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Abstract: Candida auris can persistently colonize human skin, alongside a diverse bacterial micro-
biome. In this study we aimed to investigate the efficacy of antiseptic activities on dual-species
interkingdom biofilms containing staphylococci to determine if antiseptic tolerance was negatively
impacted by dual-species biofilms. Chlorhexidine, povidone iodine, and hydrogen peroxide (H2O2),
were able to significantly reduce biofilm viable cell counts following exposure at 2%, 10%, and 3%,
respectively. Notably, H2O2-treated biofilms were able to significantly recover and considerably
repopulate following treatment. Fortunately, inter-kingdom interactions in dual-species biofilms of
C. auris and staphylococci did not increase the tolerance of C. auris against antiseptics in vitro. These
data indicate mixed infections are manageable with chlorhexidine and povidone iodine, but caution
should be exercised in the consideration of H2O2.
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1. Introduction

In the decade since its spontaneous emergence, Candida auris has quickly established it-
self as a prolific healthcare pathogen. With outbreaks recorded in six continents, C. auris has
spread rapidly throughout healthcare environments, displaying worrying characteristics
such as multi-drug resistance and the ability to survive on surfaces for at least 2 weeks [1].
Our inability to diagnose this pathogen accurately and consistently contributes to its con-
tinued spread within healthcare settings. Within healthcare environments, live C. auris cells
have been recovered from the surrounding area of colonised patients such as mattresses,
bedside tables, and chairs [2]. There is growing evidence corroborating these findings that
also reveal the ability of C. auris to tolerate clinically relevant concentrations of antiseptics
such as chlorhexidine (CHX) and hydrogen peroxide (H2O2) [3].

C. auris most commonly colonises the skin of both healthy and immunocompro-
mised individuals, and therefore inevitably encounters members of the skin microflora [4].
Staphylococcus has been described as the dominant genus of the skin microflora with in-
creases in the abundance of species such as S. aureus being observed in wound infections [5].
Other pathogenic fungi such as C. albicans have extensively shown their ability to interact
with bacteria that comprise part of the skin microbiota [6]. These interactions are common-
place within biofilms and often result in increases of virulence factors, such as adhesins
or drug resistance mechanisms [6]. Previous studies have also shown C. auris isolates are
capable of forming robust biofilms where cell phenotype significantly influences virulence
and biofilm quality [7].
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There is a significant lack of information on whether C. auris interacts with other
fungi or bacteria despite it occupying the same niche as other fungi and bacteria. It
has been shown that C. albicans’ extracellular matrix is capable of coating and protecting
S. aureus from the effects of vancomycin treatment [8], so we hypothesised that dual-species
interactions with C. auris and S. aureus may mirror this effect and could have implications
for skin and wound infections. Therefore, we herein aimed to investigate whether the
interaction between C. auris and either S. aureus or S. epidermidis within a dual-species
biofilm model influences the tolerance profile of C. auris to the commonly used antiseptics
CHX, H2O2, and povidone iodine (PVP-I).

2. Results

Bacteria and fungi are commonly isolated together in healthcare environments, and
the interactions that take place within these biofilms can drive antimicrobial resistance [6].
However, interactions between C. auris and bacteria are yet to be explored. Therefore,
a dual-species biofilm model containing C. auris and the prolific skin pathogens S. aureus
and S. epidermidis was developed. Multiple ratios of bacteria to fungi were assessed to
ensure that bacteria did not inhibit fungal growth. It was observed that shifting ratios of
S. aureus did not significantly alter biofilm growth and biomass (Figure 1A). Interestingly,
dual-species biofilms grown with C. auris and S. epidermidis showed a 1.2-fold increase
in biomass compared to S. epidermidis alone when bacterial cells were 100-fold fewer and
where both C. auris and S. epidermidis were present in equal numbers (Figure 1B). As shifting
ratios of bacteria to fungi did not significantly alter the biofilm biomass of dual-species
biofilms, a ratio of 1:1 at 1 × 106 cells/mL was selected, which has been used previously
in a dual-species biofilm between Candida albicans and S. aureus [6]. Dual-species biofilms
at this inoculum concentration supported the growth of both bacteria and fungi, which is
visually represented in Figure 2. From these data it is evident that Staphylococcus spp. do
not inhibit C. auris growth.
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Figure 1. Staphylococcus aureus does not influence biomass of dual-species biofilms. Biofilms
were grown in growth media at varying ratios of bacteria to fungi. The concentration of C. auris
(Ca) remained constant at 1 × 106 cells/mL whereas S. aureus (Sa; A) and S. epidermidis (Se; B) were
added to growth media at final concentrations of 1 × 104, 1 × 105 and1 × 106 cells/mL. Ratios
provided below the x-axis indicate the number of bacterial to fungal cells. Biofilms were washed
with PBS and stained with crystal violet before measuring the absorbance of bound dye at 570 nm.
Experiments were performed in triplicate and error bars represent the standard deviation of the mean
(*; p < 0.05 **; p < 0.01).
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Figure 2. Development of a Candida auris dual-species biofilm. Images captured of 24 h dual-
species biofilms containing C. auris with S. aureus (A) and S. epidermidis (B). Biofilms were stained
using 1.5 mM calcofluor white and 1.5 mM hexidium iodide for 1 h to visualise fungi (blue) and bacte-
ria (red). Calcofluor white and hexidium iodide were fluoresced at excitation/emission wavelengths
of 357/447 and 531/593 nm, respectively.

As single and dual-species biofilms of both bacteria and fungi are typically associated
with an increased tolerance to antimicrobial challenges, we next sought to test the ability of
such biofilms to tolerate antiseptics. In all cases, the mean number of fungi and bacteria
in each biofilm was reduced by at least 2 × log10 CFU/mL following treatment (Figure 3).
CHX displayed the highest efficiency by significantly reducing viable cells of both S. aureus,
S. epidermidis, as well as C. auris by more than 4 × log10 (p < 0.05). H2O2 was the least effec-
tive against fungi within single and multi-species biofilm environments. H2O2 prevented
the growth of S. epidermidis biofilms when grown on cellulose matrices (Figure 3D), but all
other biofilms survived treatment with more than 1 × 102 CFU/mL remaining within the
biofilm. Treatments with 10% PVP-I were able to reduce biofilm viability and also showed
a greater efficacy against C. auris biofilms grown on plastic coverslips compared to cellulose
matrices (Figure 3A; p < 0.05).

As shown above, each antiseptic was able to reduce the total number of viable cells
within each type of biofilm. Therefore, we then assessed their ability to tolerate and regrow
following treatment (Figure 4). CHX and PVP-I were again confirmed as the most potent
agents against both single and dual-species biofilms, with residual regrowth occurring over
48 h. After 48 h of regrowth, dual-species biofilms treated with 3% (v/v) H2O2 recovered
considerably. Biofilms containing C. auris and S. aureus, or C. auris and S. epidermidis, were
found to be 4.5- and 2.6-fold higher, respectively, than single species C. auris biofilms.
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Figure 3. Multi-species biofilms do not provide additional protection against antiseptics. Single
and dual-species biofilms of C. auris and either S. aureus (SA) or S. epidermidis (SE) were grown for
24 h before being challenged with 2% (v/v) CHX, 10% (w/v) PVP-I, or 3% (v/v) H2O2 for 5min with
subsequent neutralisation with 5% (v/v) sodium thiosulphate. Immediately following neutralisa-
tion, biofilm cells were removed from their substrate, serially diluted, and plated onto SAB agar
with erythromycin and ampicillin or LB agar with amphotericin B to select for fungi and bacteria,
respectively. Viable C. auris cells were quantified after treatment on coverslips and cellulose matrix
(A and B, respectively). Staphylococcal species were quantified following growth and treatment on
coverslips and cellulose matrix (C and D, respectively). Experiments were repeated three times on
separate occasions (*; p < 0.05). * denotes statistical significance when compared to the untreated
control of the same biofilm.
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3. Discussion 

Figure 4. Hydrogen peroxide is ineffective at preventing biofilm regrowth. Mature C. auris biofilms
+/− S. aureus (SA) and S. epidermidis (SE) were treated with 2% (v/v) CHX, 10% (w/v) PVP-I, or 3% (v/v)
H2O2 for 5 min before a 15 min neutralisation step using 5% (w/v) sodium thiosulphate. Immediately
after neutralisation, biofilm viability was assessed using 0.01% (w/v) resazurin sodium salt diluted in
growth media. Additional biofilms were included to monitor biofilm re-growth. Fresh growth media
was added to each biofilm, which was then incubated for a further 24 and 48 h. Biofilm viability was
measured at each time point using 0.01% (w/v) resazurin sodium salt. Experiments were performed
in triplicate on three separate occasions.
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3. Discussion

Interactions between fungi and bacteria have been shown to enhance antimicrobial
tolerance [6,8,9]. Due to this, polymicrobial infections are responsible for higher mortality
rates than their mono-microbial counterparts [6]. Any interactions that may take place
between C. auris and other fungi or bacteria are yet to be characterised. We therefore
aimed to begin to identify whether C. auris interacts with staphylococci species within
a biofilm and if these interactions influence the resistance profile of the biofilm. C. auris
biofilms have recently been shown to tolerate antiseptic treatments at clinically relevant
concentrations [3]. Levels of tolerance to antiseptics were dependant on biofilm complexity,
with developing biofilms being more susceptible to CHX and H2O2. However, C. auris
was still recovered from the skin of hospitalised patients receiving daily CHX washes [4].
This decreased susceptibility to CHX in clinical settings may be a result of protective
interactions with other non-staphylococcal members of the skin microbiome. In 2017,
Moore and colleagues showed that C. auris was more susceptible to 2% (v/v) CHX with 70%
(v/v) isopropyl alcohol [10]. Despite these promising results, the fungicidal activity of this
antiseptic–alcohol mixture was observed in cells in suspension. Therefore, the activity of
this treatment on single and multi-species C. auris biofilms is unknown.

In this study C. auris was shown to be less responsive to PVP-I compared to previous
studies [3,10]. As discussed above, Moore and colleagues tested the C. auris response to
antiseptic challenge in planktonic cells, which may explain their increased susceptibility [10].
Furthermore, our group reported PVP-I to be highly effective against mature C. auris
biofilms, though this was from a different strain [3]. Indeed, we have previously shown
that biofilms formed by C. auris NCPF 8973 (the strain used in this study) formed a more
robust biofilm than all other strains tested [7]. Levels of glucans and mannans within the
C. auris biofilm matrix have recently been characterised and differences between strains
were observed [11]. Taken together, strain-specific biofilm heterogeneity can ultimately
lead to varying responses of C. auris to antiseptics such as PVP-I.

Herein, we demonstrated a reduced activity of H2O2 against single and dual-species
biofilms and similar findings have been reported elsewhere [3]. C. auris has been reported
to contain catalase genes while both S. aureus and S. epidermidis display catalase activity
that can be utilized as a survival factor against osmotic stressors and a H2O2 challenge,
indicating why H2O2 is less effective than CHX and PVP-I [12–14].

Although there is no observed increase in biofilm tolerance, growth within a dual-
species biofilm appeared to drive C. auris to form small aggregates. The ability of cells to
form aggregates has been characterised in cystic fibrosis and chronic wounds [15]. Although
not directly adhered to surfaces, these cells display biofilm traits such as recalcitrance to
antimicrobial therapies [16]. Therefore, existing within a dual-species environment may
increase the ability of non-aggregating C. auris to tolerate disinfection protocols and drive
spread throughout healthcare environments.

This small study has only used a single C. auris strain, which is a member of the Indian
clade. To fully characterise levels of antiseptic tolerance between C. auris and staphylococci,
additional C. auris strains should be used. We also did not include a physical challenge
in addition to the chemical action of the antiseptics used (e.g., wiping), which would
likely affect cell survival rates. The data discussed herein reveal that interactions between
non-aggregating C. auris and Staphylococcus species do not increase biofilm biomass, which
is reassuring for the management of these infections. Notably however, the observed
increase in cellular regrowth within the H2O2 treated dual-species biofilm indicates that
bacteria have the potential to influence the ability of C. auris to persist within healthcare
environments. Further research is required to fully understand the intercellular interactions
that take place between C. auris and other bacterial species.
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4. Conclusions

Being frequently isolated from the skin of both healthy and immunocompromised
patients, the opportunities for C. auris to interact with bacteria that also occupy the same
niche. Data herein show that Staphylococcus spp. do not promote a more tolerant phenotype
in C. auris. However, similar interactions between staphylococci and C. albicans increase
both fungal and bacterial virulence. Therefore, further studies may reveal other effects of
these interactions.

5. Materials and Methods
5.1. Microbial Growth and Standardisation

C. auris isolate NCPF 8973 (Indian clade), S. aureus NCTC 10,833, and S. epidermidis
RP62A (ATCC 35984) were used throughout this study. C. auris was grown on Sabouraud’s
Dextrose (SAB) agar (Sigma-Aldrich, Dorset, UK) at 30 ◦C for 48 h and bacterial strains were
grown for 24 h at 37 ◦C on Luria Bertoni (LB) agar (Sigma-Aldrich). All microorganisms
on agar were stored at 4 ◦C. Yeast and bacterial colonies were suspended in yeast peptone
dextrose media (YPD; Sigma-Aldrich) or LB broth, respectively. Broths were incubated for
18 h overnight before washing twice with phosphate-buffered saline (PBS; Sigma-Aldrich).
Staphylococcal cells were diluted to 0.6 OD600 (approx. 1 × 108 cells/mL) and yeast cells
were counted using a haemocytometer. Microorganisms were diluted to assay specific
concentrations in desired media.

5.2. Biofilm Growth, Quantification, and Visualisation

Fungal and bacterial broths were standardised as described above. C. auris was
adjusted to 1 × 106 cells/mL as done so previously [7,17]. Bacteria were diluted to con-
centrations ranging from 1 × 104 to 1 × 106 CFU/mL. Cell suspensions were prepared as
single or dual species inoculums in Todd Hewitt broth (THB; Thermo Fisher, Paisley, UK)
supplemented with hemin and menadione, mixed 1:1 with Roswell Parks Memorial Insti-
tute (RPMI) media (Sigma-Aldrich). Biofilms were grown in treated 96-well, flat-bottom,
microtitre plates (Thermo Fisher) and incubated at 37 ◦C for 24 h. Biofilm formation was
assessed via crystal violet staining as described previously [6].

Bioflims were visualised by fluorescently labelling microorganisms with 1.5 mM
hexidium iodide (Fisher Scientific, Loughborough, UK) and 1.5 mM calcofluor white
(Thermo Fisher). Biofilms were incubated with the fluorescent dyes at 37 ◦C for 1 h.
Biofilms were washed twice with PBS to remove excess dye and imaged using an EVOS
cell imaging system (Thermo Fisher) at 40× magnification. Calcofluor white and hexidium
iodide fluorescence was detected at excitation/emission wavelengths of 357/447 and
531/593 nm, respectively, before overlaying the images.

5.3. Hydrogel Preparation and Biofilm Growth on Cellulose Matrix

A 3-dimensional biofilm model was used as described previously by our group [3].
Briefly, this was prepared using 10% 3-sulfopropyl acrylate potassium salt, 0.95% poly(ethylene
glycol) deacrylate, 0.01% 1-hydroxycyclohexyl phenyl ketone, and 50% horse serum diluted
using 2× PBS pH 7.3. The mixture was added to treated, flat-bottomed, 12-well plates
(Thermo Fisher) and gels were polymerised under 365 nm ultraviolet light for 30 min.
For biofilm growth, microorganisms were standardised to 1 × 107 cells/mL in PBS and
incubated for 2 h with the required number of cellulose matrix pieces (cut to 1.25 cm2) at
37 ◦C with agitation. Sections of matrix were placed on top of the gels and incubated for
a further 24 h at 37 ◦C.

5.4. Biofilm Treatment and Re-Growth Assessment

Single and multi-species biofilms on coverslips and cellulose matrices were exposed
to 2% (v/v) CHX, 10% (w/v) PVP-I, or 3% (v/v) H2O2 for 5 min, and neutralised using
5% (w/v) sodium thiosulphate as described previously [3]. Biofilm viability was quantified
directly after treatment using 0.01% (w/v) resazurin sodium salt using the method outlined
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above, and by colony forming unit (CFU) quantification. Biofilm biomass was removed
from the growth substrate via sonication in an ultrasonic water bath (Fisher Scientific,
Loughborough, UK) for 10 min at 35 kHz. The biomass was subsequently serially di-
luted 10-fold in an untreated, round-bottom microtitre plate as described elsewhere [17]
and plated onto selective agars. C. auris was selected for using SAB agar supplemented
with 8 µg/mL amoxicillin and 75 µg/mL erythromycin, and LB agar supplemented with
64 µg/mL amphotericin B was used to select for S. aureus and S. epidermidis growth [18].

To assess biofilm re-growth, fresh growth media was added back to the treated biofilms
and then incubated for a further 48 h. Every 24 h biofilm viability was quantified by
diluting a 1% (w/v) stock of resazurin sodium salt 1:100 in biofilm growth media. Diluted
resazurin salt was incubated with biofilms for 1 h. Media fluorescence was measured at an
excitation/emission of 530/590 nm in a microtitre plate reader (FLUOStar Omega, BGM
Labtech, Aylesbury, UK).

5.5. Statistical Analysis

All experiments were carried out in triplicate on three independent occasions. Positive
untreated controls were included for comparison to treated biofilms, and negative controls
were used to test for contamination. Statistical analysis and graph production was per-
formed using GraphPad Prism (Version 8; La Jolla, CA, USA) and SPSS Statistics (Version
26.0; IBM, Chicago, IL, USA). Kruskal–Wallis tests were used to compare means of biofilm
metabolic activity and biofilm CFUs before and after treatment. Differences between means
were deemed significant where p < 0.05.
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