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Abstract

The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina.
Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h
locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The
underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity,
low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using
chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of
thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor
activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature,
synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of
body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic
parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and
locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of
intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and
activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat
production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on
thermoregulation and energetics of subterranean rodents.
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Introduction

Daily, 24 h rhythmic variations in body temperature (Tb) are

found in most mammals studied to date [1] and result from the

association between daily rhythms of body heat ‘‘production’’

(endogenous increase of Tb) and heat ‘‘loss’’ (due to thermal

conductance changes) [2,3]. These might be adaptive for

homoeothermic surface-dwellers, which face the daily challenge

of maintaining their Tb within narrow limits, in an environment

where ambient temperature varies on a day-night basis [4].

Subterranean rodents spend most of the time inside burrows in

which the amplitude of the daily ambient temperature (Ta) and

other environmental cycles are attenuated [5,6]. The genus

Ctenomys (Caviomorpha: Ctenomyidae), commonly known as

tuco-tucos comprises more than 50 species occupying much of

South America [7]. Besides one species that is known to be social

[8,9], most of them are solitary and emerge aboveground on a

daily basis for foraging, therefore exposing themselves to surface

Ta [10–12]. Several energetic studies have been carried out with

Ctenomys species [13–17] in light of the thermoregulatory

challenges of the underground environment, such as the high

energy demands of digging, limited food quantity and quality and

variable degrees of hypoxia/hypercapnia [18–20]. These studies

are focused on daytime measurements and average values of

thermoregulatory parameters. Our aim is to contribute towards

exploring day-night variations of thermoregulatory functions,

starting with the daily Tb rhythms, in these subterranean rodents.

Tuco-tucos of the species Ctenomys aff. knighti display robust

circadian wheel running activity rhythms that are entrainable to

light/dark (LD) cycles both in laboratory [21,12] and field

conditions [11]. In this sense, we hypothesized that they show

robust and light-entrainable rhythmic patterns of Tb whose

parameter values could contribute to a broader study of

rhythmicity in subterranean rodents [22]. First, we verified the

persistence of circadian Tb rhythms under constant conditions and

tested for its photic entrainment. The timing association between

Tb and locomotor activity rhythm was investigated along the

entire protocol. Because vigorous activity elicited by the running
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wheel has already been shown to modulate rhythmicity [23,24] we

compared rhythmic parameters measured in the presence and in

the absence of the wheel. Furthermore, because locomotor activity

itself ensues acute Tb increases, a demasking method developed by

Weinert and Waterhouse [25] was used to filter these increases.

This method is based on the assumption that the acute effect of

activity on Tb varies along the day, due to day-night variations in

the thermal conductance of the body [3,26,27].

Materials and Methods

1. Ethics statement
Trapping and experimental procedures were authorized by the

Environmental Department of La Rioja (permits 028-10 and 062-

08) and approved by the Ethics Committees of the Biosciences

Institute of the University of São Paulo, Brazil (permit 153/2012)

and of the Faculty of Veterinary Sciences of La Plata University,

Argentina (permit 29-2-12). All the procedures followed the

guidelines of the American Society of Mammalogists for the use of

wild mammals in research [28].

2. Animals and housing conditions
Experiments were conducted in Anillaco (28u 489 S; 66u 569 W;

1350 m), located in the Argentinean province of La Rioja. Tuco-

tucos used in this study were captured within a 3 km radius of

Anillaco. Species identification of the animals found in this area is

still undergoing (for details see [11]). In this paper they will be

referred as Ctenomys aff. knighti.

Six adult females (#45, #46, #52, #100, #101 and #106;

128–176 g) and three adult males (#69, #97 and #98; 177–

195 g) were housed individually in plastic cages equipped with

running wheels (23 cm diameter, 10 cm wide, 1 cm between bars).

Shredded paper was provided as nesting material and renewed

weekly. Food (grass, carrot, sweet potato, rabbit pellets, oat,

sunflower seeds) was provided ad libitum and replaced daily at

random times. Water was not offered because subterranean

rodents do not drink free water [29]. Each cage was placed inside

a light-tight box, equipped with one incandescent red light bulb

connected to a dimmer, which provided red dim light (1–5 lux),

and one fluorescent bulb connected to a timer, which provided

light intensity of 200–250 lux at cage lid level. To facilitate animal

care, red dim light was kept ‘‘on’’ throughout all experiments,

including the so-called ‘‘dark phase’’. Animals were kept either

under constant darkness (DD) or under a LD cycle with 12 hours

of darkness followed by 12 hours of light (LD 12:12). During the

LD cycle the fluorescent light bulb was turned on at 07AM (local

time, GMT -3). Relative humidity ranged from 30% to 60% and

room temperature was maintained at 2662uC, which is within the

thermoneutral zone of other Ctenomys species [13]. Records of

room temperature and relative humidity were taken every 15

minutes by HOBO U10/003 data loggers (Onset Computer

Corporation, Bourne, MA).

3. Surgical procedures and data collection
To monitor core Tb and gross motor activity, telemetric

transmitters (G2 E-Mitters, Mini-Mitter, Bend, OR) were

implanted intraperitoneally. As surgical procedures were never

performed in this species before, we developed a new protocol by

adapting techniques and drug dosages used for other, similar-

sized, rodent species. In summary, four animals (#45, #46, #52

and #69) were anesthetized with 100 mg/Kg of ketamine

(Ketamina 50, Holliday-Scott S.A., Buenos Aires, Argentina)

and 10 mg/Kg of xilazine hydrochloride (KensolH, Avellaneda,

Argentina). The remaining animals were anaesthetized with

200 mg/Kg of ketamine and 20 mg/Kg of acepromazine

(Acedam, Holliday-Scott S.A., Buenos Aires) since this combina-

tion and dosage proved better efficiency and survival success.

Tricotomy, local disinfection and carefully prepared surgery fields

reduced infection risk. The frequent post-surgical removal of

suture stitches by the animals was avoided using polyglicolic acid

thread (the only material that did not generate allergic itching

irritation), interrupted suture stitches (instead of continual), and

home-made Elizabethan Collars during the hyperactive anesthesia

recovery phase. The extremely thin abdominal muscular layer of

this species required a small thread diameter (5-0 or 6-0).

Hypothermia was avoided with thermal blankets (P010507, La-

sure, São Paulo, Brazil). Immediately after surgery and in the

following two days, tuco-tucos received a subcutaneous injection of

antibiotic, enrofloxacin (FlotrilH 2.5%, Schering-Plough, Rio de

Janeiro, Brazil; 10 mg/Kg), and analgesic, flunixin meglumin

(BanamineH Schering-Plough, Rio de Janeiro, Brazil; 2,5 mg/Kg).

After surgery, animals were allowed three to five days of recovery

before returning to the animal facility where the experiments took

place.

Each cage was placed above receiver boards (ER 4000, Mini-

Mitter, Bend, OR) connected to a computer where data was

processed by the software VitalView (Mini-Mitter, Bend, OR).

Running-wheel revolutions were recorded by the ArChron Data

Acquisition System (Simonetta System, Universidad Nacional de

Quilmes, Buenos Aires, Argentina). Recordings of all variables

were made at 5-minute intervals.

4. Experiment 1
To verify endogenous, circadian rhythmicity and photic

entrainment, six tuco-tucos (#54, #56, #52, #69, #97 and

98#) were kept under DD for 25–60 days. Next, animals were

exposed to LD 12:12 for 14–41 days followed by reestablishment

of DD for 15–21 days. Different time intervals, in each condition

for each animal, were due to individual differences in achievement

of steady state entrainment and free-runs without aftereffects.

(Table S1 shows the exact number of days to which each animal

was exposed in each condition).

To verify the effect of running-wheel on rhythmic parameters,

the running wheel was removed immediately after the previous

protocol (while the animals were still in DD) and the tuco-tucos

were exposed to the same series of conditions: 1) DD for 25–60

days; 2) LD for 14–41 days; 3) DD for 16–21 days (see Table S1).

After wheel removal, we only relied on the intraperitoneal

transmitter to monitor motor activity. Instead of measuring

displacement, as was the case of the running wheels, this

transmitter detects activity every time its angle relative to the

receiver antenna changes.

5. Experiment 2
To investigate the acute effects of locomotor activity on Tb, we

recorded the rhythms of three animals (#100, #101 and #106)

kept under LD 12:12. Initially these animals had access to the

running wheel, for eight days. Then, the wheel was removed and

the measurements continued for eight days.

6. Data analysis
Experiment 1. Data of all parameters were depicted in

double-plotted actograms (see Fig. 1), using the software El Temps

(Dı́ez-Noguera, Universitat de Barcelona, Spain, 1999). To

enhance the graphic output, the actograms of Tb are displayed

only at values above a threshold determined for each animal. In

this sense, a black bar was plotted across a 24-hours axis every

time the temperature rose above the threshold. When temperature

Body Temperature Rhythms in Subterranean Rodents
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was lower than this value, a blank space was left. The gross motor

activity actograms were constructed in a similar manner, with a

black bar plotted every time the counts were higher than 50 per 5-

min interval. Actograms were visually analyzed to estimate phase

and rhythmic patterns. To determine periods in the different

conditions, the chi-square periodogram analysis [30] was con-

ducted, using 15-days data sets, with ClockLab software (Acti-

metrics, Evanston, IL).

To analyze range of oscillations and phase relationship between

Tb and motor activity rhythms, waveforms were constructed,

using the 10-day means for each time of the day. Phase

relationship between temperature and activity rhythms was

calculated using the onset of each waveform as the reference

phase (calculated as phase relationship = onset Tb - onset wheel

running). This onset was defined as the time when the waveform

value exceeded the overall mean for at least one hour [31,32]. The

range of oscillation was calculated as the difference between the

maximum and minimum mean values. Waveform depiction and

analysis were performed with R version 2.11.1 [33].

Experiment 2. To identify the acute effects of locomotor

activity on the Tb rhythm, linear regressions between gross E-

mitter activity and Tb levels were made at different phases of the

day, using data of LD synchronized rhythms, from animals with

and without wheels. According to the employed demasking

method [25], Tb at any time reflects the amount of activity that

was integrated over a previous Integration Time (IT, in minutes)

interval. IT was estimated based on the best correlation between

activity and Tb levels. Tested IT values ranged from 10 to 60

minutes, in 5 min increments. Data series of Tb and activity

integrated over previous IT intervals were constructed and each

series was then divided into 2 h sections. Data obtained for each

section, throughout all 16 days of measurements were grouped

and IT chosen for the highest Pearson correlation, which

corresponded to 20 minutes (Table S2 and Fig S1). Endogenous

Tb values for null activity were extrapolated at each phase of the

day through linear regressions of data corresponding to 3-hour

intervals of the day. To investigate whether the effects of motor

activity on Tb change during the day we calculated the average

regression gradient (i.e. slope of the regression line) for 2-h

sections. These gradients were calculated using activity integrated

over 20 minutes. These calculations included data from animals in

experiment 1 using, for each animal, 4 days with and 4 days

without wheels, all under stable LD entrainment. To verify

whether the differences in gradient along the day were significant,

we used the non-parametric Friedman test to compare 4 sections

of 6 hours each (22 h-04 h, 04 h-10 h, 10 h-16 h and 16 h-22 h).

All analysis was performed with R version 2.11.1 [33].

Figure 1. Free-running and synchronized rhythms, with and without running-wheels. Double-plotted actograms of Tb, gross motor
activity and wheel running of a representative individual (#69). Black bars indicate the moments in which Tb rose above 36.2uC (left), gross motor
activity rose above 50 counts (middle) and in which wheel running revolutions were detected (right). Gray and white backgrounds represent darkness
and light hours, respectively. Orange line indicates the day in which the running wheel was removed. Red dashed lines indicate the onset of the free-
running rhythms in the first DD exposure. Rhythms then synchronize to the LD cycle and upon reestablishment of DD, the phase of the onset is
determined by the previously synchronized rhythm, not the one projected by the red line. This is indicative of entrainment of the circadian oscillator
by the LD cycle, as opposed to masking of the output rhythms.
doi:10.1371/journal.pone.0085674.g001

Table 1. Periods of the Tb rhythm in DD and phase
relationship between wheel running and Tb rhythms in LD.

Period in DD Phase relationship1 in LD

Animal With wheel Without wheel Tb and wheel running

#45 24.2 h 24.2 h 32 min

#46 23.9 h 23.9 h 235 min

#52 24.2 h 24.12 h 10 min

#69 24.2 h 24.2 h 2115 min

#97 24.3 h 24.2 h 30 min

#98 24.1 h 24.2 h 5 min

1Phase relationship = onset Tb - onset wheel running
doi:10.1371/journal.pone.0085674.t001

Body Temperature Rhythms in Subterranean Rodents
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Results

1. Experiment 1
Body temperature, in all tuco-tucos, was rhythmic under DD,

with periods slightly different from 24 hours (Fig. 1 and Table 1).

Tb rhythm was strongly associated with motor activity rhythms,

with identical period and stable phase relationship. When tuco-

tucos were exposed to LD 12:12, after a few transient days, all

rhythms readily synchronized to the cycle. Highest temperatures

and motor activity were concentrated in the dark phase.

Upon reestablishment of DD (day 60), the phase of free-running

rhythm was shown to be determined by the previous LD cycle

(Fig. 1). This indicates that synchronization to the LD cycle

occurred due to entrainment of the circadian oscillator. Under

LD, phase relationship between wheel-running rhythm and Tb

rhythm ranged between 2115 and 32 minutes (Table 1).

Period of Tb and activity rhythms (Table 1) did not change

significantly when the running-wheel was removed from the cage.

Rhythms also synchronized to the LD cycle, with Tb remaining

essentially high during the dark phase. Wheel removal resulted in a

Figure 2. Temporal relationship between Tb and motor activity rhythms. Waveforms of Tb (red) and gross motor activity (black) rhythms of
three individuals under LD 12:12 (lights on at 07:00 am), with (left) and without (right) running-wheels. Each point represents the average of 10-day
measures for the corresponding time of the day. Horizontal lines indicate the mean of the total values obtained for each variable and vertical gray line
represent the standard deviation for Tb for each time over the 10 days.
doi:10.1371/journal.pone.0085674.g002
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decrease of gross motor E-mitter activity in half of the individuals

(Fig. S2).

In four animals, the mean value of Tb was higher (0.13–0.2uC)

after wheel removal and in two it decreased slightly (0.03–0.1uC)

(Fig. 2 and Table S3). The range of oscillation values of Tb

rhythms reported when individuals had running wheels were

closer to the predicted values for similar sized rodents [2] (Table 2)

and consistently larger than those reported when the wheel was

removed, and this trend was observed in five out of six of the

experimental individuals used. Only individual #97 showed an

inverse situation.

2. Experiment 2
The regression gradients between activity and Tb were higher

during darkness hours than light hours (Fig. 3). Friedman test

indicated that the differences in gradient during the day were

significant (p,0.05). Demasking of Tb rhythm consisted of

subtracting the amount of Tb due to the acute effects of locomotor

activity, at each hour of the day. A comparison between raw Tb

data and demasked data is shown in Fig. 4. The demasked curve is

clearly smoother than the raw data, indicating that several acute

effects of activity bouts were filtered. Periods and peak phases did

not change after demasking and range of oscillation changes are

shown in Fig. 4.

Discussion

All tuco-tucos exhibited circadian rhythms of Tb. These

rhythms were closely associated in time with the motor activity

rhythms and showed a nocturnal pattern under the 12:12 LD

cycle. Synchronization to LD resulted from the entrainment of the

oscillator rather than by a direct reaction to light (masking), as

evidenced by transient cycles upon LD establishment and the

maintenance of the phase determined by LD upon reestablishment

of DD (Fig.1) [34].

The circadian range of oscillation of Tb under a LD cycle (from

0.8 to 1.4uC) was slightly lower than that predicted for non-

primate mammals according to the equation given by Aschoff [2],

which relates the range of oscillation in Tb and body mass

(Table 2). This range of oscillation was also lower compared with

that of other similar-sized rodents that are dark-active under 24 h

LD cycles (e.g., 2uC and 2.9uC in Long-Evans rat and Syrian

hamster, respectively) [35]. On the other hand, the mean Tb

values (from 36.35 to 36.81uC) were similar to the ones reported

for other Ctenomys species (36.1uC and 37.3uC, C. talarum and C.

australis, respectively) [13], but higher compared to other

subterranean rodents (e.g., 35.1uC and 35.0uC for Heliophobius

argenteocinereus and Fukomys damarensis, respectively) [20,36] at thermo-

neutrality. It is similar to the mean interspecific Tb of 36.9uC,

reported by Arends and McNab [37] calculated for 30

caviomorph rodent species from several families and habitats.

Interestingly, Caviomorph rodents have a higher basal metabolic

rate than other mammals of the same body mass [37].

Several studies have indicated that rhythmic parameters may be

modulated by the running-wheel, a device that has traditionally

been employed for chronobiological measurements. Rodents are

prone to run vigorously on running-wheels [38,39] and the

ensuing high activity levels might feedback on the circadian

oscillator [40]. In contrast to the findings in hamsters, rats and

mice [41,42,23], vigorous running on the wheel did not change

rhythmic parameters such as the circadian period in the tuco-tuco

(Fig.1). Furthermore, changes in the phase of LD synchronized

rhythms, such as the dramatic switch from a nocturnal to diurnal

pattern reported for Nile grass rats (Arvicanthis niloticus) [24] and the

degu (Octodon degus) [43] was not observed in tuco-tucos upon

wheel removal (Fig.1). This switch is not uncommon and has

already been reported in Ctenomys aff. knighti under a different

context [11]. All tuco-tucos ran vigorously on the wheels, but data

from the implanted E-Mitters showed that removal of the wheel

did not decrease activity levels in half of the animals (Figure S2).

This discrepancy may be related to inter-individual differences in

the expression of new behaviors upon wheel removal, such as

climbing [44] and digging-like behavior. Notwithstanding, a trend

for range of oscillation decrease was observed upon wheel removal

(Table 2). Reduced range of oscillation of the Tb rhythm after

running wheel removal was reported for hamsters [45,46] and the

subterranean rodent Heterocephalus glaber [47]. When animals have

access to running wheels, higher Tb during the active phase

possibly occur in part due to the direct contribution of heat

Table 2. Range of oscillation of Tb rhythms synchronized to
the LD cycle.

Animal Mass With wheel Without wheel Predicted1

#45 152 g 1.44uC 0.82uC 1.770uC

#46 176 g 1.31uC 0.77uC 1.720uC

#52 146 g 1.03uC 0.95uC 1.784uC

#69 177 g 1.52uC 1.40uC 1.718uC

#97 195 g 0.80uC 0.96uC 1.685uC

#98 190 g 1.37uC 1.07uC 1.694uC

1Based on the equation log RT = log 4.762– 0.197 log Mb (Aschoff, 1982),
where RT is range of oscillation and Mb is body mass.
doi:10.1371/journal.pone.0085674.t002

Figure 3. Gradients of linear regression of Tb and motor
activity in different times of the day. Average gradients of the
linear regression model of Tb and motor activity (integrated over
20 min) of nine animals under an LD cycle. Regressions were
performed, for each animal, in 2h-windows, using data from 4 days
when they had access to a running wheel and from 4 days when the
wheel was absent. Gray lines indicate the standard deviation. The bar
above the graph represents the light (white)/dark (black) cycle.
doi:10.1371/journal.pone.0085674.g003
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generated by muscular activity. This hypothesis is supported by

the fact that shortening of the range of oscillation occurred mainly

due to a decrease in maximal values, rather than to an increase in

minimum values [48].

The best correlation between Tb and activity level increases

were found for IT = 20 min. This means that it takes an average

20 min for an amount of muscular activity to increase Tb, due to

the time it takes for muscle heat to be distributed through the body

and to its thermal capacity [25]. The regression gradients between

Tb and activity levels were on average higher during the dark

phase of the light/dark cycle (Fig.3), indicating that the same

amount of activity ensues higher Tb increase during the night than

during the day [26]. This may be due to a daily variation in body

conductance, with less exercise heat dissipated during the dark

phase and due to the daily variation in heat production [25]. This

is similar to the findings in rats [49] and opposite to what was

found in mice [25], indicating interspecies differences among

nocturnal species. Higher body conductance that facilitates heat

dissipation during the day might explain the tiny Tb increment

elicited by simulated, vigorous digging activity in tuco-tucos,

performed during day-time hours [15]. Defense of low metabolic

rates constitutes a common strategy for energy savings in

subterranean rodents [13] and these have been reported for other

Ctenomys species [16]. Lowered conductance due to higher

peripheral vasoconstriction during the night might contribute to

energy saving and higher Tb during the night in these nocturnal

Figure 4. Comparison of the daily Tb rhythm before and after the demasking treatment. Waveforms of raw (left) and demasked (right)
data from three animals with access to a running wheel under LD 12:12 cycle. Each point represents the average of 8-day measures for the
corresponding time of the day. Horizontal lines indicate the mean of the total values obtained for raw and demasked Tb and vertical gray line
represent the standard deviation for Tb for each time over the 8 days. Above each waveform are the range of oscillation values. The numbers on the
left are the codes for each animal.
doi:10.1371/journal.pone.0085674.g004

Body Temperature Rhythms in Subterranean Rodents
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species. Finally, Gordon and Yang [27] have revealed the further

complexity of the temporal correlations between Tb and

locomotor activity by showing their dependence also on sex,

reproductive cycle stage and average ambient temperatures.

To which extent precise Tb rhythms improve the animal’s

fitness in their natural habitat is an issue still to be investigated, but

some speculations can be made. Tb rhythms may be important for

thermoregulation in an environment with daily Ta cycles,

considering they are a result of the association of the rhythms of

heat loss and production [2]. One would think this is not the case

for subterranean rodents, which live in tunnels where the daily

temperature changes are rather small. Body temperature studies in

different species of strictly subterranean rodents from Asia and

Africa reported great inter-individual variability of Tb rhythmic-

ity, with the occurrence of nocturnal, diurnal, crepuscular and

even arrhythmic individuals within the same species [50,22,51].

This is in sharp contrast to what is exhibited by the tuco-tucos, in

which Tb is always rhythmic and nocturnal under laboratory

conditions. These results reinforce the statement that C. aff knighti

displays much less polymorphism in rhythmic patterns than other

subterranean rodents [21]. Some morphological features, such as

the size of the eye and structure of the retina, also distinguish

ctenomyids from other subterranean rodents [52]. Remarkably,

tuco-tucos forage aboveground [10,11] more frequently than other

strictly subterranean rodents [53,47] and it has been shown that

these surface excursions ensure photic entrainment of their

circadian oscillators [12]. Thus, they are more exposed to external

conditions, which could have been a selective pressure for the

maintenance of rhythmicity. Another adaptive value of the Tb

rhythm may be that it possibly plays a major role as an internal

synchronizing cue for peripheral oscillators [54]. This is of great

importance in order to maintain internal temporal order, which is

vital even for organisms living mostly in underground environ-

ments, such as the tuco-tucos. Further studies on whether tuco-

tucos are indeed rhythmic in the field will certainly provide

insights on the meaning of biological rhythms for these animals,

which live in such a peculiar environment.

Supporting Information

Figure S1 Average correlation coefficients for several
integration times (IT). Averages were calculated by Pearson

method, from data of seven individuals maintained under an LD

12:12 cycle. Three individuals were used in Experiment 2 and four

others were maintained in the same conditions but were not used

in further experiments.

(TIFF)

Figure S2 Means of the daily total gross motor activity
over 10 days (in LD) in the presence (gray) and absence
(white) of running wheels. Black vertical lines show the

standard deviation. Asterisks indicate significant difference be-

tween the two conditions (T-test p,0.05).

(TIFF)

Table S1 Information about the individuals used in this
study and number of days each animal spent under each
condition.

(DOCX)

Table S2 Average Pearson correlation coefficients for
several integration times (IT) in each 2 h window.
Averages were calculated from data of seven individuals

maintained under an LD 12:12 cycle. The highest coefficient for

each 2h-window are highlighted in red. Except for window 8–10 h

and 16–18 h, higher correlations were found for IT = 20 min.

(DOCX)

Table S3 Parameters of the Tb rhythm with and without a

running wheel.

(DOCX)
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