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Abstract

In recent years, personalized gene regulatory networks have received significant attention,

and interpretation of the multilayer networks has been a critical issue for a comprehensive

understanding of gene regulatory systems. Although several statistical and machine learn-

ing approaches have been developed and applied to reveal sample-specific regulatory path-

ways, integrative understanding of the massive multilayer networks remains a challenge. To

resolve this problem, we propose a novel artificial intelligence (AI) strategy for comprehen-

sive gene regulatory network analysis. In our strategy, personalized gene networks corre-

sponding specific clinical characteristic are constructed and the constructed network is

considered as a second-order tensor. Then, an explainable AI method based on deep learn-

ing is applied to decompose the multilayer networks, thus we can reveal all-encompassing

gene regulatory systems characterized by clinical features of patients. To evaluate the pro-

posed methodology, we apply our method to the multilayer gene networks under varying

conditions of an epithelial–mesenchymal transition (EMT) process. From the comprehen-

sive analysis of multilayer networks, we identified novel markers, and the biological mecha-

nisms of the identified genes and their reciprocal mechanisms are verified through the

literature. Although any biological knowledge about the identified genes was not incorpo-

rated in our analysis, our data-driven approach based on AI approach provides biologically

reliable results. Furthermore, the results provide crucial evidences to reveal biological

mechanism related to various diseases, e.g., keratinocyte proliferation. The use of explain-

able AI method based on the tensor decomposition enables us to reveal global and novel

mechanisms of gene regulatory system from the massive multiple networks, which cannot

be demonstrated by existing methods. We expect that the proposed method provides a new

insight into network biology and it will be a useful tool to integrative gene network analysis

related complex architectures of diseases.

Introduction

Gene regulatory networks are crucial for understanding complex mechanisms of diseases. To

reveal heterogeneous genetic networks that underlie complex human diseases, various large-
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scale projects (e.g., The Cancer Genome Atlas and Cancer Genome Project) have been con-

ducted and provided considerable amounts of omics data. The scale of gene networks is

increasing, and strategies to comprehensively analyze large-scale gene networks have been

claimed. In particular, there is currently substantial discussion regarding integrative analysis of

sample-specific gene networks for personalized cancer diagnostics and therapeutics.

Shimamura et al. [1] proposed a statistical method for sample-specific network construc-

tion, NetworkProfiler, which groups samples according to their specific genomic characteris-

tics (e.g., drug response and survival time) and constructs a network for a target sample based

only on samples having characteristics similar to those of the target sample. Thus, we can

reveal gene regulatory networks under varying conditions of clinical characteristics of patients.

The NetworkProfiler was applied to construct gene networks for 762 cancer cell lines charac-

terized by EMT process, where EMT-related modulators for each cell line were measured

based on 50 EMT-related genes labeled in the Molecular Signatures Database. They focused on

E-cadherin, which connects epithelial cells at adherens junctions, and identified 24 candidate

regulators. Interestingly, the identified genes did not consist of just the 50 genes defining the

modulators, i.e., only one of the 24 identified genes was a member of the 50 genes, even though

the regulators of E-cadherin were identified from the networks under varying conditions of

the EMT modulators computed from the 50 genes. Among the 24 identified genes, approxi-

mately half were verified as regulators of E-cadherin from the literature. They selected KLF5

from the remaining genes and performed validation experiments. Through the experiments,

the mechanism of KLF5 was demonstrated: knockdown of KLF5 decreased the expression of

E-cadherin and led to morphological changes of the characteristics of EMT. Their validation

results are also supported by later studies, e.g., Zhang et al. [2]. Although the other half were

not verified at that time, a majority of those have been demonstrated as crucial EMT markers

in the past decade [3, 4]. Shimamura et al. [1] provided crucial indicators and made major con-

tributions to reveal tumor progress related to EMT. Park et al. [5] suggested that cancer char-

acteristics are not uniformly distributed, and the Gaussian kernel function used to control the

effect of samples in the NetworkProfiler leads to extremely small amount of weight for model-

ing a target sample having rare cancer characteristic, because the Gaussian kernel function is

based on a constant bandwidth. To address this problem, Park et al. [5] proposed a robust ver-

sion of NetworkProfier based on an adaptive bandwidth via the k-nearest neighbor rule, and

constructed a drug sensitivity-specific gene network based on the Sanger dataset from the Can-

cer Genome Project.

Although existing studies have provided crucial tools for precision medicine, understand-

ing of large-scale multilayer gene networks is limited. In other words, a significant number of

multilayer networks cannot be interpreted comprehensively using existing approaches (e.g.,

Shimamura et al. focused only on E-cadherin, and other regions could not be revealed).

To resolve this problem, we propose a novel strategy based on an explainable artificial intel-

ligence (AI) methodology using tensor decomposition. Although machine learning and AI

methods show remarkable performance in modeling accuracy, most of the existing approaches

cannot explain how they obtain results (referred to as the black-box problem). This limits AI

usage because their results cannot be verified. Maruhashi et al. [6, 7] developed novel explain-

able AI approaches (i.e., DeepTensor and Tensor Reconstruction-based Interpretable Predic-

tion (TRIP)) for learning multiway relations, which are deep learning approaches using tensor

decomposition. Our strategy is based on two stages, i.e., constructing sample-specific gene net-

works and comprehensive analysis of the constructed multilayer netowrks by using the

explainable AI methodology. That is, we construct a personalized gene regulatory network for

each patient and the constructed network is considered as a second-order tensor. We then

explore the massive multiple gene networks by using the AI method, TRIP. The use of the
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interpretable AI method based on tensor decomposition enables us to overcome limitation of

existing gene network analysis, i.e., narrow angle in regulatory networks, and this leads to a

greater understanding of biological systems of the regulatory interactions between genes. To

the best of our knowledge, this is the first study on revealing gene regulatory networks using

an explainable AI method.

To illustrate our strategy, we apply the proposed method to EMT-related gene regulatory

networks constructed using NetworkProfiler [1]. We learn a low-dimensional subspace of 762

network tensors using the TRIP and explore multilayer networks on the constructed subspace.

From the comprehensive analysis of multilayer networks, we identified novel markers, and the

biological mechanisms of the identified genes and their reciprocal mechanisms are verified

through the literature. Although any biological knowledge about mechanism of the identified

genes was not incorporated in our analysis, the revealed genes by our method have strong evi-

dences. In other words, our data-driven approach provides biologically reliable results.

Although we illustrate our method based only on EMT-related networks, it can be expected

that the proposed method will be a useful tool to global explore gene regulatory system

involved in various clinical characteristics.

The remainder of this paper is organized as follows. In the Method section, we introduce

the proposed a novel strategy for global exploration of multilayer personalized gene networks.

In the Results section, we describe the evaluation of our strategy based on the gene regulatory

networks varying according to the EMT status. Conclusions are provided in the Discussion

section.

Method

Suppose X1, . . ., Xq is q possible regulators that may control transcription of the lth target gene

Yl. Consider the linear regression model for the target gene Yl,

Yl ¼
Xq

j¼0

bjl � Xj þ εl; ð1Þ

where βjl is the regression coefficient that represents the effect of regulator Xj on target Yl and

εl is a random error vector εl = (εl1, . . ., εln)T that is assumed to be independently and identi-

cally distributed with mean 0 and variance σ2. To reveal gene regulatory interactions based on

the regression model, various statistical and machine learning methods have been proposed

and applied to gene network construction [8, 9]. However, patient-specific gene regulatory sys-

tems cannot be revealed via the regression model because the strengths of the relationships

between genes are given as βjl for all samples.

We develop a novel strategy for integrative analysis for multilayer gene networks, which are

a crucial tool for precision medicine. In our method, gene regulatory networks are constructed

under varying conditions of samples and the multilayer networks are analyzed comprehen-

sively using an explainable AI method. The gene network for a target sample is considered as a

second-order tensor, and a deep learning method for tensor decomposition is applied to con-

struct low-dimensional subspace of the multiway interaction between genes. Prediction and

interpretation are performed on the constructed human-readable low-dimensional subspace,

and thus we can effectively understand the constructed large-scale gene networks. Our strategy

consists of two stages of constructing sample-specific gene regulatory networks and global

investigating large-scale multiple gene networks based on an explainable AI technology.
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Stage 1: Constructing personalized gene regulatory network based on

sample-specific analysis

We consider the varying-coefficient structural equation model to construct a sample-specific

gene regulatory network [10],

Yl ¼
Xq

j¼0

bjlðmaÞ � Xj þ εl; ð2Þ

βjl(mα) is the regression coefficient of Xj on Yl for the αth target sample of the modulator M =

mα, such as drug sensitivity and survival risk of cell lines.

To estimate the varying coefficient βjl(mα) describing strength of the relationship between

the regulator and the target genes for each sample, we considered the the following kernel-

based L1-type regularization method [1, 5]

LðβlajblÞ ¼
1

2

Xn

i¼1

fyil �
Xq

j¼1

bjlaXijg
2Gðmi � majblÞþ PðβlaÞ; ð3Þ

where P(βlα) is the recursive elastic net penalty, and

Gðmi � majblÞ ¼ expf
� ðmi � maÞ

2

bl
g ð4Þ

is the Gaussian kernel function used to group samples according to specific cancer characteris-

tics (i.e., modulator mi for i = 1, . . ., n). The Gaussian kernel function enables us to estimate

βjl(mα) for the αth sample based only on samples having characteristics of mi similar to the tar-

get sample modulator value mα. Thus, we can construct a gene network for a specific clinical

status of samples, and it leads to evidences for personalized therapy.

In the first stage, we measure cancer characteristics mi (i = 1, . . ., n) of each sample and

construct personalized gene regulatory networks under varying conditions of clinical charac-

teristics using NetworkProfiler. This enables us to reveal patient-specific gene regulatory char-

acteristics that are vital information of precision medicine. To comprehensively analyze the

multiway interaction between genes, we proposed the use of the AI method in the second

stage.

Stage 2: Extracting knowledge from the multilayer networks by explainable

AI

The constructed multilayer networks (targets × regulators × samples) are considered as the

input of the explainable AI method developed in our previous study, called TRIP [7]. The

TRIP is a deep learning method for tensor decomposition. In this study, we consider a gene

network matrix as a second-order tensor for a data point and then estimate projection matrices

for the first and second modes based on the tensor decomposition. By using the projection

matrices, we construct low-dimensional subspace of the network tensor. Thus, we can reduce

dimensionality of large-scale multiple gene networks and extract crucial components to pre-

dict EMT-modulators.

For the K-mode tensor X for size I1 × � � � × IK, the TRIP estimates a projection matrix

CðkÞ 2 RIk�Jk and then projects the network tensors onto the constructed subspace by using

C(k). Prediction or classification is conducted on the constructed human-readable low-dimen-

sional subspace. This leads to more explainable and interpretable results of the multilayer gene

network analysis, as compared to the results on the complex high-dimensional data space.
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The second stage of our strategy is based on the following two problems,

• Constructing human-readable low-dimensional subspace and projecting the network tensor

onto the subspace,

X i ¼ X i

Y

k

�kC
ðkÞ

ð5Þ

• Predicting a response variable based on the projected network tensor X i

ŷi ¼ f ðX i; θÞ for i ¼ 1; . . . ; n; ð6Þ

where ri ¼WT
i vecðX iÞ, W i is the weight tensor for prediction and θ are the remaining

parameters other than W i.

The optimization of the TRIP for the two aforementioned problems (i.e., projection of the

network tensor and prediction of the response variable) is based on the following objective

function

OT ¼
1

n

Xn

i¼1

fLðyi; ŷiÞ þ gkX i � X i

Y

k

�kC
ðkÞT
k

2

2
g;

subject to C
ðkÞT

C
ðkÞ
¼ I;

ð7Þ

where γ> 0 is the tuning parameter for the projection error and Lðyi; ŷiÞ is the loss function

of the prediction given in (6). The second term is the loss function for projection of the net-

work tensor onto the constructed subspace given in (5). As shown in the objective function

(7), the TRIP estimates the projection matrix C(k) and simultaneously predicts the response

variable. This implies that the TRIP enables us to achieve effective prediction results while

retaining as much of the original data variance as possible.

The projection matrix C(k) that satisfies the orthonormal condition (i.e., C(k)T C(k) = I) is

derived from singular value decomposition (SVD) of a latent variable Z(k) of the same size as

C(k). That is, we first perform SVD of Z(k),

ZðkÞ ¼ PðkÞSðkÞQðkÞT ; ð8Þ

and then set

CðkÞ ¼ PðkÞQðkÞT: ð9Þ

The latent variable Z(k) is estimated from the derivatives of the objective function OT by setting

them to zero. Maruhashi et al. [7] showed that the derivatives of the objective function OT with

respect to Z(k) are derived from a function of @OT/@C(k) and SVD of Z(k), and proposed itera-

tive algorithm for optimization problem of the TRIP given in (7). That is, the optimization

problem of the TRIP is based on simultaneously taking the derivatives of the objective function

OT with respect to C(k), Z(k), rn, and θ and setting them to zero.

The projection matrices are considered as the regression coefficients of the crucial compo-

nents. They learnt a multi-linear surrogate model ŷ 0i ¼ hW;X ii þ b that minimizes the sum of

the differences with the results of the prediction model
P

ikŷi � ŷ 0ik
2

2
, by setting the regression

coefficient W to be a multi-linear tensor, i.e., W ¼ gð1Þ � � � � � gðKÞ, where � denotes outer

product. The crucial components in prediction of response variable are extracted by principal
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component analysis of the vectors

uðkÞi ¼ X i

Y

ljl6¼k

CðlÞgðlÞ � CðkÞ ð10Þ

That is, the principal components of U(k) having the normalized uðkÞi as the column vector are

extracted as crucial components for prediction of the response. For details of the notation and

algorithm for the TRIP, please refer to Maruhashi et al. [7].

In the second stage, we perform integrative gene network analysis based on the constructed

subspace of the network tensors.

Results

To illustrate our strategy, we apply the proposed method to personalized gene regulatory net-

works varying depending on the EMT process [1]. Because the EMT modulator is uniformly

distributed, we consider EMT-related networks constructed by ordinary Networkprofiler

instead of the robust NetworkProfiler.

Personalized gene regulatory networks under varying conditions of the

EMT process

EMT-related gene networks were constructed based on the expression profiles of 762 cell liens

from the Sanger Cell Line Project (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi).

A 13,508 (genes) × 762 (cancer cell lines) gene expression matrix was constructed based on the

expression profiles of 13,006 mRNAs from Affymetrix GeneChip Human Genome U133

Array set and 502 microRNAs from bead-based oligonucleotide arrays. A total of 1732 regula-

tor genes consisting of 1183 transcription factors, 47 nuclear receptors, and 502 human

miRNA were extracted. The modulator describing the EMT process (epithelial-like or mesen-

chymal-like) of cell lines, the so-called EMT modulator, was extracted using the module dis-

covery method [11] based on 50 genes labeled as the EMT-related genes (i.e., EMT-UP,

EMT-DN, JECHLIN-GER-EMT-UP, and JECHLIN-GER-EMT-DN) in Molecular Signatures

Database v2.5 (http://www.broadinstitute.org/gsea/msigdb/index.jsp). In short, 762 EMT-

related gene regulatory networks for 13,508 targets with 1732 regulator genes were constructed

under varying conditions of the EMT modulator values. In this study, we consider the network

for 13,508 targets × 1762 regulators as a second-order tensor for a specific EMT process and

apply the TRIP for integrative gene network analysis of the 762 network tensors.

Comprehensive interpretation of the EMT-related network tensors

We learn a 50 × 50 subspace of the 762 EMT-related gene networks using the TRIP, i.e., J1 = 50

and J2 = 50. From the projection matrices of the constructed subspace C(k) k = 1, 2 in (9), each

50 crucial factors describing importance of target and regulator genes to predict EMT-modula-

tor are extracted by PCA of U(1) and U(2), respectively. In this study, we consider the crucial

components of the subspace for regulator genes, i.e., U(2). Fig 1 shows the variabilities

explained by the extracted 50 independent components. As shown in Fig 1, the first compo-

nent explains more than half of the total variability (i.e., 56%) of the EMT-related gene net-

works, and the first three components explain approximately 70% of the variability. We focus

on the first three components and interpret the EMT-related gene networks based on the three

components.

Table 1 shows the distribution of the tissue origin of 100 cell lines corresponding to the 100

highest and lowest values of each of the three components. The brain cell lines are
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concentrated in the region with high values of the first component (i.e, 83% of brain cell lines

are in the region with the 100 highest values of component 1), and leukemia cell lines are con-

centrated in the region with high values of the second component (i.e, 83% of leukemia cell

lines are in the region with the highest values of component 2).

Colorectal cell lines are concentrated in the region with low values of the first two compo-

nents. In short, the first and second components can be characterized by the ‘Brain with Colo-

rectal’ and ‘Leukemia with Colorectal’, respectively. An independent test (i.e., Chi-squared

test) between high/low values of each component (e.g., leukemia cells/nonleukemia cells and

high/low values of each component) is conducted, and significant diseases (p< .01) for each

component are given in the column χ2 in Table 1, where high and low regions are classified

based on the median value of each component. The brain seemed to be most associated with

the first component, whereas Leukemia can be considered as the most significant disease for

both the second and third components. The Brain, Leukemia and Colorectal seem to be crucial

diseases for all three components. Fig 2 shows the scatter plot of the EMT modulator and

extracted three components. As shown in Fig 2, the first component is strongly associated with

the EMT modulator (i.e., the correlation coefficient of the EMT modulator and the first com-

ponent is 0.997). This indicates that the extracted first component can be considered as

another EMT modulator, and the second and third components may have information other

than the EMT-related mechanism.

In order to globally explore the EMT-related mechanisms from the multilayer networks, we

combine our results with the well-known EMT markers (i.e., five EMT transcription factors

(EMT-TFs): ZEB1, ZEB2, SNAIL1, SNAIL2, and TWIST1, see Table 2). For each component,

the target networks of the five EMT-TFs are constructed in the region of high and low values

of each component. From the multiple networks in each region, we first extract target genes

(TG.EMT-TFs) of the EMT-TFs and then extracted the target genes of the TG.EMT-TFs,

where the genes are extracted as targets in at least one network are considered as target genes.

The target networks for each region are give as binary adjacency matrices (1: two genes are

associated in at least one cell line, 0: otherwise). Next, we compute compute absolute differ-

ences of the two adjacency matrices for genes, then extract 10 genes showing considerably

Fig 1. Variabilities of the 50 independent components.

https://doi.org/10.1371/journal.pone.0241508.g001
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different edges between the two adjacency matrices for high and low regions of each compo-

nent (i.e., for each genes, sum of the absolute differences are computed for all genes in the

EMT target network, and then 10 genes having the largest sum of the absolute differences are

extracted). The identified 10 genes can be considered as markers having specific regulatory

characteristics depending on the each component.

Table 3 shows the identified genes for the three components and their evidence sources.

We focus only on the newly identified genes other than the five EMT-TFs, even though the

five EMT-TFs are selected for all three components.

Table 1. Distribution of diseases for cells corresponding the 100 highest and lowest three components (%).

Component 1 Component 2 Component 3 Total 762 cells (#)

High Low χ2 High Low χ2 High Low χ2

AdrenalGland 0 0 100 0 0 0 1

AutoGanglia 5 0 ���� 3 0 0 54 ��� 37

BiliaryTrack 17 17 0 33 0 0 6

Bone 29 0 ���� 3 6 10 13 31

Brain 83 0 ���� 0 17 ���� 41 5 ���� 59

Breast 7 26 ��� 10 17 �� 12 10 42

Cervix 0 43 21 36 7 14 14

Colorectal 0 63 ���� 5 63 ��� 8 5 ���� 38

Endometrium 9 9 0 9 0 18 11

Eye 0 0 100 0 0 0 2

Headneck 4 13 ��� 0 8 33 0 24

Kidney 9 0 ���� 0 0 5 32 22

Leukemia 0 1 ���� 50 1 ���� 16 0 ���� 109

Liver 18 0 18 0 9 9 11

Lung 2 15 �� 8 12 9 15 �� 128

Lymphoma 0 0 32 0 ���� 16 0 19

Muscle 0 0 0 13 0 63 8

Oesophagus 0 38 ��� 0 33 ��� 4 8 24

OtherSarcoma 70 0 �� 0 0 20 10 10

Ovary 4 0 33 0 17 21 24

Pancreas 0 41 6 29 12 0 17

Placenta 0 0 0 0 0 0 2

Pleura 33 0 0 0 0 17 6

Prostate 0 17 0 17 17 0 6

Skin 26 2 ��� 0 7 7 33 46

SmoothMuscle 0 0 0 0 0 100 1

StomachGI 0 28 12 24 12 8 25

Testis 0 0 0 0 50 0 4

Thyroid 42 8 0 8 8 0 12

Unknown 0 0 100 0 0 0 1

UrinaryTrack 5 40 0 30 10 15 20

Vulva 0 0 0 0 50 50 2

Significant of χ2 test (p-value):

�� p < .01;

��� p< .001;

���� p< .0001

https://doi.org/10.1371/journal.pone.0241508.t001
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Among the newly identified 17 genes, only IRF6 is used for defining the EMT modulator.

For the identified genes, we compute the regulatory effect change (REC) for 13,508 target

genes [1, 5]. In this study, we consider direct connection between genes, i.e., in the 762 EMT-

related gene regulatory networks, the effect of the jth regulator on the lth target gene at the αth

sample can be measured by the following regulatory effect (RE),

REjla ¼ b̂ jlðmaÞ � Xaj; ð11Þ

and the RECs according to the EMT modulator values are computed as follows

RECjl ¼ maxfREjla; a ¼ 1; :::; ng � minfREjla; a ¼ 1; :::; ng: ð12Þ

which measures the effect of the EMT modulator on strength of the relationship between the

regulator and the target genes.

Fig 2. EMT modulator and top three components (Green: low EMT modulator, red: high EMT modulator). The first three components seem to be independent of

each other, i.e., each component may have different information to describe EMT-related gene networks.

https://doi.org/10.1371/journal.pone.0241508.g002

Table 2. EMT Transcription Factors (TFs) and their mechanisms.

EMT-TFs EMT-related mechanism Evidences

ZEB family: ZEB1,

ZEB2

: Snail1 and Twist1 can up-regulate and cooperate with ZEB1 to induce EMT.

: MYC-or serum-induced EMT were characterized by increased expression of

ZEB1, ZEB2, and SNAI1.

[3, 12]

SNAIL1 : mediator in different signaling pathways that induce EMT, such as the

NBS1-SNAIL1 axis and the TGF-β/SMADS/HMGA2/SNAIL1 axis.

: main role in EMT, the process by which epithelial cells acquire a migratory,

mesenchymal phenotype as a result of its repression of E-cadherin.

[13, 14]

SNAIL2 : up-regulated by Notch to induce EMT with an increase of cell migration and loss

of cell–cell junctions.

: activates ZEB1 and cooperates with it to promote EMT.

: direct induction of SNAIL1 is essential for TWIST1 to induce EMT.

[4, 15, 16]

TWIST1 : HIF-1α directly binds to the promoter of TWIST1 to induce EMT in hypoxic

microenvironments.

: needs to induce SNAIL1 to suppress the epithelial branch of the EMT program.

: acts together with SNAIL1 to promote EMT.

[4, 17]

https://doi.org/10.1371/journal.pone.0241508.t002
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As mentioned above, each 762 cell lines have EMT modulator values and corresponding

networks. Fig 3 shows the average of RE of the identified genes other on the 50 EMT-related

genes for 10 networks corresponding to the 10 highest (top) and lowest (middle) EMT mod-

ulator values, where edges having zero mean for 10 cell lines are deleted. As shown in Fig 3,

FOXF1 regulates the EMT-related genes, COL6A1, COL6A2, HTRA1, IL11, MMP2, PCOLCE,

PDGFRA, PDGFRB, and PMP22. The regulation system of FOXF1 with the EMT-related

genes is observed in both epithelial-like and mesenchymal-like cell lines. E-cadherin (CDH1),

which is one of the important genes for cell–cell adhesion in epithelial cells, is positively regu-

lated by LSR and GRLH2 and negatively regulated by the ZEB family (i.e., ZEB1 and ZEB2).

We then focus on genes not discovered as EMT markers in the literature, but selected by our

method, AFF1, KANK2, PCBD1, ZNF91, and MAFB, i.e., their EMT-related mechanisms have

not yet been revealed. Although a majority of the unrevealed genes regulate the EMT-related

genes, their REs are extremely small. From these results, it can be considered that the genes

may have mechanisms that are not directly involved in the EMT process.

For the selected 10 genes from the analysis of the three components, we compute REC

matrices consisting of 10 columns (extracted 10 genes) and 13,493 rows (13,493 target genes)

and then perform PCA of the REC matrix. The identified genes for each component are

grouped in the first two PC spaces, and the reciprocal mechanisms between the grouped genes

can be found in the published literature. Overall flowchart of our strategy for global explora-

tion of EMT-related networks is given in Fig 4.

Component 1:

High.E&High.C1 versus Low.E&Low.C1

We consider high EMT&high component 1 (High.E&High.C1) and Low EMT&Low com-

ponent 1 (Low.E&Low.C1) regions consisting of 380 and 379 cell lines, respectively. For the

first component, ZEB2, SNAI2, ZEB1, SNAI1, TWIST1, MAFB, GRHL2, ANKRD5, FOXF2,

and ZNF91 are selected as markers having specific characteristics depending on the first com-

ponent (i.e., these genes show significantly different regulatory systems between the High.

E&High.C1 and Low.E&Low.C1 regions). In addition to the EMT-TFs, the novel five genes

Table 3. Identified novel candidate markers involved in EMT related mechanism.

Genes Components Related diseases Reference

AFF1 3 -

ANKRD5 1 Brain, Pharynx, and Swim bladder cancers [18]

FOXF1 2 Colorectal and Lung cancers [19, 20]

FOXF2 1 Basal-like breast cancer [21, 22]

GLI3 2 Oral squamous cell carcinoma and Colorectal cancer [23, 24]

GRHL2 1 Gastric, Ovarian, and Breast cancers [13, 25–28]

IFI16 2, 3 Prostate Cancer [29–32]

IRF6 3 Embryonic palate, Breast, Gastric, and Prostate cancers [33, 34]

KANK2 3 -

LSR 2 Endometrial and Breast cancers as well as Head and Neck Squamous Cell Carcinomas [35–38]

MAFB 3 -

OVOL2 2 Colorectal tumor, Osteosarcoma, and Breast and Prostate cancers [39–42]

PCBD1 2 -

SOX13 2 Colorectal cancer [43]

TGFB1I1 2 Lung adenocarcinoma, Kidney disease, and Renal fibrosis [44–47]

TP63 2, 3 Breast cancer [48–50]

ZNF91 1 -

https://doi.org/10.1371/journal.pone.0241508.t003
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Fig 3. HeatMap of the regulatory effect of the selected genes on the 50 EMT-related genes.

https://doi.org/10.1371/journal.pone.0241508.g003
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are identified, i.e., MAFB, GRHL2, ANKRD5, FOXF2, and ZNF91. Fig 5 shows the target net-

works of the five genes. A relatively sparse network can be seen in the Low.E&Low.C1 region,

as compared to the High.E&High.C1 region. That is, only five EMT-TFs have a strong rela-

tionship between each other in Low.E&Low.C1, whereas there are many relationships between

not only the identified 10 genes, but also their target and regulator genes in the High.E&High.

C1 region. As shown in Table 3, more than half of the identified genes are confirmed as EMT

markers (i.e., their EMT-related mechanisms have been reported in the literature). For

Fig 4. Overall flowchart of our strategy.

https://doi.org/10.1371/journal.pone.0241508.g004

Fig 5. Target networks of the five regulators discovered from the analysis of the first component.

https://doi.org/10.1371/journal.pone.0241508.g005
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instance, GRHL2 reduces the invasion and migration through the inhibition of TGF-β-

induced EMT in gastric cancer [26]; GRHL2 leads to mesenchymal–epithelial transition

(MET) through the inhibition of ZEB1 [13]. ANKRD5 plays roles in protocadherin-mediated

cell protrusion and adhesion, and participates in cell adhesion [18]. FOXF2 was identified as a

novel TF related to EMT-suppressing in basal-like breast cancer (BLBC) FOXF2 negatively tar-

gets TWIST1 in the EMT programming and metastasis progress of BLBC [22].

Fig 6 shows the projected 10 genes and 13,493 target genes on the first two PC spaces of the

REC matrix. From the biplot, the identified genes can be grouped as follows,

High.E&High.C1 region

• Group 1: ZEB1, ANKRD5, GRHL2

• Group 2: FOXF2, MAFB, SNAL1, SNAL2

Low.E&Low.C1 region

• Group 1: ZEB1, GRHL2

• Group 2: FOXF2, MAFB, TWIST1

• Group 3: ZNF91, SNAL1

We focus only on the newly discovered five genes because the reciprocal mechanisms

between the five EMT-TFs were well known in previous studies. For both high and low regions

of the first component, GRHL2 is grouped with well-known EMT marker ZEB1. Their recip-

rocal mechanisms in the EMT-related process are demonstrated as follows [25, 27, 28]:

GRHL2 suppresses EMT and restores sensitivity to anoikis by repressing ZEB1 expression;

Combination of TGF-β and Wnt activation represses GRHL2 expression by direct interaction

of ZEB1 with the GRHL2 promoter, inducing EMT; Reciprocal feedback loop between

GRHL2 and ZEB1 controls epithelial versus mesenchymal phenotypes and EMT-driven tumor

progression; GRHL2 is the main gatekeeper of EMT in EOC via miR-200-ZEB1, and their axis

forms the core of EMT signaling. The EMT-related interaction between FOXC2 and TWIST1

is also demonstrated as follows [21, 22]: FOXC2 transcriptionally represses the expression of

two EMT-TFs TWIST1 and FOXC2; FOXC2 negatively targets TWIST1 in the EMT program-

ming and metastasis progress of BLBC. Genes MAFB and ZNF91 are members of Gene-Ontol-

ogy-Terms Class: GO:0006355—regulation of transcription, DNA-templated. However, the

interaction between MAFB and ZNF91 in diseases has not been yet demonstrated.

Component 2:

High.E&High.C2 vs High.E&Low.C2

Low.E&High.C2 vs Low.E&Low.C2

For the second component, we consider regions of high and low values of the second com-

ponent for high and low EMT modulators, respectively (i.e., “High.E&High.C2 (195 cell lines)

vs High.E&Low.C2 (186 cell lines)” and “Low.E&High.C2 (186 cell lines) vs Low.E&Low.C2

(195 cell lines)”). In addition to the well known five EMT-TFs, GLI3, ANKRD5, PCBD1,

FOXF1, OVOL2 and LSR, TP63, SOX13, IFI16, and TGFB1I1 are identified for low and high

EMT regions, respectively.

Fig 7 shows target networks of the newly identified five markers other than 5 EMT-TFs,

where the edges appeared in each network of all cell-lines are only extracted. Similar to the

component 1, a relatively sparse network can be seen in the low regions of component 2, as

compared to the high regions. Especially in the low EMT region, it can be seen that the target

network consists of only well known EMT markers, ZEB1, SNAI1, SNAI2, OVOL2, FOX1 and
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Fig 6. Projection of the discovered genes onto the first two principal components of REC.

https://doi.org/10.1371/journal.pone.0241508.g006
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GLI3 in region for the low component 2, whereas the target network for the high component 2

involves many genes. Fig 8 shows the results of PCA for the REC matrices. We focus on the

results of the low EMT region (i.e., Low.E&High.C2 versus Low.E&Low.C2) and group the

genes as follows,

ZEB1 and OVOL2: OVOL2 is one of the well-known EMT markers, and the interaction in the

EMT process of OVOL2 and ZEB1 has been demonstrated in many studies: OVOL-TFs

control MET through a regulatory feedback loop with EMT-inducing TF, ZEB1 [41];

OVOL2 restricts EMT by directly inhibiting EMT-inducing factors including the ZEB1 sys-

tem; A regulatory network containing OVOL2–ZEB1 mutual repression results in a four-

state EMT, i.e., epithelial, intermediate, intermediate, and mesenchymal states [42];

OVOL2 suppresses ZEB1 expression by binding to the ZEB1 promoter [39].

FOXF1 and SNAI1: FOXF1 is also confirmed as an EMT-related marker, and reciprocal

mechanisms of genes in this group have been demonstrated: the expression of FOXF1

inhibits cancer cell invasion and migration, whereas the inactivation of FOXF1 stimulates

cell invasion and migration (Wei et al., 2014); higher level of FOXF1 is positively associated

with enrichment of EMT gene signatures [19]; Overexpression of FOXF1 induces EMT by

transcriptionally activating SNAI1 in colorectal cancer metastasis [19].

Fig 7. Target networks of the five regulators discovered from the analysis of the second component for high and low EMT regions.

https://doi.org/10.1371/journal.pone.0241508.g007
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GLI3 and SNAI2: GLI3 is one of the zinc finger protein and well-known marker of Sonic

Hedgehog, and interaction between GLI3 and SNAI2 has been demonstrated: shRNA-

GLI3-transfected cells were associated with the decreased expression of stem cell- and

EMT-related genes (CD44, BMI1, POU5F1, and SNAI2) [24].

Fig 8. Projection of the discovered genes onto the first two principal components of REC: Component 2.

https://doi.org/10.1371/journal.pone.0241508.g008
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Component 3:

High.E&High.C3 vs High.E&Low.C3

For the third component, we consider High.E&High.C3 and High.E&Low.C3 regions con-

sisting of 154 and 227 cells, respectively. TP63, IFI16, AFF1, IRF6, and KANK2, other than

EMT-TFs, show significantly different edges between the High.E&High.C3 and High.E&Low.

C3 regions, where TP63 and IFI16 are also identified as crucial genes in the analysis of the sec-

ond component. IRF6 is one of the 50 EMT-related genes defining the EMT modulator. The

EMT-related mechanism of IRF6 has been demonstrated in previous studies; especially, there

are many studies on the association between well-known EMT markers with IRF6: ectopic

expression of IRF6 increases the expression of SNAI2 and diminishes the expression of various

epithelial markers (e.g., E-cadherin) in EMT; TGFβ3 increases IRF6 expression, and IRF6

appears to regulate EMT during palatal fusion via SNAI2 [33]; IRF6 is downregulated during

the EMT process of breast cancer and prostate cancer [34]. Although EMT-related mecha-

nisms of KANK2 have not yet been revealed, it has been demonstrated that KANK2 concen-

trates around most mature focal adhesions and binds talin in migrating cells [51]. AFF1 is

known as the mixed lineage leukemia fusion-associated gene and plays a role in osteogenic dif-

ferentiation of human mesenchymal stem cells [52–54]. However, EMT-related mechanisms

of AFF1 have not yet been demonstrated.

The target networks of the newly identified five genes are presented in Fig 9. There are no

significant differences between the two regions, except for the association between TP63 and

FOXF2. It can be considered that the target networks related to the third component may be

dominated by the mechanism of the high EMT region, and only regulating FOXF2 by TP63

can be considered as a specific characteristic related to component 3.

Fig 10 shows the projected 10 regulators and target genes on the first two PC spaces of REC.

We group the genes as follows,

Group 1: IRF6 and TP63

IRF6 regulated by TP63 plays a tumor suppressor role in squamous cell carcinomas through

a Notch-dependent mechanism, which plays critical roles in EMT pathway [34].

Group 2: AFF1 and SNAI1, SNAI2, TWIST1

Group 3: KANK2 and ZEB1, ZEB2

The reciprocal mechanisms of genes in groups 2 and 3 have not yet been demonstrated.

Fig 9. Target networks of the five regulators discovered from the analysis of the third component.

https://doi.org/10.1371/journal.pone.0241508.g009
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Fig 10. Projection of the discovered genes onto the first two principal components of REC: Component 3.

https://doi.org/10.1371/journal.pone.0241508.g010
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Functional enrichment analysis based on the bioinformatics tool DAVID

To identify biological processes involved in the extracted components, we performed gene

enrichment analysis using the bioinformatics tool Database for Annotation, Visualization and

Integrated Discovery (DAVID) [55]. We used all regulatory genes as a background and per-

formed functional enrichment analysis for 17 genes (1% of the regulatory genes) other than

five EMT-TFs showing different regulatory systems in the high and low regions of each com-

ponent. Fig 11 shows the functional annotation chart (p< .05) and the corresponding p-value

(i.e., −log(p.value)). For the first component, six clusters are found, where the most significant

cluster corresponding to the lowest p-value (i.e., the highest score for enrichment) is “tran-
scriptional activator activity, RNA polymerase II transcription regulatory region sequence-spe-
cific binding” grouping genes OVOL2, MAFB, FOXF1, FOXF2, GRHL2, and ALX1. The “RNA
polymerase II transcription regulatory region sequence-specific binding” is a GO annotation of

ZEB1. “Embryonic digestive tract morphogenesis”, “disease mutation”, “lung lobe morphogene-
sis”, and “palate development” are common factors enriched in the first and second compo-

nents. Except for “disease mutation”, the three clusters are the GO functional terms (http://

www.informatics.jax.org/),

• Embryonic digestive tract morphogenesis (GO:0048566): the anatomical structures of the

digestive tract are generated and organized during embryonic development. The digestive

tract is the anatomical structure through which food passes and is processed.

Fig 11. Gene enrichment analysis of the identified crucial genes from the REC matrix.

https://doi.org/10.1371/journal.pone.0241508.g011

PLOS ONE Global gene network explorer based on explainable AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0241508 November 6, 2020 19 / 24

http://www.informatics.jax.org/
http://www.informatics.jax.org/
https://doi.org/10.1371/journal.pone.0241508.g011
https://doi.org/10.1371/journal.pone.0241508


• Lung lobe morphogenesis (GO:0060463): The process in which the anatomical structures of

a lung lobe are generated and organized. A lung lobe is a projection that extends from the

lung.

• Palate development (GO:0060021: Roof of mouth development): The biological process

whose specific outcome is the progression of the roof of the mouth from an initial condition

to its mature state. This process begins with the formation of the structure and ends with the

mature structure. The roof of the mouth is the partition that separates the nasal and oral

cavities.

We focus on sterile alpha motif/pointed domain (grouping FLI1, ELF3, and TP63), which is

involved in interactions with proteins, DNA and RNA. In a previous study, it was demon-

strated that sterile alpha motif-pointed domain containing ETS TF (SPDEF) negatively regu-

lates CCL2 and the EMT markers in prostate cancer cells, and the interaction between SPDEF

and CDH1 (E-cadherin) related to the EMT process was also demonstrated: decreased SPDEF

levels significantly induce CCL2 and CDH2 (N-cadherin), and decrease CDH1 (E-cadherin)

mRNA and protein expression, confirming the association between SPDEF inhibition and

EMT in cells. [56]. Although only ELF3 was demonstrated as a crucial regulator of E-cadherin

in Shimamura et al., [1], interactions FLI1 and TP63 with E-cadherin are also verified as fol-

lows: Cav1-Snail-E-cadherin pathway plays a central role in the expression of the oncogenic

transformation functions of fusion gene EWS/FLI1 [57]; reactivation of4Np63a is linked to

the maintenance of epithelial markers and suggests that E-cadherin has a dual role in lung

squamous cell carcinoma [58].

For the second and third components, “transcription activation” (grouping TP63, TGFB1I1,
and GRHL2) and “keratinocyte proliferation” (grouping IRF6 and TP63) are the most enriched

terms, respectively. keratinocyte is frequently reported to be related to the second and third

components in Fig 11. keratinocyte plays a role in cell–cell adhesion [59, 60]. We found that

gene TP63, which is known as a keratinocyte TF, plays a key role in the EMT process through

interaction with the well-known EMT markers, i.e., TGF-β, GRHL2, and miR-200n family:

Ectopic4Np63a expression in normal human epidermal keratinocytes yields the EMT pheno-

type in a TGF-β-dependent manner; Knockdown of all isoforms of p63 leads to the EMT phe-

notype through loss of GRHL2 and miR-200 family genes [61].

Furthermore, it has been found that IRF6 (target of TP63) is induced by the NOTCH sig-

naling pathway, which plays vital roles in the development and progression of cancers through

regulating ZEB1 expression and EMT pathway, in breast cancer and keratinocytes [34]. Inter-

estingly, the cluster consisting of IRF6 and TP63 related to keratinocyte proliferation was also

identified by PCA of REC for the third component (see Fig 8). In addition, it was shown that

the interaction of TP63 and FOXF2 is uniquely different in the target networks for the high

and low regions of the third component (see Fig 7). In short, the third component and a part

of the second component of the EMT-related networks can be described as a keratinocyte-

related factor and the interaction of TP63 and IRF6, which may play a vital role in EMT in

keratinocytes.

Discussion

We introduced a novel methodology for a comprehensive analysis of large-scale personalized

network tensors. In this study, we considered a gene regulatory network as a tensor for a data

point, and decompose the multilayer networks represented as tensors by using an AI approach,

TRIP. Unlike existing studies for sample-specific gene network construction, our strategy ana-

lyzes whole multilayer networks based on tensor decomposition, thus we can perform wide
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exploration of the large-scale gene regulatory networks for all patients. To illustrate our

method, we applied it to personalized networks constructed for 762 cell lines having varying

conditions of the EMT process. We identified novel candidate markers and verified biological

mechanisms of a majority of the identified markers based on the literature. Although most of

the identified markers were found in previous studies, some of the revealed genes could not be

verified. Further work is required towards experimental validation of the newly revealed mark-

ers. In this study, our strategy was illustrated based only on EMT-related gene regulatory net-

works. As one of our future works, we consider the comprehensive analysis of dynamic

systems of personalized gene networks in accordance with various clinical characteristics (e.g.,

drug sensitivity of cell lines).

Global exploration of multilayer networks along with clinical characteristics of a patient

provides crucial information for evidence-based personalized medicine. We expect that the

proposed strategy based on an explainable AI approach will provide a novel insight into net-

work biology.
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