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Abstract

Cooperation is ubiquitous across all levels of biological systems ranging from microbial

communities to human societies. It, however, seemingly contradicts the evolutionary theory,

since cooperators are exploited by free-riders and thus are disfavored by natural selection.

Many studies based on evolutionary game theory have tried to solve the puzzle and figure

out the reason why cooperation exists and how it emerges. Network reciprocity is one of

the mechanisms to promote cooperation, where nodes refer to individuals and links refer to

social relationships. The spatial arrangement of mutant individuals, which refers to the clus-

tering of mutants, plays a key role in network reciprocity. Besides, many other mechanisms

supporting cooperation suggest that the clustering of mutants plays an important role in the

expansion of mutants. However, the clustering of mutants and the game dynamics are typi-

cally coupled. It is still unclear how the clustering of mutants alone alters the evolutionary

dynamics. To this end, we employ a minimal model with frequency independent fitness on a

circle. It disentangles the clustering of mutants from game dynamics. The distance between

two mutants on the circle is adopted as a natural indicator for the clustering of mutants or

assortment. We find that the assortment is an amplifier of the selection for the connected

mutants compared with the separated ones. Nevertheless, as mutants are separated, the

more dispersed mutants are, the greater the chance of invasion is. It gives rise to the non-

monotonic effect of clustering, which is counterintuitive. On the other hand, we find that less

assortative mutants speed up fixation. Our model shows that the clustering of mutants plays

a non-trivial role in fixation, which has emerged even if the game interaction is absent.

Author summary

Evolutionary dynamics on networks are key for biological and social evolution. Typically,

the clustering mutants on networks can dramatically alter the direction of selection. Previ-

ous studies on the assortment of mutants assume that individuals interact in a frequency-

dependent way. It is hard to tell how assortment alone alters the evolutionary fate. We

establish a minimal network model to disentangle the assortment from the game interac-

tion. We find that for weak selection limit, the assortment of mutants plays little role in

fixation probability. For strong selection limit, connected mutants, i.e., the maximum

assortment, are best for fixation. When the mutants are separated by only one wild-type
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individual, it is worse off than that separated by more than one wild-type individual in fix-

ation probability. Our results show the nontrivial yet fundamental effect of the clustering

on fixation. Noteworthily, it has already arisen, even if the game interaction is absent.

Introduction

Cooperation is ubiquitous in the natural world ranging from microbial communities to

human societies. Yet, it is seemingly against evolutionary theory, since cooperators forgo their

own interest to benefit others whereas defectors pay nothing to get the benefit. The past two

decades have seen an intensive study on how cooperation evolves via natural selection [1–10].

One of the key mechanisms to promote cooperation is network reciprocity. It assumes that

individuals only interact with their neighbors. Consequently, either reproduction or competi-

tion for survival happens locally, which is not true for evolutionary dynamics in well-mixed

population [3–7].

For network reciprocity, a simple rule has been derived [11] that cooperation is favored

provided the benefit-to-cost ratio exceeds the average number of neighbors per individual.

It holds for the Death-birth (DB) process under weak selection limit. A key intermediate step

to achieve this simple rule is that a cooperator has more cooperator neighbors than defector

neighbors. Furthermore, the fewer neighbors a cooperator has, the more proportion of cooper-

ator neighbors a cooperator has. In other words, few neighbors per individual lead to the clus-

tering of the cooperators for evolutionary dynamics on a network. A cooperator surrounded

by many cooperator neighbors obtains high payoff, which facilitates the fixation of coopera-

tion. This simple rule also paves the way to solve social dilemmas including those modeled

by multi-player games [12]. Therefore, the assortment of cooperators has been intensively

employed to investigate the fixation probability and the fixation time for stochastic evolution-

ary game dynamics on a network [3, 4, 9, 13–15]. Besides, other mechanisms promoting

cooperation also result in the assortment of cooperators as a key intermediate step [2, 16, 17],

which is similar to the network reciprocity. Therefore, it would be necessary to investigate how

the assortment alters the evolutionary outcome.

For previous studies on the evolution of cooperation on a network [3, 4, 6, 7], both the

game interaction and assortment are taken into account. Typically cooperation is modeled as a

social dilemma via dyadic or multi-player games [18]. The assortment of cooperators follows

as a result of evolutionary dynamics (for an exception, see [19]). It is still far from clear how

assortment alone changes the fate of evolution. Here, we disentangle the game dynamics and

the spatial clustering. And we establish a minimal model to explore this issue. To this end, we

only consider the frequency-independent cases, without any game interactions, to explore the

role that the clustering plays alone. As a first step, we adopt a circle as the underlying popula-

tion structure. Our study starts with two mutants. They have an initial distance denoting the

number of wild-type individuals between them. We regard the distance as a measure of the

spatial assortment. And we explore how the assortment of mutants alters the fixation probabil-

ity and fixation time analytically.

Models

Connected mutants

We assume that there are N individuals with two strategies, A (wild-type) and B (mutant). The

corresponding fitnesses are fA and fB, respectively. The fitness is frequency-independent. In
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other words, it is solely determined by the focal individuals’s strategy, and has nothing to do

with its neighbors’. All the individuals are located on a ring, i.e., every individual has exactly

two neighbors. We consider the Death-birth (DB) process. For each round, an individual is

randomly chosen to die. Its two neighbors compete to reproduce an offspring who adopts the

same strategy as its parent. The chance of successful reproduction is proportional to the neigh-

bors’ fitnesses (see Fig 1 for illustration). w denotes the number of mutants, and Sw is a state.

Then the DB process is described by a one-dimensional Markov chain. The Markov chain has

two absorbing states (S0 and S6) and the other states (Si, where 1� i� 5) are of one equiva-

lence class.

Denote Pa,b as the transition probability from state Sa to Sb, the Kolmogorov backward

equation is written as

pw ¼ Pw;wþ1pwþ1 þ Pw;w� 1pw� 1 þ ð1 � Pw;wþ1 � Pw;w� 1Þpw;

with p0 ¼ 0 and pN ¼ 1;
ð1Þ

where πw is the fixation probability starting from Sw. The fixation probability is then obtained

[20]:

pw ¼
1þ

Pw� 1

j¼1

Qj
k¼1
gk

1þ
PN� 1

w¼1

Qj
k¼1
gk
; ð2Þ

where

gw ¼
Pw;w� 1

Pw;wþ1

: ð3Þ

Let r be the ratio of fitnesses between wild-type and mutant, i.e.,
fA
fB
¼ r. It holds as follows:

gw ¼

r þ 1

2r
; w ¼ 1

1

r
; w ¼ 2; . . . ;N � 2

2

r þ 1
; w ¼ N � 1

:

8
>>>>>><

>>>>>>:

ð4Þ

Taking Eq (4) into Eq (2) leads to the fixation probabilities. For the population size N = 6, the

Fig 1. Markov chain for the Death-birth process. The states in the dashed box belong to the same equivalence class of the Markov chain, whereas two states

outside the box are absorbing states, respectively. The Markov chain is one-dimensional, thus the fixation probability starting from an arbitrary state can be

analytically solved. Here, the population size is six, i.e., N = 6.

https://doi.org/10.1371/journal.pcbi.1007212.g001
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fixation probability for two connected mutants is given:

p2 ¼
r3ð1þ 3rÞ

3þ 2r þ 2r2 þ 2r3 þ 3r4
: ð5Þ

Let tAi denote the conditional fixation time from state Si to SN, which refers to the mean

time to absorption in state SN given the process starts in state Si and eventually reaches state

SN. We have

pit
A
i ¼ Pi;i� 1pi� 1ðt

A
i� 1
þ 1Þ þ ð1 � Pi;i� 1 � Pi;iþ1Þpiðt

A
i þ 1Þ þ Pi;iþ1piþ1ðt

A
iþ1
þ 1Þ;

with p0t
A
0
¼ 0 and tAN ¼ 0:

ð6Þ

Let us denote yi ¼ pit
A
i , then we arrive at a difference equation θi = Pi,i−1θi−1 + (1 − Pi,i−1 −

Pi,i+1)θi + Pi,i+1θi+1 + 1 with boundary conditions θ0 = 0 and θN = 0 [8]. In particular, for

y0 ¼ p0t
A
0
, tA

0
is infinitely large since it takes forever for the mutant to fixate if there is no

mutant initially. On the other hand, π0 = 0. We thus assume θ0 = 0 as in [8]. Solving the recur-

sive equations [8, 21] leads to

tAi ¼ t
A
1

p1

pi

Xi� 1

k¼1

Yk� 1

m¼1

gm �
Xi� 1

k¼1

Xk� 1

l¼1

1

pi

pl

Pl;lþ1

Yk

m¼lþ1

gm;

with t1 ¼
XN� 1

k¼1

Xk

l¼1

pl

Pl;lþ1

Yk

m¼lþ1

gm:

ð7Þ

Taking N = 6 into the above equation, we obtain

tA
2
¼

3ð11þ 75r þ 132r2 þ 140r3 þ 109r4 þ 45r5Þ

ð1þ 3rÞð3þ 2r þ 2r2 þ 2r3 þ 3r4Þ
: ð8Þ

Separated mutants for small circle

To explore the effect of the spatial clustering, we consider the process that there are two

mutants with distance d in the beginning. That is to say, there are d connected wild-type indi-

viduals located between two mutants initially. In this section, we take N = 6 as an illustrative

case. Note that six is the minimal size of a circle, in which there are two kinds of unconnected

mutants. All the circles with population size below six have none or one such network configu-

rations, as shown in Fig 2.

As illustrated in Fig 3, the process gives rise to more states than that which starts with two

connected mutants. Comparing with the previous process in Fig 1, we divide all the states into

two sets: the middle-state set S and the final-state set F. The middle states refer to all the states

with two separated groups of mutants whereas the final states contain only one mutant group.

Note that a group refers to connected individuals with the same strategy. Fig 3 shows four

properties of the process: i) All the middle states reach each other and belong to one equiva-

lence class. ii) The final states reach each other and belong to one equivalence class (Fi, 1�

i� 5) and two absorbing states (F0 and F6). iii) The middle states reach final states in finite

time; however, the final states cannot reach any middle states. iv) The middle states are tran-

sient (sooner or later, they walk into one of the final states). These four features imply that the

underlying Markov chain is not one-dimensional anymore, which leads to both computational

and analytical challenges.
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The transition matrix P for the process in Fig 3 is listed as follows:

S1 S2 S3 S4 S5 F0 F1 F2 F3 F4 F5 F61
CCCCCCCCCCCCCCCCCCCA

1
CC
CC
CC
CC
CC
CC
CC
CC
CC
CA

S1
1
6
3+r
1+r 0 1

6
2r
1+r 0 0 0 1

3 0 1
6 0 0 0

S2 0 1
6

4
1+r

1
6

4r
1+r 0 0 0 1

3 0 0 0 0 0

S3
1
6

1
1+r

1
6

1
1+r

1
6
2+2r
1+r

1
6

r
1+r

1
6

r
1+r 0 0 1

6 0 1
6 0 0

S4 0 0 1
6

2
1+r

1
6
2+r
1+r 0 0 0 0 1

6 0 1
3 0

S5 0 0 1
6

4
1+r 0 1

6
4r
1+r 0 0 0 0 0 1

3 0

F0 0 0 0 0 0 1 0 0 0 0 0 0

F1 0 0 0 0 0 1
6

1
6
5+3r
1+r

1
6

2r
1+r 0 0 0 0

F2 0 0 0 0 0 0 1
6

2
1+r

4
6

1
6

2r
1+r 0 0 0

F3 0 0 0 0 0 0 0 1
6

2
1+r

4
6

1
6

2r
1+r 0 0

F4 0 0 0 0 0 0 0 0 2
6

1
1+r

4
6

2
6

r
1+r 0

F5 0 0 0 0 0 0 0 0 0 1
6

2
1+r

1
6
3+5r
1+r

1
6

F6 0 0 0 0 0 0 0 0 0 0 0 1

ð9Þ

Denote Ci as the fixation probability starting from state i 2 {S, F} and ending up with state

F6. Based on the Markov property, the following holds:

Ci ¼
X

j2fS;Fg

Pi;jCj; 8i 2 fS; Fg: ð10Þ

It is equivalent to

C ¼ PC; ð11Þ

with boundary conditions CF0
¼ 0 and CF6

¼ 1 (subject to the property ii)).

We divide the states into two sets: the middle-state set S and the final-state set F. We denote

C ¼
CS

CF

 !

. As the two crossing lines in Eq (9) illustrates, the one-step transition matrix P

Fig 2. Network configuration for two mutants. If the population size is three, the two mutants have to be connected. If the population size is four or five, the two

mutants can be separated by at most one wild-type individual. If the population size is six, the two mutants can be of distance zero, one and two, i.e., three types. In

other words, six is the minimum population size of a circle, which gives rise to three distances between two mutants. Thus we adopt the population size six as an

illustration model.

https://doi.org/10.1371/journal.pcbi.1007212.g002
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can be written as

P ¼

S F
S
F

Q1 Q2

0 Q3

 !

:
ð12Þ

The transition probability from F to S is a zero matrix, which arises from property iii). In addi-

tion, we have that the sub-matrix Q2 is independent of mutant fitness r. In fact, the entries in

Q2 implies the transition probability whose event is the collapse of two separate groups with

the same strategy. Here, a group refers to connected individuals with the same strategy. Take

the transition from S1 to F1 as an example, the transition occurs when a mutant is chosen to

die with probability 2

6
. The chosen mutant has two wild-type neighbors. In this case, the chosen

mutant will, with probability one, be replaced by a wild-type offspring. Thus, the transition

probability from S1 to F1 is independent on the relative fitness of the mutant r. In general, this

applies to any transition from the middle-state set S to final-state set F. Therefore, Q2 is inde-

pendent of mutant fitness r. Similarly, Q1 and C are dependent on r.
Taking Eq (12) into Eq (11), we obtain

(
CS ¼ Q1CS þ Q2CF

CF ¼ Q3CF

: ð13Þ

Note that the second equation (CF = Q3CF) is the same as Eq (1). Thus we have CF = π.

We now consider the first equation (CS = Q1CS + Q2CF), which can be transferred to

(I −Q1)CS = Q2CF. We show that I −Q1 is invertible in the following. Since all the middle states

are transient with respect to process property i) and iv), we have
P1

t¼0
PðtÞij <1; 8i; j 2 S [22].

Fig 3. The Markov chain of the Death-birth process with separated mutants. In contrast with the Markov chain with connected mutants alone, the underlying

Markov chain is no longer one-dimensional. The transient states are further categorized into two equivalence classes, denoted as S and F, respectively. Each one is

grouped by the dashed boxes. The S class will sooner or later enter the F class, whereas the F class cannot go to the S class. Instead, they will enter the absorbing

states sooner or later. w refers to the number of mutants.

https://doi.org/10.1371/journal.pcbi.1007212.g003
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This is equivalent to

X1

t¼0

Qt
1

 !

ij

<1: ð14Þ

Let H ¼
P1

t¼0
Qt

1
, and we know H exists. Notice that

HðI � Q1Þ ¼
X1

t¼0

Qt
1
ðI � Q1Þ ¼

X1

t¼0

Qt
1
�
X1

t¼1

Qt
1
¼ I; ð15Þ

where I is the identity matrix with the same size as that of Q1. This shows that H is the left-

inverse of (I −Q1), and a similar argument shows that H is also the right-inverse of (I − Q1). We

then acknowledge that H = (I −Q1)−1. Thus, (I −Q1) is invertible.

Thus, it holds

CS ¼ ðI � Q1Þ
� 1Q2CF: ð16Þ

In the process of Fig 3, the fixation probabilities of states with two separated mutants are listed

as follows:

CS1
¼

r2ð28þ 167r þ 475r2 þ 920r3 þ 1036r4 þ 585r5 þ 117r6Þ

ð3þ 2r þ 2r2 þ 2r3 þ 3r4Þð45þ 210r þ 322r2 þ 210r3 þ 45r4Þ

CS2
¼

r2ð39þ 179r þ 456r2 þ 896r3 þ 1041r4 þ 597r5 þ 120r6Þ

ð3þ 2r þ 2r2 þ 2r3 þ 3r4Þð45þ 210r þ 322r2 þ 210r3 þ 45r4Þ

:

8
>>>><

>>>>:

ð17Þ

We now investigate how long it takes for mutants to reach the state consisting of only

mutants. Let tAi be the average conditional fixation time from state i 2 {S, F} to F6, given

the population ends up with all mutants, i.e, F6. TA is a vector of tAi , and it is denoted as

TA ¼
TA

S

TA
F

 !

, where TA
S is the conditional fixation time to F6 for the middle states and TA

F is

that for the final states. For state i 2 {S, F}, we have

Ci � t
A
i ¼

X

j2fS;Fg

Cj � Pi;j � ðt
A
j þ 1Þ;

with tAF6
¼ 0 and CF0

� tAF0
¼ 0:

ð18Þ

The right side of Eq (18) contains all the cases that one-step further from S1, weighted by the

one-step transition probabilities.

The symbol � is the Hadamard product. For two matrices A = [aij] and B = [bij] with the

same dimensions, we have A � B = [aij � bij]. We then transfer Eq (18) to

C � TA ¼ P � ½C � ðTA þ 1Þ�; ð19Þ

where 1 is a vector of value 1 with the same dimensions as TA. This is equivalent to

C � TA ¼ P � ðC � TAÞ þ P �C: ð20Þ

And moving all elements with C � T to the left side, we have

ðI � PÞ � ðC � TAÞ ¼ P �C; ð21Þ

where I is the identity matrix.

Clustering mutants favor and disfavor fixation
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Splitting the middle and final states, Eq (21) is written as

I � Q1 � Q2

0 I � Q3

 !

�
CS � TA

S

CF � TA
F

 !

¼
Q1 Q2

0 Q3

 !

�
CS

CF

 !

: ð22Þ

We then obtain

(
ðI � Q1Þ � ðCS � TA

S Þ � Q2 � ðCF � TA
F Þ ¼ Q1 �CS þ Q2 �CF

0 � ðI � Q3Þ � ðCF � TA
F Þ ¼ 0þ Q3 �CF

: ð23Þ

We have a solution for Eq (23) based on [8]. In particular, for j = 1, . . ., 5, we have

tAFj ¼ t
A
F1

CF1

CFj

Xj� 1

k¼1

Yk� 1

m¼1

gm �
Xj� 1

k¼1

Xk� 1

l¼1

CFl

CFj

1

PFl ;Flþ1

Yk

m¼lþ1

gm: ð24Þ

We now look into the first equation in Eq (23). Note that we have proved (I − Q1) is invert-

ible, thus we have

TA
S ¼ ðI � Q1Þ

� 1
ðQ1 �CS þ Q2 �CF þ Q2 � ðCF � TA

F ÞÞ �CS; ð25Þ

where� is the Hadamard division operator. And Eq (25) is equivalent to

TA
S ¼ ðI � Q1Þ

� 1
½Q1 � ðI � Q1Þ

� 1Q2CF þ Q2 �CF þ Q2 � ðCF � TA
F Þ� � ½ðI � Q1Þ

� 1Q2CF�: ð26Þ

We do not present the analytic expressions here due to the great complexity of the expression

of tAS1
and tAS2

.

Separated mutants for large circles

We now address the DB process on a circle for arbitrary size. We denote the population size

as N. A group refers to connected individuals with the same strategy. As Fig 4 illustrated, each

state corresponds to a triplet (x, a, b): x is the minimal distance of two mutant groups, a is the

population size of the smaller mutant group and b is the population size of the larger mutant

group. Note that the larger distance between two mutant groups equal to N − x − a − b.

All the states for process for population size N are listed in Table 1. We divide the states

into the middle-state set S and the final-state set F. When the minimal distance x between two

mutant groups is zero (x = 0), or when the number of one of the mutant groups is 0 (a = 0), we

use F to replace the triplet expression Sx,a,b (S0,a,b = Fa+b and Sx,0,b = Fb). The middle states have

two separate mutant groups whereas the final states only have one. From Table 1, we find that

the total number of states is

XN

w¼0

b
w
2
c � b

N � w
2
c þ N þ 1: ð27Þ

The total number of states is of O(N2), since
PN

w¼0
w
2
� N� w

2
þ N þ 1

� �
is O(N2). Difficulty arises

to calculate the fixation probabilities with the equation CP =C.

For every transition between the states in Table 1, the state Sx,a,b stays where it is, or transits

to a state where the mutant number is one greater or one less. Note that the mutant number

equals to the sum of two mutant group sizes a + b. Take S1,1,1 for an example, it can transit

to itself, S1,1,2, S2,1,2 or F1(= S1,0,1). The state transition only occurs when an individual at the

border of a group is chosen to die. As the mutants and wild-type individuals have one or two

Clustering mutants favor and disfavor fixation
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groups respectively, there are at most 8 individuals on the border. That is to say, starting from

any state, there are at most 8 transitions. If the population size N is large, the transition matrix

is sparse. We list all the transition probabilities and boundary conditions in Table 2.

The process for arbitrary population size shares the same four properties as the process of

population size N = 6: i) The middle states reach any other middle states and belong to one

equivalence class. Take the transition from S1,1,1 to S2,2,2 for an instance, there is a path as

S1,1,1! S1,1,2! S2,1,1! S2,1,2! S2,2,2. Going through this path, the transition number in

Table 2 occurs in the order #5! #11! #5! #4. ii) The final states contain three equivalence

Fig 4. State notation of the configuration in a circle. We assume that there are at most two separated mutant groups.

The state is denoted as a triplet (x, a, b). Here x refers to the minimal distance between two mutant groups, a and b
represent the group sizes of the smaller group and that of the larger one. The following inequalities holds: a� b and

x� N − x − a − b.

https://doi.org/10.1371/journal.pcbi.1007212.g004

Table 1. The states of the Markov chain in a circle population of size N. w refers to the number of mutants.

w = 0 1 2 3 4 . . . w . . . N
F0 F1 F2 F3 F4 . . . Fw . . . FN

S1,1,1 S1,1,2 S1,1,3 S1,2,2 . . . S1,1,w−1 . . . S1;bw
2
c;w� bw

2
c

. . .

S2,1,1 S2,1,2 S2,1,3 S2,2,2 . . . S2,1,w−1 . . . S2;bw
2
c;w� bw

2
c

. . .

. . . . . . . . . . . . . . . . . .

SbN� 2
2
c;1;1

SbN� 3
2
c;1;2 SbN� 4

2
c;1;3 SbN� 4

2
c;2;2

. . . SbN� w
2
c;1;w� 1

. . . SbN� w
2
c;bw

2
c;w� bw

2
c

. . .

https://doi.org/10.1371/journal.pcbi.1007212.t001
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classes. One is F0, one is FN, and all the rest give rise to the other equivalence class. iii) The

middle states reach final states in finite time, whereas the final states cannot reach any middle

states. iv) The middle states are transient states.

With the four properties, the analysis from Eqs (11) to (16) still apply here. We obtain the

fixation probabilities of mutants for the process for arbitrary population size by

CS ¼ ðI � Q1Þ
� 1Q2CF; ð28Þ

where Q1 and CF are dependent on the relative mutant fitness r, whereas Q2 is independent on

r. Similarly, we obtain the conditional fixation time for mutants with arbitrary population size

as

TA
S ¼ ðI � Q1Þ

� 1
½Q1 � ðI � Q1Þ

� 1Q2CF þ Q2 �CF þ Q2 � ðCF � TA
F Þ� � ½ðI � Q1Þ

� 1Q2CF�: ð29Þ

In S2 Appendix, we develop an algorithm to numerically obtain Q1 and Q2 with a time com-

plexity of O(N2) and a space complexity of O(N4) (O(N2) if sparse matrix method is employed).

Combining with Eqs (28) and (29), we have the fixation probabilities and conditional fixation

times for mutants with arbitrary population size N. As the algorithm makes use of matrix mul-

tiplications and inversions, the time complexities to obtain the fixation probability and condi-

tional fixation time are both of O(N4.746) [23–25].

In particular, with Taylor’s expansion around r = 1 for Eq (28), we have (see S3 Appendix)

CðrÞ ¼ Cð1Þ þ
d
dr
CðrÞ

�
�
�
�
r¼1

ðr � 1Þ þ
1

2

d2

dr2
CðrÞ

�
�
�
�
r¼1

ðr � 1Þ
2
þ oððr � 1Þ

2
Þ; ð30Þ

where

d
dr
CðrÞ ¼ ½I � Q1ðrÞ�

� 1 d
dr

Q1ðrÞ½I � Q1ðrÞ�
� 1Q2pðrÞ þ ½I � Q1ðrÞ�

� 1Q2

d
dr
pðrÞ; ð31Þ

Table 2. Transition probabilities for the Markov chain starting from state Sx,a,b. The first column indicates the state

that Sx,a,b transit to. The first row categorizes state Sx,a,b by the index (x, a, b). The transtion probabilities are shown in

the rest of table. The population size is N.

P N − x − a − b = 1 x = 1 a = 1 b = 1 Otherwise

Fa+b+1
1

N
1

N 0 0 0

Fa 0 0 1

N 0 0

Fb 0 0 0 1

N 0

Sx,a+1,b 0 1

N
r

1þr
1

N
r

1þr
1

N
r

1þr
1

N
r

1þr

Sx,a,b+1 0 1

N
r

1þr
1

N
r

1þr
1

N
r

1þr
1

N
r

1þr

Sx−1,a+1,b
1

N
r

1þr 0 1

N
r

1þr
1

N
r

1þr
1

N
r

1þr

Sx−1,a,b+1
1

N
r

1þr 0 1

N
r

1þr
1

N
r

1þr
1

N
r

1þr

Sx,a−1,b
1

N
1

1þr
1

N
1

1þr 0 1

N
1

1þr
1

N
1

1þr

Sx+1,a−1,b
1

N
1

1þr
1

N
1

1þr 0 1

N
1

1þr
1

N
1

1þr

Sx,a,b−1
1

N
1

1þr
1

N
1

1þr
1

N
1

1þr 0 1

N
1

1þr

Sx+1,a,b−1
1

N
1

1þr
1

N
1

1þr
1

N
1

1þr 0 1

N
1

1þr

https://doi.org/10.1371/journal.pcbi.1007212.t002
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d2

dr2
CðrÞ ¼ 2½I � Q1ðrÞ�

� 1 d
dr

Q1½I � Q1ðrÞ�
� 1 d
dr

Q1ðrÞ½I � Q1ðrÞ�
� 1Q2pðrÞ

þ½I � Q1ðrÞ�
� 1 d2

dr2
Q1ðrÞ½I � Q1ðrÞ�

� 1Q2pðrÞ

þ2½I � Q1ðrÞ�
� 1 d
dr

Q1ðrÞ½I � Q1ðrÞ�
� 1Q2

d
dr
pðrÞ

þ½I � Q1ðrÞ�
� 1Q2

d2

dr2
pðrÞ:

ð32Þ

The algorithm we developed also applies to calculate the derivatives of the fixation probabil-

ities. The derivative of a matrix is defined as the matrix of derivatives of corresponding item.

We obtain d
dr Q1ðrÞ by turning values in Table 2 into their first-order derivatives and running

through the algorithm in S2 Appendix. Following Eq (31), we obtain the first-order derivatives

of the fixation probabilities. Besides, the time complexity is the same order as that of the fixa-

tion probability. Matrix multiplications and additions are required but they do not increase

the time complexity. The required space is doubled but it is still of complexity O(N4) (O(N2)

for adopting sparse matrices). Similarly, we find that the higher-order derivatives of the fixa-

tion probabilities require only the same-order or lower-order derivatives of Q1. Thus, we

obtain the second-order derivatives and higher-order ones by turning the values in Table 1 to

their higher-order derivatives. The overall complexity stays the same.

Results

Fixation probabilities

We have already obtained the fixation probabilities of the mutants for a circle with population

size N = 6 based on Eqs (5) and (17). Expanding the equations around neutral selection, i.e.

r = 1, gives rise to

CF2
ð¼ p2Þ ¼

2

6
þ

7

12
ðr � 1Þ �

40

288
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

CS1
¼

2

6
þ

6

12
ðr � 1Þ �

49

288
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

CS2
¼

2

6
þ

6

12
ðr � 1Þ �

46

288
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

:

8
>>>>>>>><

>>>>>>>>:

ð33Þ

Note that F2 refers to the state of two connected mutants, while S1 and S2 refer to the states

where two mutants are in distance of 1 and 2, respectively.

Base on Eq (33), we find that on the circle with population size 6: i) Under neutral selection,

i.e. r = 1, the fixation probabilities are only determined by the number of the mutants. It has

nothing to do with the distance of mutants. ii) The first-order derivatives of fixation probabili-

ties at r = 1 for separated mutants are equal ( d
drCS1

¼ d
drCS2

¼ 6

12
). They are greater than 0, but

are smaller than that of the connected mutants ( d
drCF2

¼ 7

12
). This indicates a slower change for

the separated mutants than the connected mutants in fixation probability, as Fig 5 shows. In

particular, if r< 1, i.e., the mutants are at a disadvantage, the fully connected mutants weaken

the fixation probability. The fully connected mutants greatly promote the invasion when they

are at an advantage (i.e., r> 1). iii) The second-order derivative of the fixation probability at

r = 1 for d = 1 is smaller than that for d = 2. Here, the second-order derivative of the fixation

probability is two times of the second-order coefficient of the Taylor series. Thus, the closer

the two mutants are, the less likely the invasion probability is under strong selection.
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Consequecntly, the rank of the invasion chances is determined solely by the clustering factor,

i.e., the distance of two mutants, as long as mutants are not fully connected.

Using the developed algorithm, we generalize the above results on a small circle with popu-

lation size 6 to a circle with large size. We investigate the fixation probabilities for population

size 25 in Fig 6. Not all the distances are plotted with only d = 1, 2, 3, 11 shown in Fig 6. This is

because there are so many to show, and they do not lead to novel insights. In addition, we list

fixation probabilities and their derivatives at neutral selection numerically in Table 3 for popu-

lation sizes N = 6, 25, 100 respectively. We have found similar properties as that in the small

one (Fig 6): i) The fixation probabilities are proportional to the number of mutants at neutral

selection, i.e., r = 1. ii) The first-order derivatives at r = 1 for separated mutants (d> 0) are the

same. The first-order derivatives at r = 1 for the connected mutants are greater than that of the

separated mutants. For N = 6, 25, 100, we find that the first-order derivatives of fixation proba-

bilities at neutral selection can be summarized as

d
dr
CF2
ð¼ CS0;1;1

Þ

�
�
�
�
r¼1

¼
2N � 5

2N

d
dr
CSd;1;1

�
�
�
�
r¼1

¼
2N � 6

2N
; d ¼ 1; 2; :::; b

N � 2

2
c

:

8
>>>><

>>>>:

ð34Þ

This can apply 8N� 6, but the proof is still an open issue. iii) For the separated mutants, the

second-order derivative of the fixation probabilities at r = 1 increases as the distance d grows.

Fig 5. The fixation probability for N = 6 with different mutant distances d. The curve is drawn by the analytical results whereas the points are the

simulation results. The iteration time for the simulation is 106.

https://doi.org/10.1371/journal.pcbi.1007212.g005
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Thus, the rank of the invasion chances is determined only by the assortment factor, provided

that the mutants are not initially connected. In this case, the greater the distance two mutants

are, the greater the fixation probabilities are. Note that from N = 6 to N = 25, the second-order

derivatives of the fixation probabilities at neutral selection increase from negative to positive.

Fig 6. The fixation probability for N = 25 with different mutant distances d. The curve is drawn by the results calculated by our developed algorithm

whereas the points are the simulation results. It is noteworthy that the figure is quantitatively similar to Fig 5.

https://doi.org/10.1371/journal.pcbi.1007212.g006

Table 3. The fixation probabilities of two mutants in distance d and their derivatives at neutral selection, i.e., r = 1. N refers to the population size.

N 6 25 100

d CSd;1;1
d
drCSd;1;1

d2

dr2 CSd;1;1
CSd;1;1

d
drCSd;1;1

d2

dr2 CSd;1;1
CSd;1;1

d
drCSd;1;1

d2

dr2 CSd;1;1

0 0.333 0.583 −0.278 0.08 0.9 5.1368 0.02 0.975 29.9098

1 0.333 0.5 −0.340 0.08 0.88 4.74230602 0.02 0.97 29.43617652

2 0.333 0.5 −0.319 0.08 0.88 4.74983612 0.02 0.97 29.43805918

3 - - - 0.08 0.88 4.75278453 0.02 0.97 29.4387966

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 - - - 0.08 0.88 4.75613829 0.02 0.97 29.43966386

11 - - - 0.08 0.88 4.75617415 0.02 0.97 29.43968552

12 - - - - - - 0.02 0.97 29.4397024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48 - - - - - - 0.02 0.97 29.43979022

49 - - - - - - 0.02 0.97 29.43979024

https://doi.org/10.1371/journal.pcbi.1007212.t003
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It implies that the fixation probability as a function of the selection intensity r turns from con-

vex to concave, as population size increases.

Conditional fixation times

Taking N = 6 into Eq (26), we have the analytical results of the conditional fixation times tAS1

and tAS2
. Due to the complexity of the expressions, we do not present them here. Expanding

Eq (8), tAS1
and tAS2

around neutral selection, i.e. r = 1, results in

tAF2
¼

832

26
þ

312

416
ðr � 1Þ�

78650

4992
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

tAS1
¼

767

26
þ

1125

416
ðr � 1Þ�

85409

4992
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

tAS2
¼

739

26
þ

1422

416
ðr � 1Þ�

88001

4992
ðr � 1Þ

2
þ oððr � 1Þ

3
Þ

:

8
>>>>>>>><

>>>>>>>>:

ð35Þ

Fig 7 presents the analytical predictions, which are validated by the simulations: i) At neutral

selection r = 1, the times for mutant fixation differ for different mutant distances, though the

fixation probabilities are the same. The greater the distance two mutants is, the shorter it takes

Fig 7. The conditional fixation time for two mutants in a circle of size N = 6. The curve is the conditional fixation time obtained through Eq 26

and the points are the simulation results. The iteration time for simulation is 105.

https://doi.org/10.1371/journal.pcbi.1007212.g007
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for the mutant to fixate. An intuitive explanation is that as the distance between two mutants

grows, each mutant becomes more independent as a source for strategy spreading. This is sim-

ilar to infection sources in epidemiology. More infection sources speed up mutant fixation.

For instance, when two mutants are connected (d = 0), there are initially only 2 wild-type

individuals that can be updated. On the contrary, when d = 2, there are 4 wild-type individuals

that can be updated. ii) When the mutants are at an advantage (r> 1), the conditional fixation

time and the fixation probability are nontrivial. On the one hand, for each mutant distance,

the mutant conditional fixation time grows at first and decrease as the mutant fitness r grows.

On the other hand, given a constant mutant fitness r, when the distance between two mutants

d becomes greater, the fixation time shrinks whereas the fixation probability changes non-

monotonically (it decreases to the least when d = 1 and grows when d> 1). iii) When the

mutants are disadvantageous (r< 1), mutants have a better chance to fixate and also fixate

faster as the distance between two mutants grows. In general, the fixation probability and the

conditional fixation time for mutants do not have the same tendency as mutants are getting

clustered [26]. And the rank of times for mutant fixation is monotonically determined by the

clustering factor (i.e., the distance between mutants).

Fig 8 presents the simulation results of the conditional fixation time of mutants and the

numerical curve (calculated by our algorithm) for population size N = 25. We observe that it

agrees perfectly with the theoretical predictions.

Fig 8. The conditional fixation time for mutants in a circle of size N = 25 with different mutant distances d. The curve is drawn by numerical results

from our developed algorithm and points are obtained via simulation results. The iteration time for simulation is 106. It is noteworthy that the figure is

similar to Fig 7, where the population size N = 6.

https://doi.org/10.1371/journal.pcbi.1007212.g008
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Discussion

Cooperation plays a key role in all levels of biological systems. Network reciprocity, as one of

the mechanisms to promote cooperation, has attracted considerable interests. Network reci-

procity results in an assortment between individuals using the same strategy [9, 13, 14, 27].

Besides network reciprocity, the tag-based dynamics also yields more frequent interactions

within groups equipping with the same tag [2, 16, 17]. This in-group bias is created via the tag.

In this case, individuals who donate to others with the same tag protect the cooperators from

being exploited [2, 17]. The clustering individuals with the same tag lead to a high donation

level. Again, the clustering here shows itself as an important intermediate step to facilitate

cooperation. The assortment of mutants can either promote [11] or inhibit cooperation [4].

For example, the intensive interaction between individuals using the same strategy can be ben-

eficial for cooperation in the Prisoners’ Dilemma, yet can be destructive for cooperation in the

Snowdrift Games [28]. The nontrivial role the assortment plays can also be suggested from the

previous studies: Fu et al. [29] have compared invasions of the Snowdrift Game with that of

the Prisoners’ Dilemma on a lattice. As the cost-to-benefit ratio grows, the mutants tend to

emerge as few large compact clusters in the Prisoner’s Dilemma whereas the mutants evolve

to many dispersal small clusters in the Snowdrift Games. All these previous studies are based

on game interactions. It is not clear how the assortment alone affects evolutionary dynamics.

Inspired by these, we try to disentangle the spatial assortment of mutants from the game

interaction.

We implemented a minimal model via adopting a circle as the spatial structure. We assume

that the fitness is frequency-independent. And the assortment of two mutants is easily mea-

sured by the minimum number of wild-type individuals in between. In real biological systems,

there can be three reasons for mutants to be spatially separated: i) Independent mutations. The

mutant individuals who are not spatially adjacent arise via independent mutations; ii) Migra-

tion. One of the mutant individuals, originally adjacent to the others, migrate to another place

and settle there; iii) The mutants are separated due to sudden environmental changes.

As an illustrative case, we study the process with population size N = 6. It is the minimum

size of a circle, where two mutants can be of three different distances (Fig 2). We adopt the

Death-birth process on a network. The analytical results show that initially fully connected

mutants enhance the group survival when they are at an advantage (r> 1), whereas inhibit

survival when mutants are at a disadvantage (r< 1). The simulation results are found to be in

perfect agreement with the analytical ones (Fig 5). In other words, the spatial assortment of

mutants is an amplifier of natural selection for the connected mutants compared with the sepa-

rated mutants. However, as long as two mutants are separated, the relative mutant fitness r
does not determine the rank of the probability of successful invasion, the distance between two

mutants does. Denoting d as the initial distance between two mutants, the fixation probability

falls to the smallest value when d = 1, and it grows as d becomes greater. That is to say, as long

as the mutants are separated, the further they initially are, the greater the invasion chance is. It

is true for both advantageous and disadvantageous mutants. Our results show that the effect of

spatial clustering on fixation is non-trivial, even when the game interaction is absent.

The fixation probability for the separated mutants cannot be obtained as easily as obtaining

that of the connected mutants. On the one hand, the separated mutants introduce many addi-

tional states; on the other hand, the resulting Markov chain is not one-dimensional anymore.

We further categorize the transient states into two classes. And we make use of the fixation

probabilities for the connected mutants to obtain the fixation probabilities for the separated

mutants. In addition, we have developed an efficient algorithm to estimate the fixation proba-

bility for the separated mutants in arbitrary population size. In general, the algorithm consists
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of three steps: 1) Listing all the states of the Markov chain in order, 2) Listing all the transition

probabilities in S2 Appendix, 3) calculate the derivatives in Eqs (31) and (32) based on S3

Appendix. The time complexity is of O(N4.746). The space complexity is of O(N4), and O(N2) if

sparse matrix methods are adopted [23–25]. We evaluated the processes for population sizes of

25 and 100. All the above-mentioned results still apply as in the small circle with size 6. Thus,

we conjecture that the main results apply to any population size. Yet the strict proof is still an

open issue.

In the work of Ohtsuki et al. [11], the pair approximation is adopted. Under weak selection

limit, it is only the initial frequency of mutants that is key to the fixation probabilities. The

fixation probability has nothing to do with the assortment parameter. There, the assortment

parameter is given by qA|A − qB|A [27, 30, 31], which refers to the difference between the num-

ber of neighbors using the same strategy and that of the ones using the other strategy. Our

results show a different picture. Let us take a ring consisting of 25 individuals with 2 mutants

as an example. When the distance between two mutants are equal or greater than two (2�

d� 12), all the cases share the same probability of finding a mutant next to a wild-type individ-

ual (qBjA ¼ 4

23
) or finding a wild-type individual next to a wild-type individual (qA|A = 1).

By pair approximation, the fixation probability is the same for all the mentioned initial

population configurations, since the number of mutants is two, and even the assortment factor

qAjA � qBjA ¼ 19

23
is the same. However, our analytical results show that the fixation probabilities

can be in a large difference when the selection intensity is strong, verified by simulations. Fur-

thermore, we show that the difference occurs at the second-order derivative of the selection

intensity. This suggests that the number of initial mutants alone cannot determine the fixation

probability. Therefore, the pair approximation is not sufficient to portray the spatial clustering

accurately, provided the selection intensity is strong.

We investigate the cases with Death-birth process. The DB process contains two steps: An

individual is randomly chosen to die and its nearest neighbors compete to reproduce an iden-

tical offspring. The assumption behind the DB process is that the death rate is equal for all the

individuals and the selection happens in the stage of reproduction. The competition for repro-

duction is local. The Birth-death (BD) process is different from the DB process. It contains two

steps as well: An individual is chosen to produce an identical offspring with the possibility pro-

portional to its fitness across the entire population, and the offspring replaces a neighbor of its

parent randomly. The assumption here is that all the individuals compete for reproduction,

thus the selection is global. The death rate is equal for all the neighbors. Noteworthily, for the

BD process, the isothermal theorem [32] shows that the fixation probability of mutants with

BD process is identical to that in well-mixed populations on all the isothermal graphs. A circle

is an isothermal graph. It implies that the assortment of the mutants does not play any role in

fixation probability, provided the number of mutants is the same for a circle with BD process.

However, our results with the DB process depicts a different picture. Consequently, the details

of update rule could dramatically alter the evolutionary dynamics on networks, even if the

game interaction is not at work. Intuitively, the assortment plays a role if the competition for

reproduction is local, but is not at work if the competition for reproduction is global. In fact, it

has been shown that different evolutionary rules can alter the evolutionary outcome not only

in the networked population [11] but also in a simple well-mixed population [33]. Our results

also echo the recent studies that the DB process does not conform to the isothermal theorem

[10, 34].

To sum up, our results reveal counterintuitive but fundamental effects of spatial clustering

on the evolutionary dynamics. In particular, the clustering plays its role without the involve-

ment of games. It is not hard to imagine the great complexity arises when games are involved
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or when complex graphs are introduced. This deserves further studies. In addition, our model

can be used as a reference case to better understand how the clustering of mutants favor or dis-

favor cooperation. Furthermore, it is a natural association that our conclusion calls for biologi-

cal experiments, such as the microbial experiments, to verify the effect of spatial assortment on

evolutionary dynamics.

Supporting information

S1 File. Python program. We implemented our developed algorithm in a Python program to

calculate the theoretical fixation probabilities and the derivatives. The code is also available at
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