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Abstract: For ultra-rapid orbits provided by the Global Navigation Satellite System (GNSS), the key
parameters, accuracy and timeliness, must be taken into consideration in real-time and near real-time
applications. However, insufficient observations in later epochs appear to generate low accuracy
in observed orbits, for which a correlation between the Dilution of Precision (DOP) of the orbit
parameters and their accuracy is found. To correct the observed GNSS ultra-rapid orbit, a correction
method based on the DOP values is proposed by building the function models between DOP values
and the orbit accuracy. With 10-day orbit determination experiments, the results show that the
observed ultra-rapid-orbit errors, generated by insufficient observations, can be corrected by 12–22%
for the last three hours of the observed orbits. Moreover, considering the timeliness constraints in
ultra-rapid-orbit determination, a DOP amplification factor is defined to weight the contribution
of each tracking station and optimize the station distribution in the orbit determination procedure.
Finally, six schemes are designed to verify the method and strategy in determining the ultra-rapid
orbit based on one-month observations. The orbit accuracy is found to decrease by 1.27–6.34 cm
with increasing amplification factor from 5–20%. Thus, the observed ultra-orbit correction method
proposed is ideal when considering accuracy and timeliness in ultra-rapid orbit determination.

Keywords: observed ultra-rapid orbit; orbit determination; dilution of precision; amplification factor;
orbit correction

1. Introduction

The analysis center (AC) of a Global Navigation Satellite System (GNSS) provides ultra-rapid,
rapid, and final products and services, such as orbits and clocks, to GNSS users, of which the ultra-rapid
orbit plays an important role in real-time and near real-time applications. Because the accuracy of
the ultra-rapid orbit affects directly the ambiguity resolution [1] and the results of precise point
positioning [2], there is a strict accuracy requirement on ultra-rapid orbits from ACs. For instance,
the International GNSS Monitoring and Assessment Service (iGMAS) lists in detail the observed
and predicted accuracies of multi-GNSS ultra-rapid orbits [3]. However, the three-dimensional
root-mean-square errors (3D RMS) of GPS ultra-rapid predicted orbits within the 6- and 24-h periods
may be up to 41.7 mm and 80.2 mm, respectively (IGS mail 6053), which lags behind the final precise
orbit of the International GNSS Service (IGS) and does not meet with the high-precision requirements
of GNSS users. Because the accuracy of ultra-rapid orbits is low, orbit prediction strategies [4], optimal
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prediction arcs [5], prediction time intervals [6], and the impact of Earth rotation parameters [7] were
investigated by scholars to refine the orbit models and strategies. However, the research on ultra-rapid
orbits is concerned mainly with the predicted values, whereas for the observed values, little has been
done in detail. In addition, high-precision GNSS ultra-rapid orbits for different navigation satellite
systems are prerequisite in the expansion to fast high-precision GNSS services with the flourishing
development of the GNSS, which includes the “three-step” strategy of the BeiDou satellite system
(BDS) [8].

Furthermore, timeliness also poses difficulties to GNSS ultra-rapid products and GNSS applications.
However, multiple GNSS developments [9] and tracking network extensions of IGS, iGMAS, and
Multi-GNSS EXperiment (MGEX) present a great challenge to ACs in regard to timeliness [10,11].

To improve the computational efficiency of multi-GNSS solutions, different strategies have been
proposed concerning parameter optimization, such as parameter elimination [12], carrier-range [13],
algorithm Ambizap [14], and increasing solution intervals [15]. Moreover, the optimal tracking
stations distributions were investigated based on the relationship between the orbit parameters and
geometrical configuration [11,16,17]. However, timeliness and accuracy of GNSS ultra-rapid-orbit
determination cannot be thoroughly solved in light of the obvious drawbacks in the methods and
strategies mentioned above such as the neglect of parameter correlations [18], inconsistent intervals
and references of products, and inaccurate function models. Therefore, given the uneven tracking
stations distribution, the redundancy of observations, and the increasing number of GNSS satellites,
timeliness and accuracy of the ultra-rapid orbits determination needs to be taken into consideration.

To solve these problems, it should be noted that timeliness and accuracy of ultra-rapid orbits are
related to tracking observations directly. Furthermore, there are two main indices used in analyzing
the contribution of tracking observations to parameter solutions; they are called the observation
accuracy and the DOP [19], the latter representing the impact of the geometrical configuration between
satellites and tracking stations on the orbit determination parameters [20,21]. Moreover, the optimal
configuration of point positioning, based on the DOP values has been widely studied [22]. It assumes
minimum DOP values of Earth’s core as values on Earth’s surface but is inconsistent with the orbit
determination models. In addition, for some special situations, the optimal distributions of stations
based on the DOP values were proposed to determine Earth rotation parameters [23] and the BeiDou
geosynchronous orbit [16]. However, according to the related orbit determination experiments, it is
suggested that the number of stations and their distribution are correlated with the accuracy of the orbit
and its related parameters [24,25]. Therefore, the accuracy of orbital space state parameters (positions
and velocities) of each epoch influenced by observations may be represented by a function based on the
orbit determination geometrical configuration. To correct the observed ultra-rapid orbit obtained from
the available observations, a function relating the orbit accuracy and the DOP values is constructed.
For areas with redundant observations, a strategy based on the minimum DOP values to optimize the
observations may take timeliness and accuracy of ultra-rapid orbits into consideration more effectively.
An effective way to improve accuracy and timeliness of the ultra-rapid orbit is achieved by making
full use of the DOP values of the orbital state parameters in the ultra-rapid-orbit determination.

In this study, based on the low-accuracy observed ultra-rapid orbit generated by the available
observations in the latter arcs and its impacts on the predicted parts, a function model is proposed
that uses the correlation between orbit parameter accuracies and DOP values. With a highly accurate
prediction of the DOP values, the observed orbit accuracy is improved with this orbit correction
method. In addition, considering timeliness and accuracy of the ultra-rapid orbit, an optimized orbit
determination strategy is discussed in terms of DOP values. Section 2 discusses the principle of the
orbit correction method. Section 3 provides an analysis of the accuracy of current observed ultra-rapid
orbit and its predicted parts. The experiments on orbit corrections and the contribution of tracking
stations and the optimization of their distribution based on DOP values of ultra-rapid orbits are also
presented in Section 3. Section 4 gives the experimental analyses of ultra-rapid orbit determination.
Finally, conclusions and prospects are presented in Section 5.
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2. Principle of Orbit Correction Method

Given the analyses in Section 3.1, the DOP values of orbit parameters were found to have a high
correlation with orbit accuracy, especially when observations are sufficient. Therefore, in the last arcs
of the observed ultra-rapid orbit, the accuracy of the orbit influenced by the observations may be
corrected indirectly by the corresponding DOP values as detailed below.

Assume the observation equation of one epoch is [11]:

V(ti) = L(ti)− A(ti)X(ti), (1)

where i represents the ti-th epoch, V(ti) the residuals of the equation, X(ti) the orbit parameters
(positions and velocities), L(ti) the observations, and A(ti) the design matrix expressed as [10]:

A(ti) = diag
(

a1 a2 · · · am−1 am

)
, (2)

am =



∂ρ
sm−r1
m,1

∂xsm
m

∂ρ
sm−r1
m,1

∂ysm
m

∂ρ
sm−r1
m,1

∂zsm
m

∂ρ
sm−r1
m,1

∂
.
xsm

m

∂ρ
sm−r1
m,1

∂
.
ysm

m

∂ρ
sm−r1
m,1

∂
.
zsm

m
∂ρ

sm−r2
m,2

∂xsm
m

∂ρ
sm−r2
m,2

∂ysm
m

∂ρ
sm−r2
m,2

∂zsm
m

∂ρ
sm−r2
m,2

∂
.
xsm

m

∂ρ
sm−r2
m,2

∂
.
ysm

m

∂ρ
sm−r2
m,2

∂
.
zsm

m
...

...
...

...
...

...
∂ρsm−rn

m,n
∂xsm

m

∂ρsm−rn
m,n

∂ysm
m

∂ρsm−rn
m,n

∂zsm
m

∂ρsm−rn
m,n

∂
.
xsm

m

∂ρsm−rn
m,n

∂
.
ysm

m

∂ρsm−rn
m,n

∂
.
zsm

m


(3)
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where tr is the signal reception time and ∆t the time taken for the signal to go from satellite to station.
From Equation (1), the cofactor matrix can be expressed as:

Q(ti) =
(

AT(ti)PA(ti)
)−1

, (5)

where P is the weight matrix of the observations, which is elevation-dependent for observations below
30◦ as in [26]; the observations below 10◦ are deleted when using Equation (1). Then, the DOP value of
the k-th parameter is:

DOP(ti)k =
√

Q(ti)kk. (6)

Hence, the initial precision of one parameter can be expressed as:

σk = σ0 · DOP(ti)k, (7)

where σ0 is related to the accuracy of observations.
To build the orbit correction function, the total DOP values up until the current epoch for one

orbit parameter is:

[DOP(ti)k] =

√
[DOP(ti−1)k]

2 + (DOP(ti)k)
2. (8)

Here [DOP(ti−1)k] represents the total values of the k-th parameter between the first and
ti−1 epoch.
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Suppose that the parameter corrections of the orbital states of a satellite are dX(ti), which can be
expressed as functions of [DOP(ti)]; hence:

dX(ti) =


dX1

dX2
...

dX6

 =


f ([DOP(ti)1])

f ([DOP(ti)2])
...

f ([DOP(ti)6])

, (9)

where f (·) is the orbit correction function, which is determined by the orbit length and interval.
Moreover, dX(ti) denotes the corrections for positions and velocities of a satellite as given in Equation
(3). From the equations of the orbit determination, the DOP values of the orbit parameters of each epoch
can be accurately acquired. Therefore, the function models between the orbit parameter corrections
and the DOP values can be built based on different mathematical models, which should be selected
before orbit correction. In this section, to clearly describe the correction method, the polynomial model
chosen as an example to discuss is:
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 (10)

where α represents the polynomial coefficient, ξ the fitting residual, and d the order of the polynomial
function. In Equation (10), d should be selected based on the Akaike information criterion [27] to avoid
polynomials of too-high order in different orbit determination solutions. Moreover, the maximum of d
should be less than 9. The function between the orbit parameters corrections and the corresponding
DOP values may be established by estimating the polynomial coefficients accurately. For a low
accuracy of the last arc in the observed ultra-rapid orbit, the corrections may be acquired indirectly
using Equation (9), which takes the DOP values as independent variables. Following [28] and the
characteristics of the DOP values, the orders of the polynomial function should be calculated using the
Akaike information criterion [27] to describe the trend well. We assume the DOP values for a satellite
have the form:

[DOP(tj)k] = θ0 + θ1tj + · · ·+ θbtb
j + e(tj), (11)

where θ denotes polynomial coefficient; e the model error, and tj the epoch number. Stacking all
available DOP values as a vector, Equation (11) becomes:

[DOPk] = Gθ+ d[DOPk], (12)

where G represents the coefficient matrix, d[DOPk] the residuals of the fitting models, and θ =

[ θ0 θ1 θ2 · · · θb ]T. Thus, the coefficient of the DOP function is:

^
θ = (GTG)

−1
GT [DOPk], (13)

Setting the current epoch as tj = 0, then, the predicted [DOP(tj)k] is:

[DOP(tj)k] = θ̂0. (14)

Substituting the predicted DOP values into Equation (9) yields the orbit corrections and improves
the orbit accuracy. However, the correction method mentioned concerning the observed ultra-rapid
orbit is based on the optimal geometrical configuration between satellites and stations. Theoretically,
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the more tracking stations and the more uniform the distribution of the stations, the better the
geometrical configuration is for orbit determination. However, because of timeliness of the ultra-rapid
orbit, it is impossible to deal with all observations downloaded by the ACs. Hence, strategies for orbit
determination, taking accuracy and timeliness into account, are discussed in the following sections.

3. Experiments Results of Ultra-Rapid Orbit Determination Correction

3.1. Accuracy Analysis of the Observed Ultra-Rapid Orbit

To serve real-time and near real-time users, the IGS began producing ultra-rapid-orbit products
officially on November 2000, originally with updates every 12 h [29]. The update cycle was reduced
to every 6 h starting April 2004, the update comprising 24-h observed orbit and 24-h predicted orbit
services. At present, GNSS users can acquire combined GPS and GLONASS ultra-rapid orbit with a
3-h latency, whereas iGMAS provides a four-system ultra-rapid orbit (including Galileo and BeiDou).
To analyze the accuracy of the ultra-rapid orbit fully, the products from Wuhan University (WHU,
iGMAS AC) [30] and the German Research Center for Geosciences (GFZ, IGS AC) [31] are taken as
references to calculate the orbit residuals. One-month of ultra-rapid orbits from day of year (DOY) 168
to 197, 2017 of WHU were selected in the orbit accuracy analysis. The residuals between the observed
parts of the ultra-rapid and the rapid orbits were extracted. The corresponding average 3D RMSs,
listed in Table 1, show that the accuracy of the observed ultra-rapid orbits decreases for all systems in
the latter arcs of the observed parts, especially for the final 3 h. Moreover, note that the results of the
3D RMSs are calculated based on data from all satellites of each system for which the low accuracy of
the observed parts is not suitable for all satellites involved based on the experiments.

Table 1. Average 3D RMSs of the observed ultra-rapid orbit (cm) of WHU AC.

Systems 1–20 h 21 h 22 h 23 h 24 h

GPS 3.6 3.5 4.6 6.3 7.5
GLONASS 6.1 5.6 6.1 7.5 10.2

BeiDou 12.9 12.1 12.4 15.6 21.8
Galileo 8.2 13.2 13.5 14.4 17.9

To describe the orbit errors in more detail, the ultra-rapid orbit from WHU (whu19540_00.sp3,
DOY 168, 2017) is set as an example. Corresponding to the ultra-rapid orbit of WHU, the GFZ rapid
orbit (gbm19536.sp3) is selected as a reference to compare the orbit accuracy between different ACs.
Figure 1 plots the 3D RMSs of orbits from the four satellite systems (GPS/GLONASS/Galileo/BeiDou)
between WHU and GFZ during the last 3-h period, in which only the satellites with significant
reduction in accuracy are extracted to highlight the trend.

In addition, to describe the impact of low accuracy of the observed part on the predicted orbit,
the last 1-h of observed orbits of WHU are extracted to predict the 24-h multi-GNSS orbits. Similarly,
the WHU rapid orbits are set as references to analyze the accuracy of predicted orbits, the 3D RMSs of
which are listed in Table 2 at 2-h intervals during the first 6 h. The accuracy of the predicted orbits is
also verified by one-month experiments. To show more detail concerning the accuracy of the predicted
orbits based on the observed parts, WHU (whu19540_00.sp3) is extracted to fit the initial orbit and
predict the 24-h multi-GNSS orbit. Next, the GFZ rapid orbit (gbm19540.sp3) is set as a reference to
analyze the accuracy of the predicted orbit (see Figure 2).
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Table 2. Average 3D RMSs of the predicted ultra-rapid orbit (cm) based on WHU AC.

Systems 2 h 4 h 6 h 1–12 h 1–24 h

GPS 7.8 9.8 10.6 10.8 16.1
GLONASS 12.5 13.4 13.6 14.3 21.9

BeiDou 23.2 39.9 61.1 70.1 139.9
Galileo 16.9 26.6 32.5 34.4 49.9

From the accuracy of the observed and predicted parts of the ultra-rapid orbit, we conclude:
(1) the accuracy of the observed ultra-rapid orbit is obviously reduced during the last 2–3-h period of
the observed parts, especially for the BeiDou orbits; (2) the predicted part of the ultra-rapid orbit is
significantly limited in real-time and near real-time applications as its accuracy is influenced by that of
the observed part; (3) not all satellites have a similar reduction in accuracy; Figures 1 and 2 only show
the obvious changes in satellite orbit accuracy. Therefore, to improve the accuracy of the ultra-rapid
orbit, it is necessary to analyze and correct the orbit errors of the last part of the observed orbit. For
this purpose, the orbit accuracy is analyzed in the following section, in regard to two aspects, the DOP
values and the observation quality.

Because the stations of the ultra-rapid-orbit determination in ACs are not publicly accessible, this
study was conducted mainly based on observations of a single month (1–30 June 2016) using the data
from 409 tracking stations downloaded from the AC. First, the data quality of the tracking stations
observations was analyzed using a multi-GNSS data preprocessing software (MTEQC), developed
and improved by the authors [28]. The MTEQC mainly refers to the data analysis and preprocessing
function of the TEQC software [32], such as the cycle-slip detection. However, to analyze multi-GNSS
observations (GPS/GLONASS/Galileo/BeiDou), the authors added multi-GNSS data preprocessing
capability in MTEQC. Table 3 lists for all stations the average values of the 1-month data quality during
the first 21 h and the last three hours over a single day in which the effective MP1 (the Multipath on
P1), MP2(the Multipath on P2), and cycle-slip ratio (CSR) are listed. No significant difference is seen in
the observation quality during the day.

Table 3. Data quality of one-month observations over a single day.

Effective (%) MP1 (m) MP2 (m) CSR

1–21 h
Minimum 96.8 0.04 0.03 0.02
Maximum 100.0 0.28 0.31 4.22
Average 95.1 0.22 0.26 1.49

21–24 h
Minimum 94.2 0.06 0.09 0.02
Maximum 100.0 0.28 0.41 4.81
Average 96.3 0.21 0.38 2.48

Given that the reduced accuracy of the observed ultra-rapid orbit may arise from timeliness in the
ultra-rapid-orbit determination, the observations cannot be acquired in time. Therefore, the last 3 h of
observations with 200, 150, 100, and none of the 409 stations are kept in different schemes to calculate
the DOP values and the corresponding orbit accuracy based on the 1-month data sets. Because the
amount of experimental data and results is large, Figure 3 only plots the results of the G09, C13, E19
and R11 satellites of DOY 168, 2016, in which the DOP values and the orbit accuracy are plotted at 30-s
intervals for every epoch.
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From the statistics of the orbit accuracy, the orbit determined by the 409 stations was set as the
reference in different schemes. Because the results are similar to the 409 stations, the scheme with 200
stations was ignored in Figure 3. Moreover, to develop the relationship between the station numbers,
DOP values, and orbit accuracy, the correlation factors between the DOP values and the orbit accuracy
are given in Table 4 based on the method proposed in [7,11]. However, note that there is an exponential
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dependence between the number of stations and the DOP values in the orbit determination [10], which
is not discussed in this study. To explain this dependence, an experiment was performed to calculate
the rate of change of DOP along with the number of stations based on GPS orbit determination. Figure 4
gives the relationship between the DOP values and the number stations in which the exponential
dependence was found.

Table 4. Correlation factors between the DOP values and orbit accuracy for different schemes.

Station Numbers Correlation Factors

409 0.9283
200 0.8846
150 0.8635
100 0.8134

0 -
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Based on the above experiments, the decrease in the number of stations is seen to be consistent
with increasing DOP values. The orbit accuracy of the whole arc is also affected by the last 3 h of
observations that arises from changes in the initial orbit parameters. Nevertheless, the DOP values are
consistent with the orbit accuracy, especially for the last 3 h, the correlation factors being greater than
0.8. Therefore, the decreased accuracy of the observed ultra-rapid orbit in the last arcs arising from
insufficient observations may be corrected based indirectly on the geometrical configuration of the
orbit determination. The next part discusses and analyzes the orbit correction method based on the
DOP values.

3.2. Experiments of Orbit Correction

Because the tracking-station distributions in an ultra-rapid-orbit determination is unavailable,
the simulation experiments are used to verify the orbit correction method. The hourly observations
steadily downloaded were merged into daily data files to incorporate them into the orbit determination.
The main steps of the simulation experiments are as follows:

Step 1: Prepare the navigation files, list of stations, and station coordinates and merge daily
observations (without the last 3 h of observations); in addition, all observations are
preprocessed to refine the initial list of stations in the orbit determination;

Step 2: Calculate epoch-wise the DOP values of each parameter, then accumulate and add them to the
orbit correction equations;

Step 3: Compare the determined and predicted ultra-rapid orbit with the multi-GNSS rapid precise
orbit of GFZ to obtain the orbit residuals;

Step 4: Establish the function models between the orbit state parameters and its corresponding
accumulated DOP values;
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Step 5: Predict the DOP values of the last 3 h of the observed parts;
Step 6: Incorporate the predicted DOP values into the orbit correction function to correct the observed

part and obtain the predicted parts.

The specific steps of the above simulation experiments are shown in Figure 5. In this study,
the results of orbit corrections with 10-days (DOY 141–150, 2016) of the orbit determination were
calculated. Figure 6 plots the 10-day results of the observed ultra-rapid-orbit correction during the last
3 h and the corresponding 3D RMSs before and after improvement. Furthermore, the improvement
rate of the orbit accuracy before and after correction for different systems are listed in Table 5. To show
more details regarding the effectiveness of the orbit correction method, the predicted DOP values
(24 h) and the corrected results of C13, E19, G09, and R11 on DOY 141 were plotted (Figure 7; only the
last 3 h of the observed parts are given).
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Table 5. 10-day (DOY 141–150, 2016) results (mm) of orbit accuracy for the last three hours based on
improvement and no improvement method and its improvement rate.

Systems 141 142 143 144 145 146 147 148 149 150 Improvement Rate

GPS (no improvement) 42 43 45 48 39 48 36 42 48 42 -
GPS (improvement) 34 31 39 36 34 38 28 37 34 37 20%

GLONASS (no improvement) 59 56 67 61 66 66 72 61 77 78 -
GLONASS (improvement) 44 50 65 58 58 62 64 55 26 35 22%

Galileo (no improvement) 81 88 76 74 88 83 74 83 90 88 -
Galileo (improvement) 73 78 68 63 79 75 63 66 79 76 13%

BDS_MEO (no improvement) 80 75 88 67 86 68 66 79 88 88 -
BDS_MEO (improvement) 65 66 80 56 72 59 60 74 71 85 12%

BDS_IGSO (no improvement) 85 78 88 70 88 88 78 79 89 74 -
BDS_IGSO (improvement) 66 64 68 62 72 74 71 71 76 63 16%

From the 10-day results of the orbit correction experiments, the correction method proposed in
this study based on the predicted DOP values of the last 3 h of the observed ultra-rapid orbit was
found to improve the orbit accuracy by 12–22%. In addition, to present the accuracy of the observed
ultra-rapid correction model, the errors for the predicted DOP values and the orbit correction model
were verified. In Table 6, corresponding to Figure 7a, the differences in the 10-day DOP values between
the prediction and those without the prediction (acquired based on 409 stations) for the last 3 h are
given; they are presented as ratios between the average values of the prediction and calculation for the
last 3 h of the observed parts.

Table 6. Ratio between the prediction and without prediction of the last three hours.

Satellites 141 142 143 144 145 146 147 148 149 150

G09 94% 90% 92% 88% 89% 92% 93% 94% 88% 90%
R11 79% 76% 76% 82% 86% 82% 76% 76% 68% 86%
C13 78% 68% 68% 84% 72% 63% 67% 78% 79% 70%
E19 76% 66% 62% 62% 64% 56% 66% 67% 60% 76%

3.3. Ultra-Rapid Orbit Determination

To take into account timeliness and accuracy of the ultra-rapid-orbit determination, the
geometrical configuration between tracking stations and the satellites must be an optimal or
sub-optimal distribution. According to previous research [10,11], there is an exponential relationship
between the number of stations and the DOP values in the orbit determination. To weight the
contribution of a single station in the parameter estimations, this study defines the amplification factor
of the DOP values, specifically, the impact of a single station on the overall DOP values [11],

k = [(DOPi − DOP0)/DOP0]× 100% (15)

where DOPi indicates the DOP values based on all stations except the i-th station, and DOP0 represents
the total DOP values before elimination. Note that, given the same distribution of stations, the
more stations there are, the smaller are the DOP values. Moreover, in Equation (15), DOP0 is one
more station than DOPi. Therefore, DOPi is always than DOP0 in Equation (15). Based on different
amplification factors of the DOP values, the main steps to optimize the tracking stations distribution
are the following:

Step 1: Obtain the initial stations list, observation files, navigation files, and the corresponding
stations coordinates;

Step 2: Calculate the DOP0 values of initial stations list after data preprocessing;
Step 3: Loop all stations to output the ki (amplification factors of i-th station) of every station;
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Step 4: Compare ki with the given k; if ki is greater than k, the corresponding station is stored in the
list of stations;

Step 5: Assess whether timeliness can be meet with the requirements based on the selected list of
stations; if not, continue to expand k;

Step 6: Output the final list of stations for orbit determination.

With this procedure, the station distribution can be optimized for ultra-rapid-orbit determination,
which indirectly takes orbit accuracy and timeliness into consideration. To describe the steps in the
station optimization in more detail, Figure 8 shows the experimental processes.Sensors 2018, 18, x FOR PEER REVIEW  13 of 17 
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To analyze the effect of the station optimization methods, this study set the amplification factors
to 5%, 10%, 15%, and 20%, in sequence. The list of GFZ is chosen as a reference to compare the
station optimization schemes. Similarly, the observations of 409 stations downloaded by the ACs were
included in the experiments. Figure 9 shows the global distributions of the different schemes. For each
scheme, the orbit correction method based on the DOP values proposed in this study was used to
assess the optimization strategy.

Based on the above five schemes for ultra-rapid-orbit determination, the experiments were
conducted as described in Section 3.2. First, the station distributions were selected based on the
different DOP-derived amplification factors. The orbit determination and correction experiments
are based on a combination of 21-h observations. The accuracy of the orbit determination takes
the 409 stations as references during the 24-h period to calculate the orbit accuracy in the last 3 h.
In the experiments, a single month (DOY 122–151, 2016) of orbit accuracy data was obtained; the
corresponding orbit 1D RMSs are plotted in Figure 10.

The key legend for all four graphs is given in panel Figure 10d. In addition, to compare the
distribution of widely used stations with that for the optimized stations, 90 stations were randomly
selected and added to the orbit determination schemes.

Table 7 shows the correction results of the different satellite systems under different schemes and
the corresponding number of stations. However, note that the list of stations did not change during the
month for the orbit determination experiments. Moreover, the list of stations from different schemes
were re-selected to ensure the reliability of the experiment results before determining orbit solutions.
Moreover, in Table 7, the orbit determination of the amplification factors 5% and 10% with the same
stations for BDS show an increasing 1D RMSs, which produces changes in the parameter values related
to the orbit, such as the troposphere and station clocks, based on different stations of other systems.
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Table 7. Orbits 1D RMS (cm) of the last 3 h before and after correction and the corresponding station
numbers for different schemes.

Schemes
GPS GLONASS Galileo BeiDou

ORB (cm)
1D RMSs

Number
of Stations

ORB (cm)
1D RMSs

Number
of Stations

ORB (cm)
1D RMSs

Number
of Stations

ORB (cm)
1D RMSs

Number
of Stations

All stations - 409 - 281 - 118 - 38
5% 1.27 171 3.31 165 3.53 101 3.38 38
10% 1.61 131 4.14 129 4.61 92 4.33 38
15% 2.48 101 4.95 100 5.63 76 7.63 35
20% 3.30 91 5.72 90 6.93 70 9.72 34

GFZ_site 2.97 111 5.25 106 6.42 76 8.62 20
90 stations 3.99 90 6.53 90 7.89 66 11.95 26
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Figure 10. Orbit 1D RMSs of different orbit determination schemes: (a) GPS, (b) GLONASS, (c) Galileo,
(d) BeiDou.

4. Discussion

From the experimental results of Section 3.2, note that the orbit errors arising from the
unavailability of the observations are impossible to correct completely (12–22%). On the basis of
orbit determination solutions, we find two main reasons that impose limits on the observed ultra-rapid
orbit correction method: (1) the correlation between the DOP values and the orbit accuracy cannot be
accurately obtained and is for example affected by the perturbation models, the ambiguity resolution,
and orbit determination strategies, and (2) the errors of the predicted DOP values increase gradually
with increasing arc length in the last part of the observed orbit, and further limits corrections to the
GNSS ultra-rapid orbit. However, the orbit determination and DOP prediction models are not the
focus in orbit correction method, and will be addressed in a further study.

Moreover, it should be noted that all available stations have been included in the simulation
experiments; this ensures an optimal configuration for the orbit determination given the current stations
listed. However, because timeliness is restricted in the ultra-rapid-orbit determination, the geometric
configuration between tracking stations and satellites does not reach optimal or sub-optimal conditions
as the number of stations employed in the orbit determination diminishes, leading to a reduced
correlation between the DOP values and the orbit correction. Therefore, in the orbit determination of
the ultra-rapid orbit, the optimal or sub-optimal distribution of stations should be considered first.

Based on the six schemes in Section 3.3, we conclude that: (1) the effectiveness of the ultra-rapid-
orbit correction decreases with increasing amplification factors of the DOP values. The orbit accuracy
decreases between 1.27–6.34 cm, and the number of stations changes from 409 to 91 corresponding
to the four amplification factors. This is mainly due to a decrease in the correlation between the
DOP values and orbit accuracy as the number of stations decrease in the orbit determination; (2) As
amplification factors increase, the number of stations gradually diminishes, with a single system
being eliminated first, followed by the dual system. This is because the amplification factor defined
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in this study weights the contributions of each station in the multi-GNSS orbit determination; (3) By
comparing the accuracy of the orbit determination with the GFZ list of stations, the correction of 111
stations was found to be better than that of 91 stations (k = 20%), but is worse for 101 stations (k = 15%);
(4) In a comparison with a 90-station scheme obtained by random selection, the number of stations is
comparable with that for this scheme, whereas the orbit accuracy obtained by the method in this study
is higher.

From the comparisons and analyses of the six schemes, eliminating redundant information of the
tracking stations based on the DOP-derived amplification factors is of significance as it ensures accuracy
and timeliness of the observed ultra-rapid orbit. Based on the optimization of the station distribution,
an optimal or sub-optimal relationship between the orbit accuracy and DOP values may be found that
ensures a correction accuracy of the observed ultra-rapid orbit with insufficient observations.

5. Conclusions and Prospects

The ultra-rapid orbit is an important product for GNSS users, the accuracy of which directly
affects real-time or near real-time applications. However, the orbit accuracy of the observed ultra-rapid
orbit is found to diverge in the last 3-h period. Moreover, this accuracy imposes an inconvenience in
the predicted ultra-rapid orbit. Based on the orbit determination, the orbit accuracy was analyzed
from the perspective of data quality and availability. We concluded that the lack of observations in
the last period of the observed part lowers the accuracy of the observed ultra-rapid orbit. To correct
the divergence of the observed ultra-rapid orbit, this study analyzed the correlation between the
DOP values and the lack of observations based on the space configuration of the orbit determination.
The results show that the change in DOP values is the same as the orbit accuracy, especially for the
latter period of the observed ultra-rapid orbit. Therefore, an orbit correction method based on the DOP
values was proposed. In simulation experiments, the observed ultra-rapid-orbit accuracy over a 10-day
period was analyzed based on the DOP values. The orbit errors arising from insufficient observations
were corrected by 12–22%. However, to take into account timeliness, including all observations into
orbit determination is impossible, thereby reducing the correlation between the DOP values and
the orbit accuracy. Therefore, to overcome this problem, this study proposed a method to optimize
the station distribution based on the timeliness and accuracy of the ultra-rapid-orbit determination.
An amplification factor for the DOP values was defined using the contribution of a single station.
Moreover, we used in the experiments four schemes to select stations, the GFZ list of stations, and 90
randomly selected stations; the results show that the station optimization proposed in this study is an
optimal or sub-optimal method when the number of stations is the same. The orbit accuracy in this
instance is better than that of the GFZ list of stations with a smaller number of stations.

The orbit accuracy is influenced by many factors, including perturbation models used, parameter
estimation models, and GPS ambiguity resolution. Moreover, the spatial configuration of satellites and
stations cannot reflect the orbit accuracy completely. Therefore, further research to refine the correction
models is needed in regard to other influencing factors in orbit determination.
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