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Abstract

Background: Detecting patterns in high-dimensional multivariate datasets is non-trivial. Clustering and
dimensionality reduction techniques often help in discerning inherent structures. In biological datasets such as
microbial community composition or gene expression data, observations can be generated from a continuous
process, often unknown. Estimating data points’ ‘natural ordering’ and their corresponding uncertainties can help

researchers draw insights about the mechanisms involved.

Results: We introduce a Bayesian Unidimensional Scaling (BUDS) technique which extracts dominant sources of
variation in high dimensional datasets and produces their visual data summaries, facilitating the exploration of a
hidden continuum. The method maps multivariate data points to latent one-dimensional coordinates along their
underlying trajectory, and provides estimated uncertainty bounds. By statistically modeling dissimilarities and
applying a DiSTATIS registration method to their posterior samples, we are able to incorporate visualizations of
uncertainties in the estimated data trajectory across different regions using confidence contours for individual data
points. We also illustrate the estimated overall data density across different areas by including density clouds.
One-dimensional coordinates recovered by BUDS help researchers discover sample attributes or covariates that are
factors driving the main variability in a dataset. We demonstrated usefulness and accuracy of BUDS on a set of

published microbiome 16S and RNA-seq and roll call data.

Conclusions: Our method effectively recovers and visualizes natural orderings present in datasets. Automatic
visualization tools for data exploration and analysis are available at: https://nlhuong.shinyapps.io/visTrajectory/.
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Background

Multivariate, biological data is usually represented in the
form of matrices, where features (e.g. genes, species)
represent one dimension and observations (e.g. samples,
cells) the other. In practice, these matrices have too many
features to be visualized without pre-processing. Since a
human brain can perceive no more than three dimen-
sions, a large number of methods have been developed to
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collapse multivariate data to their low-dimensional rep-
resentations; examples include standard principal com-
ponent analysis, (PCA), classical, metric and non-metric
multidimensional scaling (MDS), as well as more recent
diffusion maps, and t-distributed Stochastic Neighbor
Embedding (t-SNE). While simple 2 and 3D scatter plots
of reduced data are visually appealing, alone they do not
provide a clear view of what a “natural ordering” of data
points should be nor the precision with which such an
ordering is known. Continuous processes or gradients
often induce “horseshoe” effects in low-dimensional linear
projections of datasets involved. Diaconis et al. [1] discuss
in detail the horseshoe phenomenon in multidimensional
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scaling using an example of voting data. Making an
assumption that legislators (observations) are uniformly
spaced in a latent ideological left-right interval, they
showed mathematically why horseshoes are observed. In
practice, observations can be collected unevenly along
their underlying gradient. Therefore, sampling density
differences should be incorporated in an improved model.

In this article, we propose Bayesian Unidimensional
Scaling (BUDS), a class of models that maps observa-
tions to their latent one-dimensional coordinates and
gives measures of uncertainty for the estimated quanti-
ties while taking into account varying data density across
regions. These coordinates constitute summaries for high-
dimensional data vectors, and can be used to explore and
to discover the association between the data and vari-
ous external covariates which might be available. BUDS
includes a new statistical model for inter-point dissim-
ilarities, which is used to infer data points’ latent loca-
tions. The Bayesian framework allows us to generate
visualizations of the estimated uncertainties. Our method
produces simple and easy to interpret plots, providing
insights to the structure of the data.

Related work
Recovering data points’ ordering has recently become
important in the single cell literature for studying cellu-
lar differentiation processes. A number of new algorithms
have been proposed to estimate a pseudo-temporal order-
ing, or pseudotime, of cells from their gene expression
profiles. Most of the methods are two-stage procedures,
where the first step is designed to reduce large RNA-seq
data to its k-dimensional representation, and the second
to recover the ordering of the cells. The second step is per-
formed by computing a minimum spanning tree (MST) or
a principal curve on the reduced dataset, [2—5]. The meth-
ods listed are algorithmic and provide only point estimates
of the cells’ positions along their transition trajectory.
Very recently, new methods for pseudotime inference
have been proposed that incorporate measures of uncer-
tainty. However, they are based on a Gaussian Process
Latent Variable Model (GPLVM) [6—8]. These methods
make an assumption, which is not always applicable, that
either features or components of a k-dimensional projec-
tion of the data can be represented by Gaussian Processes.
Applying GPLVM to components of reduced data is often
more effective as high-dimensional biological data tend to
be very noisy. For example, Campbell et al. [7] perform
pseudotime fitting only on 2D embeddings of gene expres-
sion data. Unfortunately, this means that their uncertainty
estimates for the inferred pseudotimes do not account for
the uncertainties related to the dimensionality reduction
step applied previously, and hence might be largely impre-
cise as the reduced representations might not capture
enough of structure in the data. Reid and Wernich [8] on
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the other hand implemented BGPLVM method directly to
the data features (genes), but their method seems practical
only when applied to a subset of genes, usually not more
than 100. Thus, the method requires the user to choose
which features to include in the analysis. Reid and Wer-
nich’s method is semi-supervised as it requires capture
times, which are a proxy for the latent parameters they
want to recover. While this approach is suitable for study-
ing cell states, as it encourages pseudotime estimates to
be consistent with capture times, it is not appropriate for
fully unsupervised problems, where no prior information
on the relative ordering of observations is known.

BUDS models pairwise dissimilarities on the original
data directly. This means that BUDS can incorporate
information from all features in the data, and can account
for all uncertainties involved in the estimation process.
Moreover, BUDS is flexible because it gives the user free-
dom to choose the most suitable dissimilarity metric for
the application and type of data under study.

Methods

In this section, we discuss how we model, analyze and
visualize datasets in which a hidden ordering of obser-
vations is present. We first give details on our genera-
tive Bayesian model and then describe the procedure for
constructing visualizations based on the estimated latent
variables.

The model
Biological data is represented as a matrix, X € RZ*"
Corresponding pairwise dissimilarities, d; = d(x;,x;),

can be computed where x; € R? is an ith-column of
X representing the ith-observation. Dissimilarities quan-
tify interactions between observations, and can be used
to infer datapoints’ ordering. Since our method targets
datasets with latent continua, we can assume that obser-
vations within these datasets lie approximately on one-
dimensional manifolds (linear or non-linear) embedded
in a higher dimensional space. As a result, the inter-
point dissimilarities in the original space should be closely
related to the distances along the latent data trajectory.
Our model recovers the latent positions (1D coordinates)
of the datapoints along that unknown trajectory. We take
a parametric Bayesian approach and model original dis-
similarities as random variables centered at distances in
the latent 1D space. This allows us to to draw posterior
samples of datapoints’ latent locations. These estimates
specify the ordering of the observation according to the
most dominant gradient in the data.

The choice of dissimilarity measures in the original
space should depend on the type and the distribution of
the data. We observed that Jaccard distance seems robust
to noise and allows for effective recovery of gradients hid-
den in 16S rRNA-seq microbial composition data. For
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gene expression data, we usually use a correlation-based
distance, applied to normalized and log-transformed
counts, d(x;,x;)) = (1 — p(x;X;))/2 where p(x;,X;) is
a Pearson correlation between x; and x;. On the voting
(binary) data we used a kernel L; data.

Mathematically, we want to use these pairwise dissim-
ilarities to map high dimensional datapoints, x;, to their
latent coordinates, 7; €[ 0, 1]. These coordinates represent
positions of the observations along their unknown tra-
jectory. The more similar the ith and the jth observation
are, the closer 7; and 7; should be. It follows that T can
also be used for database indexing, where it is of interest
to store similar objects closer together for faster lookup.
With T one can generate many useful visualizations that
help understand and discover patterns in the data. To infer
7, we model dissimilarities on high-dimensional data, dj;,
as noisy realizations of the true underlying distances §;; =
It — 7.

Overall, our method can be thought of as a special case
of Bayesian Multidimensional Scaling technique, whose
objective is to recover from a set of pairwise dissim-
ilarities a k-dimensional representation of the original
data together with associated measures of uncertainty.
Previously, Bayesian MDS methods have been imple-
mented in [9, 10], where authors used models based on
truncated-normal, and log-normal distributions. These
models, however, do not allow for varying levels of noise
across different regions of the data. We believe that when
modeling dissimilarities one needs to accommodate for
heteroscedastic noise, whose scale should be estimated
from the data itself. We, thus, developed a model based on
a Gamma distribution with a varying scale factor for the
noise term:

dij|6;; ~ Gamma [,u,l'j = 4, ai]z- = sz.oz] , (1)
8 =t — gl
Tilae, Br ~ Beta(ar, Br),
o ~ Cauchy™ (1, y;),
B ~ Cauchy™ (1, ),
o ~ Cauchy™ (0, ye),

where s; o $(d;) and §2(dij) is an empirical estimate
of the variance of dj; discussed in the next section. Note
that the Gamma distribution is usually parametrized with
shape and rate («, ) parameters rather than mean and
variance (,u,oz). The shape and the rate parameter for
djj can be easily obtained using the following conversion:
;= uizj/ai}z, Bij = ,uij/cri?. Note that a;, B; are centered
around 1, as Beta(1, 1) is similar to the uniform distribu-
tion which is the assumed distribution of 7;’s if no prior
knowledge of the sampling density is available. However,
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since a; and f; are treated as random variables, the BUDS
can infer unequal values for the parameters that are away
from 1, which means it can model datasets where the sam-
pling density is higher on one or both ends of the data
trajectory.

In general, our model postulates a one dimensional gra-
dient along which the true underlying distances are mea-
sured with noise. Distances are assumed to have a Gamma
distribution, a fairly flexible distribution with a positive
support. As dissimilarities are inherently non-negative
quantities, Gamma seems to be a reasonable choice. Dis-
similarities can be more or less reliable depending on their
range and the density or sparsity of the data region, there-
fore our model incorporates a varying scale factor for the
noise term. We estimate the variance of individual d;’s
using the nearest neighbors of the two datapoints x; and
x; associated with the dissimilarity. The details on how to
estimate the scale of the noise term are included in the
next section.

Since dissimilarities on high dimensional vectors can
have a different range than the ones on 1D coordinates,
we incorporate the following shift and scale transforma-
tion within our model to bring the distributions of the
dissimilarities closer together:

8j=b+plt — 1l (2)
b ~ Cauchy™t (0, ),
p~ Cauchy+(1, Vo)

where b and p are treated latent variables, inferred
together with 7 from the posterior. Now S,j can be substi-
tuted for §;; in the main model.

In some cases the dissimilarities in high-dimensional
settings can be concentrated far away from zero, and pro-
vide insufficient contrast between large and small scale
interactions between datapoints. The following rank-
based transformation can help alleviate the issue and
bring the distribution of d;;’s closer to the one of S,j’s,

(:1,-}« =1—,/1—rank(dy)/m

where m = n(n — 1)/2 is the number of distinct pair-
wise dissimilarities, assumed symmetric. The rank-based
transformation is similar to techniques used in ordinal
Multidimensional Scaling which are aimed at preserving
only the ordering of observed dissimilarities [11] and not
their values.

Variance of dissimilarities

Pairwise dissimilarities, either directly observed or com-
puted from the original data can be noisy. The accuracy
of dissimilarities in measuring interactions between pairs
of observations does not need to be constant across all
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observations. For example, a dataset might be imbalanced,
and some parts of the its latent trajectory might be more
densely represented than others. We expect dissimilarities
to contain less noise in data-rich regions than in the ones
where only a few observations have been collected.

A data-driven approach is taken to estimate scale fac-
tors for the noise. We use local information to estimate
the variance of individual dj’s, as illustrated in Fig. 1. First,
for each dj;, we gather a set of K-nearest neighbors of x;
and x;, denoted I'x(x;) and 'k (x;) respectively. We then
estimate the variance of dj; as the empirical variance of
distances between x, and the K-nearest-neighbors of x;
and between x; and the K-nearest-neighbors of x;. More
precisely,

R 1 2\ 2
2(dy) = T 3 (d—d{j)

|D1K| > d is the average distance over the

U deDf/.(

set D{; defined as:

where d{f =

Djf == {d(xi,x10) | xic € T(x) \ {xi}}
U{d(xj,x) | x1 € Te(x)) \ {x;}}

Note that we exclude the x; from the set of neighbors of
x;j and vice versa when gathering the distances in the set
D{; . This, is useful in cases when x; and x; are within each
other’s K-nearest-neighborhoods. Without exclusion the
set D{I{ would contain zero-distances d(x;, X;) or d(x;, X;)
which would have an undesirable effect of largely overes-
timating the variance of d;.
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We use §2 (dij) only as a relative estimate, and then
compute the scale parameter for the noise term as follows:

sj = §°(dy) /3(dy)

where the bar notation represents the empirical mean
over all §(d;j)’s. The mean variance for all dissimilarities,
o is treated as a latent variable and is estimated together
with all other parameters.

The tuning parameter K should be set to a small number
such that local differences in variances of d;;’s and the data
density can be captured. In this paper we used K = 10 for
all examples, and noticed that the estimates of T are robust
to different (reasonable) choices of K.

Statistical Inference

Our model is implemented using the STAN probabilis-
tic language for statistical modeling [12]. In particular
we use the RStan R package [13] which provides various
inference algorithms. In this article we used Automatic
Differentiation Variational Inference (ADVI) [14]. ADVIis
a “black-box” variational inference program, much faster
than automatic inference approaches based on Markov
Chain Monte Carlo (MCMC) algorithms. Even though the
solutions to variational inference optimization problems
are only approximations to the posterior, the algorithm is
fast and effective for our applications.

Our model requires a choice of a few hyperparame-
ters ¥z, Vb, ¥p and ye, which are scale parameters of the
half-Cauchy distribution. The half-Cauchy distribution is
recommended by Gelman et al. [15, 16] as a weakly infor-
mative prior for scale parameters, and a default prior for
routine applied use in regression models. It has a broad
peak at zero and allows for occasional large coefficients
while still performing a reasonable amount of shrink-
age for coefficients near the central value [16]. The scale

®

o

o

Fig. 1 Graphical representation of points x; and x; together with their neighbors. The set of (dashed) distances from x; to the K-nearest-neighbors of
x;, and from x; to the K-nearest-neighbors of x; is used to compute §2(d,-j), the estimate of the variance of dj. Here we chose K = 5
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hyperparameters were set at 2.5, as we do not expect
very large deviations from the mean values. The value
2.5 is also recommended by Gelman in [16], and is a
default choice for positive scale parameters in many mod-
els described in the RStan software manual [13].

Visual representations of data ordering

We developed visual tools for inferring and studying pat-
terns related to the natural ordering in the data. Our visu-
alizations uncover hidden trajectories with corresponding
uncertainties. They also show how sampling density varies
along a latent curve, i.e. how well a dataset covers differ-
ent regions of an underlying gradient. We implemented a
multi-view design with a set of visual components: 1) a
plot of latent 7 against its ranking, 2) a plot of 7 against a
sample covariate, 3) a heatmap of reordered data, 4) a 2D
and a 3D posterior trajectory plot, 5) a data density plot,
7) a datapoint location confidence contour plot, 8) a fea-
ture curves plot. The settings panel and the visualization
interface are depicted in Figs. 2 and 3).

For our visualizations we chose a recently developed
viridis color map, designed analytically to “perfectly
perceptually-uniform” as well as color-blind friendly [17].
This color palette is effective for heatmaps and other visu-
alizations and has now been implemented as a default
choice in many visualization packages such as plotly
[18] or heatmaply [19].

Latent ordering plot view

The most direct way to explore the ordering in the data is
through a scatter plot of T-coordinates against their rank-
ing (Fig. 4), which includes measures of uncertainty. This
view depicts the arrangement of the datapoints along their
hidden trajectory, and shows how confident we are in their
estimated location along the path.
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Despite its simple form, the plot provides useful infor-
mation about the data. For example, the variability in the
slope of the plot indicates how well covered the corre-
sponding region of the trajectory is, i.e. if the slope is steep
and the value of T changes faster than its rank, then the
data is sparse in that region.

Color-coding can be also used to explore which sam-
ple attributes are associated with the natural ordering
recovered, e.g. in the results section we show that sam-
ples ordering is associated with the water depth in TARA
Oceans dataset, and with the age of the infant in the DIA-
BIMMUNE dataset. One can also plot the estimates of
T against the ranking of a selected covariate to exam-
ine the correlation between the two more directly. If
a high correlation is observed, one might further test
whether the feature is indeed an important factor driving
the main source of variability in the data. For exam-
ple, when analyzing microbiome data one might discover
environmental or clinical factors differentiating collected
samples.

Reordered heatmaps

Heatmaps are frequently used to visualize data matrices,
X. It is a common practice to perform hierarchical clus-
tering on features and observations (rows and columns
of X) to group similar objects together and allow hid-
den block patterns to emerge. However, clustering only
suggests which rows and columns to bundle together;
it does not provide information on how to order them
within a group. Thus, it is not a straightforward matter
how to arrange features and samples in a heatmap. Matrix
reordering techniques, sometimes called seriation, are
discussed in a comprehensive review by Innar Liiv [20].
Many software programs are also available for generating
heatmaps, among which NeatMap [21] is a non-clustering

Discover Ordering of the Data Points

Distance metric: Sample covariate:

correlation v

Count table file input (.csv) Visualization method:

Browse... PCoA

Sample data file input (.csv) Log transform data:

Browse... yes v

Fig. 2 The settings panel for BUDS visualization interface, where the data and the supplementary sample covariates can be uploaded, and specific

features and samples as well as other parameters can be selected

Initialize from: k-nearest neighbors:

Principal Curve v

No. highlighted of points: No. of plotted paths:

v 50 50

Transform dissimilarities: Chosen samples Chosen features

no v 15, 30, 50
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Fig. 3 The visualization interface for latent data ordering. The plots are shown for the frog embryo gene expression dataset collected by Owens et al.
[27]. First row, left to right: a plot of T against its ranking, a plot of T against a sample covariate, a heatmap of reordered data. Second row, left to
right: 2D posterior trajectory plot, data density plot, datapoint location condition confidence contour plot. Third row: 3D data trajectory plot and
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0.50
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one, designed to respect data topology, and intended for
genomic data. Here we describe our own take on matrix
reordering for heatmaps.

As our method deals with situations which involve a
continuous process rather than discrete classes, hierar-
chical clustering approach for organizing data matrices
might be suboptimal. Instead, since our method estimates
7, which corresponds to a natural ordering of the samples,
we can use it to arrange the columns of a heatmap. To
reorder the rows of X, we use an inner product between
features and 7. More specifically, we compute a vector,
z € R?, whose elements are dot products equal to z; =
i{‘t, k =1,...,p where i{ is the kth row of X, a (col-
umn) normalized data matrix. The dot product is used for
row-ordering as it reflects the mean t value for the cor-
responding feature. In other words zj indicates the mean

location along the latent trajectory (expected t) where
feature k “resides” Using this value for ordering seems
natural, as the features with similar “r-utility” levels are
placed close together. Figure 5 shows example heatmaps
produced by our procedure when applied to real microbial
data.

We include the comparison of our heatmaps with the
ones generated by NeatMaps in Additional file 1: Figures
S1 and S2. NeatMaps computes an ordering for rows and
columns of an input data matrix, however it does not pro-
vide any uncertainty estimates. Moreover, the method is
not optimized for cases where the data lies on a non-linear
1D manifold. BUDS heatmaps often display smooth data
structures such as banded or triangular matrices. These,
structures help users discover which groups of variables
(genes, species or other features) have higher or lower
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Fig. 4 Latent ordering in TARA Oceans dataset shown with uncertainties. The differences in the slope of plot (a) indicate varying data coverage
along the underlying gradient. Correlation between the water depth and the latent ordering in microbial composition data is shown in (b). Coloring
corresponds to log; of the water depth (in meters) at which the ocean sample was collected

values in which part of the underlying dominant gradient
in the data.

Feature dynamics

The ordering of observations can also be used to explore
the trends in variability of individual data features with
respect to the discovered latent gradient. For example,
when studying cell development processes, we might be
interested in changes of expression of particular genes.
The expression levels plotted against the pseudo-temporal
ordering estimated with t along with the corresponding
smoothing curves, can provide insights into when specific
genes are switched on and off (see Fig. 6a). Similarly, when
analyzing microbiome data one can find out which species

Abund.
1000
100
10

Features
Features

Samples Samples

Fig. 5 Reordered heatmaps for two microbial composition datasets

are more or less abundant at which regions of the under-
lying continuous gradient (see Fig. 6b). Both of the plots
are discussed more in detail in the results section.

Trajectory plots

Often it is also useful to visualize a data trajectory in
2 or 3D. We use dimensional reduction methods such
as principal coordinate analysis (PCoA) and t-distributed
stochastic neighbor embedding (t-SNE) [22] on computed
dissimilarities to display low-dimensional representations
of the data. PCoA is a linear projection method, while
t-SNE is a non-convex and non-linear technique.

After plotting datapoints in the reduced two or three
dimensional space, we superimpose the estimated tra-
jectories, i.e. we add paths which connect observations
according to the ordering specified by posterior samples
of 7. We usually show 50 posterior trajectories (see blue
lines in Fig. 7), and one highlighted trajectory that cor-
responds to the posterior mode-7 estimate. To avoid a
crowded view, the mode-trajectory is shown as a path con-
necting only a subset of points evenly distributed along
the gradient, i.e. corresponding to 7;’s evenly spaced in
[0,1]. We also include a 3D plot of the trajectory as the
first two principal axes sometimes do not explain all the
variability of interest. The third axis might provide addi-
tional information. The 3D plot provides an interactive
view of the ‘mode-trajectory’; it allows the user to rotate
the graph to obtain an optimal view of the estimated
path. The rotation feature also facilitates generating 2D
plots with any combination of two out of three princi-
pal components (OPC1, PC2, PC3), which is an efficient
alternative to including three separate plots.
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Fig. 6 Feature dynamics along inferred data trajectory. Frog embryo gene expression levels follow smooth trends over time (a). Selected bacteria
are more abundant in TARA Oceans samples corresponding to the right end of the latent interval representing deeper ocean waters (b)
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Fig. 7 Posterior trajectory plots for TARA Oceans dataset; 50 paths are
plotted in blue to show uncertainties in the inferred ordering. “Mode”-
trajectory is shown in black for a subset of highlighted (bigger)
datapoints evenly spaced along the t—interval (a). The same mode-
trajectory is show in a 3D (b). The axis are labeled by the principal
component index and the corresponding percent variance explained

Data density and uncertainty plots

Since it might be also of interest to visualize data density
along its trajectory, we also provide 2D plots with density
clouds. We use posterior samples of T* to obtain copies

of latent distance matrices, A* = (8;‘) Then we gener-
ate copies of noisy dissimilarity matrices, D*, by drawing
from a Gamma distribution centered at elements of A*
according to our model. We combine posterior dissimilar-
ity matrices in a data cube (T € R™"*!) where ¢ is the
number of posterior samples, and then apply DiSTATIS,
a three-way metric multidimensional scaling method, [23]
to obtain data projections together with their uncertainty
and density estimates.

Our visualization interface includes two plots display-
ing the data configuration computed with DiSTATIS. The
first depicts the overall data density across the regions,
and the second shows confidence contours for selected
individual datapoints. Contour lines and color shading are
commonly used for visualizing non-parametrically esti-
mated multivariate-data density [24, 25]. Contour lines,
also called isolines, joint points of equal data density esti-
mated from the frequency of the datapoints across the
studied region. Apart from visualizing data density, we use
isolines also to display our confidence in the estimated
datapoints’ locations. BUDS can generate posterior draws
of dissimilarity matrices which are used by DiSTATIS to
obtain posterior samples of data coordinates in 2D. These
coordinates are used for non-parametric estimation of the
probability density function (pdf) of the true underlying
position of an individual observation. Contour lines are
then used delineate levels of the estimated pdf. These
contours have a similar interpretation as the 1D error bars



The Author(s) BMC Bioinformatics 2017, 18(Suppl 10):394

included in 7-scatter-plots and visualize the reliability of
our estimates

Figure 8 (a) shows density clouds for DiSTATIS projec-
tions and the consensus points representing the center of
agreement between coordinates estimated from each pos-
terior dissimilarity matrix D*. From the density plot one
can read which regions of the trajectory are denser or
sparser than the others. Figure 8 (b) gives an example of
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a contour plot for four selected datapoints using TARA
Oceans dataset discussed in the results section. The size of
the contours indicate the confidence we have in the loca-
tion estimate, the large the area covered by the isolines,
the less confident we are in the position of the observation.

Our visualization interface is implemented as a Shiny
Application [26] and 3D plots were rendered using the
Plotly R library [18].
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Results

We demonstrate the effectiveness of our modeling and
visualization methods on four publicly available datasets.
Bayesian Unidimensional Scaling is applied to uncover
trajectories of samples in two microbial 16S, one gene
expression and one roll call dataset.

Frog embryo gene expression
In this section we demonstrate BUDS performance on
gene expression data from a study on transcript kinet-
ics during embryonic development by Owens et al. [27].
Transcript kinetics is the rate of change in transcript
abundance with time. The dataset has been collected
at a very high temporal resolution, and clearly displays
the dynamics of gene expression levels, which makes it
well suited for testing the effectiveness of our method in
detecting and recovering continuous gradient effects.

The authors of this study collected eggs of Xenopus
tropicalis and obtained their gene expression profiles at
30-min intervals for the first 24 hrs after an in vitro fertil-
ization, and then hourly sampling up to 66 hr (90 samples
in total). The data was collected for two clutches; here we
only analyze samples from Clutch A for which poly(A)+
RNA was sequenced. For our analysis, we used the pub-
lished transcript per million (TPM) data, from which we
remove the ERCC spike-ins and rescale accordingly. A log
base 10 transformation (plus a pseudocount of one) is then
applied to avoid heteroscedasticity related to high vari-
ability in noise levels among genes with different mean
expression levels. This is a common practice for variance
stabilization of RNA-seq data. As inputs to BUDS, we
used Pearson correlation based dissimilarities defined in
the methods section.

As shown in Figs. 3 and 9, BUDS accurately recov-
ered the temporal ordering of the samples using only
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the dissimilarities computed on the log-expression data.
We also observe that samples collected in the later half
have more similar gene expression profiles, than the ones
sequenced immediately post fertilization, as BUDS tend
to place the samples sequenced 30+ h after fertiliza-
tion (HPF) closer together on the latent interval, than
the ones from the first 24h. In other words gene expres-
sions undergo rapid changes in the early stages of the frog
embryonic development, and slow down later on.

To show that our method is robust to differences in
sampling density along data trajectory, we subsampled
the dataset keeping only every fourth datapoint from the
period between 10 and 40 HPF, and all samples from the
remaining time periods. We observed that the samples’
ordering recovered stays consistent with the actual time
(in terms of HPF). As desired, the 95%-HPDI are wider
in sparser regions, i.e. samples 24hr+ after fertilization, as
they were collected in 1hr intervals instead of 30-min. In
particular, the downsampled region [10-40 HPF], involves
estimates with clearly larger uncertainty bounds.

Additionally, the visual interface was used to show the
trends in expression levels of selected individual genes.
Figure 6 depicts how expression levels of five selected
genes vary along the recovered data trajectory, which in
this case corresponds to time post fertilization. We can see
that the expression drops for three genes and increases for
two others.

TARA Oceans microbiome

The second microbial dataset comes from a study by
Sunagawa et al. [28] conducted as a part of TARA Oceans
expedition, whose aim was to characterize the structure of
the global ocean microbiome; 139 samples were collected
from 68 locations in epipelagic and mesopelagic waters
across the globe. Illumina DNA shotgun metagenomic
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Fig. 9 Frog embryonic development trajectory. Correlation between inferred location on the latent trajectory and time in hours post fertilization
(HPF). Latent coordinates computed using BUDS on untransformed Pearson correlation distances. (@) Frog embryo trajectory (b) Frog embryo
trajectory, subsampled data
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sequencing was performed on each prokaryote-enriched
samples, and the taxonomic profiles were obtained from
merged reads (miTAGs) that contained signatures of 16S
rRNA gene, which were then mapped to the sequences
in the SILVA reference database and clustered into 97%
OTUs. The paper reported that the ocean microbiome
composition and diversity was stratified according to the
depth at which the samples were collected rather than the
geographical location. Microbial composition was thus
found to be ordered along a gradient associated with the
water depth.

BUDS was used to estimate a natural ordering of
samples from Jaccard pairwise distances computed on
bacterial composition data. Figure 4 shows resulting 7-
coordinates plots. We detected a high correlation of the
latent coordinates with the depth of water at which a sam-
ple was collected (Spearman rank correlation p ~ 0.79).
This result is consistent with the trends observed in the
original study. In Fig. 4 (a), we can see that the sam-
ples were not collected evenly along their trajectory. Some
intervals such as t €[0.75,1.0] and t €[0.2,0.45] have a
much steeper slope than others indicating sparser sam-
pling in the corresponding region. A similar conclusion
can be reached by looking at the 2D density plot, Fig. 7
(a)), where certain parts of TARA Oceans data trajectory
are much sparser than the rest. Identifying sparsities along
the data trajectory might be of interest to researchers,
who might like to determine whether the sparsity stems
from the absolute rarity of certain type of samples or from
the flaws of the data collection procedure which include
physical restrictions (e.g. the ocean stations were located
at specific depth). We observed that all 63 surface water
layer samples had been recorded water depth of 5m, which
suggests that either the depth measurements were not be
very precise, or the study by design did not cover a vari-
ety (in terms of water depth) of surface samples. In Fig. 7
(b) the surface samples are all grouped in a single col-
umn on the left side; however the BUDS estimates of their
location still suggests some biological variability within
the group. Collecting more observations in sparse regions
researchers can gain a more comprehensive understand-
ing of the underlying process and potentially discover the
cause of the rarity.

Infant gut microbiome

Under the DIABIMMUNE project, Kostic et al. [29] stud-
ied the dynamics of the human gut microbiome in its early
stage and the progression toward type 1 diabetes (T1D).
Their cohort consisted of 33 infants from Finland and
Estonia, genetically predisposed to T1D. Children were
followed from birth until 3 years of age, and their stool
samples were collected monthly by their parents. Ampli-
con sequencing was done on the V4 region of the 16S
rDNA and taxonomic profiling performed with QIIME
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[30]. Additionally, Kostic et al. performed functional anal-
ysis using shotgun metagenomic sequencing. Here we are
only interested in the progression of the gut microbiome
to ‘maturity, and want to estimate its developmental tra-
jectory. Similarly to the approach taken in section of the
original paper discussing microbial community dynamics,
we exclude T1D cases. To further reduce the biological
variability related to factors other than time, we limit our
analysis to the 14 infants in the control group from Fin-
land, who are in the same T1D HLA risk group (HLA = 3,
the biggest risk group), leaving 327 samples in total.

We analyzed the bacterial composition dynamics using
the published operational taxonomic unit (OTU) count
table. We filtered OTU at prevalence level of 5 (present
in > 5 samples) and total count of 300 (sum in all sam-
ples > 300), leaving 1341 OTUs. As we wanted to show
change in the bacterial composition related to new bacte-
rial species acquisition, we used as input Jaccard distances
which use species presence/absence information.

We showed that the gut microbiome follows a clear
developmental gradient, and that the ordering of samples
according to the posterior mode of t is correlated with
the infant’s age at time of collection (with Spearman rank
correlation p ~ 0.74). Moreover, we observed that the
location estimates were more variable for samples col-
lected early after birth, see Fig. 10. For example, notice
that the first 100 samples (corresponding to the earliest
period after birth) take up the same space on the latent
7 [0, 1]-interval as more than 200 remaining ones. This
indicates that observations collected later in the study are
more similar to each other than the ones gathered right
after birth.

To confirm our hypothesis that the bacterial compo-
sition is more similar among samples collected later in
the study than right after birth, we computed and com-
pared the average Jaccard distance between each sample
pairs collected in the same quarter (across all individuals).
As shown in Fig. 10(b), Jaccard dissimilarity displays a
decreasing trend over time. Samples from the first few
quarters just after birth are more variable than the ones
collected closer to the end of the study. This agrees with
our guess that bacterial composition seems to progress
to a ‘mature’ gut microbiome state, and that while after
birth the gut micro-flora might vary a lot across subjects,
infants seem to acquire a shared ‘microbial base’ during
the first three years.

Additionally, looking at the reordered data heatmap, we
see a triangular structure appearing. This suggests that
while there are some bacteria, that are present in the
gut microbiome from the beginning or appear early after
birth, there are other which are acquire later in the infant’s
life. This pattern is visible in Fig. 5 (a) where the top rows
show bacteria which are present almost in every samples,
while the bottom rows represent taxa which appear in the
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Fig. 10 Gut microbiome development trajectory. Latent 1D coordinates along the estimated BUDS trajectory shown with colored intervals
indicating the 95% highest posterior density intervals (HPDI) (a), Jaccard dissimilarity between samples within each quarter after birth (b)

infant gut in later stages corresponding to the right side of
the heatmap.

Roll Call Data
So far we have presented only biological data examples.
However, our method is general enough not to be lim-
ited to a specific type of data. To show this, we applied
BUDS to voting data similar to Diaconis et al. in [1]. We
obtained the 114th U.S. Congress Roll Call data contain-
ing votes of 100 senators on a total of 502 bills within the
period between January 3, 2015 and January 3, 2017. We
computed a kernel L; distance on the binary “yea” vs “nay”
data, and applied BUDS to estimate the ordering of the
senators related to their voting pattens.

Figure 11 shows the ordering obtained with our pro-
cedure. We see that without any knowledge of senators’

party membership and only using the binary voting data,
BUDS was able to separate Democrats from Republicans
on a left-right political spectrum. It is interesting that
senator Bernie Sanders was ranked in this ordering as
the most liberal one (the first on the left). This seems
to be plausible, given his proposed policies during 2016
U.S. election campaign. Overall, the ordering computed
by BUDS seems to reflect senators’ optimal “ideological
utility” position, which is a rather abstract concept. The
accuracy of our results could be evaluated further using
outside information and domain knowledge.

Discussion and Conclusions

In biology, we often encounter situations where a grad-
ual change or a progression between data points can be
observed. The analysis of datasets originating from these
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processes requires different sets of tools than standard
machine learning, and pattern recognition techniques
such as simple clustering. Here we presented our new
visualization interface developed specifically for exploring
datasets which involve a latent continuum. We designed
visual representations of the data which clearly illus-
trate the natural ordering of data points. While tools
exist which support the tasks, existing approaches are not
comprehensive, lack measures of uncertainty or involve
unrealistic assumptions.

Our novel modeling approach is based on a Bayesian
framework, model observed inter-point dissimilarities
with latent distances on a one-dimensional interval rep-
resenting the underlying data trajectory. Thus, it is highly
different from the current pseudotime inference meth-
ods which rely on an assumption that either the features
or the low-dimensional representation components of the
data come from a Gaussian process. We impose no such
restrictions, and only require that the observed dissimi-
larities are noisy realizations of distances between latent
coordinates in a one-dimensional space. This is a reason-
able condition, as it is our objective to find an ordering
of observations that respects the interactions observed in
the original data.

Using the estimated natural arrangement of observa-
tions, our program generates a set of plots that facilitate
understanding of an underlying process that shapes the
data. We include plots of the latent coordinates, reordered

heatmaps, smooth curve plots showing dynamics of
individual features (e.g. specific gene expression or species
abundance) as well as 2 and 3D visualizations of the data
which incorporate measures of uncertainty.

We demonstrated the effectiveness of our visualiza-
tions on publicly available datasets. Our plots showed that
the infant gut microbiome changes with time through-
out the first three years after birth, which is consistent
with the findings of the original study by Kostic et al. [29].
Moreover, by inspecting the plot of the inferred latent
coordinates against its ranking we found that the bacte-
rial composition stabilizes, after rapid changes during the
first year of life. The estimated coordinates represent a
pseudo-temporal ordering, and provide a better ordering
than the real time, as the gut bacterial flora develops at
various rates within different infants. Similar trends were
observed on the frog embryo development dataset from
a study by Owens et al. [27]. For TARA Oceans dataset
published by Sunagawa et al. [28] we showed that the
collected samples do not cover the microbial composi-
tion gradient evenly. Some types of ocean samples were
more sparsely represented than others. Our method was
also successful at mapping senators on the left-right polit-
ical spectrum based on 114th U.S. Congress voting data.
BUDS has clearly separated Democrats from Republicans
without any knowledge of the legislators’ party affiliations.

In conclusion, we have developed a useful tool for
analyzing datasets in which latent orderings occur. Our
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program is automatic and user friendly. Using our inter-
active visualization interface, researchers can generate
illustrative plots which facilitate the process of data explo-
ration and understanding.

Additional file

Additional file 1: Supplementary figures showing comparison between
heatmaps reordered with BUDS and NeatMaps. Figure S1. Comparison of
BUDS and NeatMap for matrix ordering applied to three biological
datasets. The heatmaps are shown for 500 randomly selected features (the
same for BUDS and Neatmap). A default color scheme setting was for
NeatMap heatmaps. BUDS ordering gives a much clearer visualization of
the continuous patterns present in the data. Figure S2. Comparison of
BUDS and NeatMap for matrix ordering applied to three biological
datasets. The heatmaps are shown for 500 randomly selected features (the
same for BUDS and Neatmap). A viridis color scheme setting was for
NeatMap heatmaps. (PDF 321 kb)
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