [258–261]. This suggests that resveratrol may attenuate
DNvia themodulation of Akt/NF-𝜅Bpathway and influences
on angiogenesis.

Sulforaphane is an organosulfur compound obtained
from crucifers vegetables such as broccoli, brussels sprouts,
or cabbages. Sulforaphane exhibits antioxidant and antidia-
betic properties in diabetes. Sulforaphane prevents diabetes-
induced inflammation, renal dysfunction, and oxidative and
nitrosative damage [262, 263]. In patients, sulforaphane
decreased MDA, oxidized LDL-cholesterol, and oxidative
stress index and there was a significant increase in TAL [264].

Some studies have shown that activation of Nrf2 by
sulforaphane improved hyperglycemia, albuminuria, patho-
logical alterations in the glomerulus, and oxidative damage
and suppressed the expression of TGF-𝛽1, FN, Col IV, and p21
both in vivo and in human renal mesangial cells [265]. Also,
sulforaphane increased Nrf2 at protein and mRNA levels in
kidney, which leads to a higher expression of NAD(P)H:
Quinone Oxidoreductase 1 (NQO1), HO-1, SOD1, SOD2, and
CAT at mRNA and protein levels [262, 263].

All these studies suggest that those emerging therapies
could be a therapeutic option in the combat of DN (see
Figure 3). Although in experimental models the results
have been promising, in a clinical setting they are still
controversial. The discrepancy might be accounted for by
differences in physiology between laboratory animals and
humans but also by differences in the type of preparation
and used concentrations; thus, the chemical composition of
these preparations varies widely and the biological responses
are different. Another possible reason for differences between
clinical studies and experimental ones may be deficiencies in
methodology and different treatment durations. Experimen-
tally, the dose and the duration of medication can be exactly
controlled; however in humans, sufficient control of these
aspects can be challenging.

In conclusion, hyperglycemia and oxidative stress plays
a key role in the progression of diabetic nephropathy
(Figure 3). Emerging therapies achieve their beneficial effects
through glycemic control and regulation of antioxidant sta-
tus, suggesting them as attractive therapeutic alternatives
(Figure 3). However, results from clinical trials have been
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Figure 3: The pathophysiological mechanism of diabetic nephropathy and targets for emerging therapies. Advanced glycation end
products (AGEs), endothelin-1 (ET-1), receptor for AGEs (RAGES), superoxide dismutase (SOD), catalase (CAT), nicotinamide adenine
dinucleotide phosphate oxidase (NADPHox), glutathione (GSH), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-
s-transferase (GST), transforming growth factor-𝛽1 (TGF-𝛽1), tumor necrosis factor-𝛼 (TNF-𝛼), reactive oxygen species (ROS), sodium-
glucose cotransporter 2 (SGLT2), nuclear transcription factor-kappa-B (NF-𝜅B), vascular endothelial growth factor (VEGF), Monocyte
Chemoattractant Protein (MCP-1), connective tissue growth factor (CTGF), fibronectin (FN), vascular cell adhesion molecule-1 (VCAM-
1), intracellular adhesion molecule-1 (ICAM-1), heme oxygenase-1 (HO-1), NF-E2-related factor-2 (Nrf2), and collagen type IV (col IV).

inconclusive so far. Therefore, further studies are needed to
ascertain whether the new alternative options offer benefits
as first-line drugs or adjuvant medication in clinical practice.

6. Conclusions

Taken together, the knowledge about pathogenic aspects of
oxidative stress for the progression and for complications in
chronic kidney disease has significantly been extended. New
therapeutic antioxidant approaches are available but are not
yet satisfyingly developed and validated.
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Arroyo et al., “Anti-inflammatory therapy modulates Nrf2-
keap1 in kidney from ratswith diabetes,”OxidativeMedicine and
Cellular Longevity, vol. 2016, Article ID 4693801, 11 pages, 2016.

[198] R. A. DeFronzo, J. A. Davidson, and S. del Prato, “The role
of the kidneys in glucose homeostasis: a new path towards
normalizing glycaemia,” Diabetes, Obesity and Metabolism, vol.
14, no. 1, pp. 5–14, 2012.

[199] J. Ditzel, H.-H. Lervang, and J. Brochner-Mortensen, “Renal
sodium metabolism in relation to hypertension in diabetes,”
Diabete et Metabolisme, vol. 15, no. 5, pp. 292–295, 1989.

[200] J. C. Mbanya, T. H. Thomas, R. Taylor, K. G. M. M. Alberti,
and R. Wilkinson, “Increased proximal tubular sodium reab-
sorption in hypertensive patients with Type 2 diabetes,”Diabetic
Medicine, vol. 6, no. 7, pp. 614–620, 1989.

[201] H. Rahmoune, P. W. Thompson, J. M. Ward, C. D. Smith, G.
Hong, and J. Brown, “Glucose transporters in human renal
proximal tubular cells isolated from the urine of patients with
non-insulin-dependent diabetes,” Diabetes, vol. 54, no. 12, pp.
3427–3434, 2005.

[202] H. Osorio, R. Bautista, A. Rios et al., “Effect of phlorizin on
SGLT2 expression in the kidney of diabetic rats,” Journal of
Nephrology, vol. 23, no. 5, pp. 541–546, 2010.

[203] H. Osorio, I. Coronel, A. Arellano et al., “Sodium-glucose
cotransporter inhibition prevents oxidative stress in the kidney
of diabetic rats,”Oxidative Medicine and Cellular Longevity, vol.
2012, Article ID 542042, 7 pages, 2012.

[204] H. Osorio, I. Coronel, A. Arellano, M. Franco, B. Escalante, and
R. Bautista, “Ursodeoxycholic acid decreases sodium-glucose
cotransporter (SGLT2) expression and oxidative stress in the
kidney of diabetic rats,” Diabetes Research and Clinical Practice,
vol. 97, no. 2, pp. 276–282, 2012.
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