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Abstract
Statistical thresholds occur when the changes in the relationships between a response and
predictor variables are not linear but abrupt at some points of the predictor variable values.
In this paper, we defined a piecewise-linear regression model which can detect two thresh-
olds in the relationships via changes in slopes. We developed the corresponding Bayesian
methodology for model estimation and inference by proposing prior distributions, deriving
posterior distributions, and generating posterior values usingMetropolis and Gibbs sampling
algorithm. The parameters in our model are easy to understand, highly interpretable, and flex-
ible to make inferences. The methodology has been applied to estimate threshold effects in
housing market pricing data in two cities - Kamloops and Chilliwack - in British Columbia,
Canada. Our findings revealed that the implementation of changes in the government prop-
erty tax policies had threshold effects in the market price trend. The proposed model will be
useful to detect threshold effects in other correlated time series data as well.

Keywords Breakpoint detection · Bayesian method · Time series data · Home prices ·
Canada

1 Introduction

Purchase of residential housing constitutes the largest expenditure for most households [10].
For that reason, unlike other commodities purchased by households, home purchase is con-
sidered an investment item in national income accounting. The housing market provides
many important linkages for various sectors of the economy generating significant impact
on the level and rate of change in aggregate income of an economy, most often measured by
gross domestic product (GDP) [27].
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As with all commodities in the market, housing prices are determined by the forces of
demand and supply [17,32]. However, specific factors on demand and supply differ depending
on the nature of the commodity in question.While at the general equilibrium level all markets
and all factors influencing individual market are interrelated, some of the most relevant
determinants of housing prices on the demand side are: interest rates, the state of the economy,
demographics including immigration, availability of mortgage financing, affordability of
housing, expectations, and government policies and legislation including tax incentives, tax
deductibility and subsidies [16]. On the supply side, the important determinants are: number
of active listings reflecting availability of homes for sale, new home construction reflecting
increase in the stock of housing, and land use and zoning reflecting the availability of land
for different types of buildings permitted [18].

Awide array of studies has attempted to capture the impacts of various demand and supply
side factors on housing prices. Nistor and Reianu [33] examined the effect of immigration on
housing prices in the ten largest metropolitan areas in Ontario, Canada. Using quarterly data
for Canada, Hossain and Latif [24] found that housing price volatility is affected significantly
by GDP growth rate, housing price appreciation rate and the rate of inflation. Another study
of the factors influencing home prices in the greater Toronto area in Canada [6] identify a
strong economy, low interest rates and favourable mortgage insurance rules on the demand
side, and limited supply of housing stock on the supply side as contributing factors for price
increases.

The housing markets of large Canadian cities have been attractive places of investment
for foreign buyers [11]. It has not been more pronounced anywhere than in Vancouver which
has attracted a large inflow of foreign buyers due to its proximity to the Asia-Pacific region,
mild weather and natural beauty [12,23]. Limited supply of land and strong demand resulted
in a rapid increase in real estate prices which prompted for calls from the public to curtail the
demand from foreign buyers [22,25]. In response to that, the provincial government enabled
the cities and municipalities to impose an additional property transfer tax on foreign buyers
for purchases of residential properties. The tax was first introduced in Vancouver and some
other cities soon followed suit1. This additional tax currently stands at 20% of the fair market
value of the property. Our study attempts to fill a void in literature by examining the impact
of change in government policy on the housing prices of the Province of British Columbia,
Canada. If all else remains unchanged, we expect that the imposition of the additional foreign
buyer’s tax in one city would impact the housing prices of other cities in the province by
shifting demand away from the city with the tax, to cities without. 1

We propose a statistical model to measure association between housing price and time
demarcated by thresholds. Two variables are considered to be related to each other when
there is a change in the distribution of one variable for a change in the other variable [15]. In
a regression set up, the variables are considered to be related if the conditional mean of the
response variable changes for a change in the predictor [14]. The variables are considered
to be related with threshold effect when the slope of the regression relationship changes
abruptly at a certain level of the predictor variable, which is known as the breakpoint [44].
Estimation of breakpoint is very popular in many applications. In environmental ecology, for
example, the piecewise-linear regression model (PLRM) is often used as a tool to calculate
environmental thresholds resulting from human induced disturbances to nature [4,19,45]. In
Business and Economics, estimation of breakpoints in the housing market is known as the
estimation of structural breaks [3,9]. Our goal in this paper is to use the PLRM to estimate the

1 https://www2.gov.bc.ca/gov/content/taxes/property-taxes/property-transfer-tax/additional-property-
transfer-tax (Accessed on March 7, 2021).
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breakpoints in housing prices trends resulting from the adoption and changes in government
policies.

A piecewise-linear regression model (PLRM) with one breakpoint represents two linear
lines with differing slopes demarcating the data into two segments [4].Muggeo [31] proposed
a PLRM (also know as segmented regression model) to estimate breakpoints using classical
statistical method. Toms and Lesperance [44] developed several PLRMs where two linear
lines are connected at the breakpoint using various mechanisms. Examples of estimating a
single breakpoint can be found at [19,38,44,45]. A PLRM with two breakpoints has three
slopes, defined at three segments of the data, where two slopes are connected at a single
breakpoint. Tomal and Ciborowski [42] developed a PLRMwith two breakpoints and applied
the model to estimate environmental thresholds from human induced disturbances to nature.
All of the above studies are based on either classical statistical or quantile regressionmethods.

There is considerable interest in developing Bayesian models for the detection of statis-
tical thresholds via the changes in slopes. Qian et al. [35] proposed a Bayesian hierarchical
model (BHM) for the detection of environmental threshold effects of total phosphorus on
macroinvertebrate composition in wetlands. Liang et al. [28] developed a Bayesian change
point model to estimate threshold effects of nutrients-phytoplankton relationship in lakes.
Ouyang et al. [34] extended BHM to improve the estimates of build-up areas from night
time light across globally distributed cities. Bucci et al. [5] proposed a Bayesian segmented
regression model and applied their method to forensic age estimation using the assumption
that the data points were independent to each other. All of the above Bayesian models were
developed to detect a single threshold via the changes in slopes using a PLRM. In this paper,
we develop a Bayesian PLRM to detect two thresholds via changes in slopes.

Chien [9] used a Lagrange Multiplier unit root test [26] to examine the issue of whether
regime changes had broken down the stability of the ripple effect in Taiwan’s housingmarket.
Ravazzolo et al. [36] utilized Bayesian model averaging, an ensemble method, to estimate
structural breaks in the regression parameters, uncertainty about the inclusion of forecasting
variables, and uncertainty about parameter values with application in the stock market. Vizek
andPosedel [47] used threshold autoregressive (TAR) andmomentumTAR(M-TAR)models,
defined thresholds in terms of the changes in the error term, to test if housing prices in the
United States, United Kingdom, Spain and Ireland were characterized by threshold effects.
On the other hand, Begiazi and Katsiampa [3] used return [(ln(pt ) − ln(pt−1)) × 100] and
the GARCHmodel to detect structural breaks in housing prices in the United Kingdom. Their
transformation and the GARCH model are useful for examining volatility in price, breaks in
variance-covariance, and conditional heteroscedasticity. Unlike Begiazi and Katsiampa [3],
the objectives of our paper are proposing a Bayesian model for time series data to estimate
breaks in linear trend and interpreting the linear relationships estimated from the slopes of
the piecewise linear model. Therefore, our methodology and objectives are different than the
methodology and objectives of the studies mentioned above. Moreover, we have transformed
our data using “return” as in Begiazi and Katsiampa [3], and found that there is no noticeable
breaks in volatility, variance-covariance, and conditional heteroscedasticity. Additionally,
the transformation using return causes to lose one data point, especially for the first month,
which might appear crucial in statistical estimation and model building when the amount of
data is limited.

Time series data is collected over time and, as a result, the successive data points are corre-
lated as opposed to independent. Djafari and Féron [30] used a Bayesian method for change
point detection in variables that are collected over time. Their method can be used to detect
change points via the distribution of the variables. Ruggieri [37] used a Bayesian approach
for the detection of change points in climatic records through the probability density function.
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Instead of using a regression model that is defined for the entire data series, the author used
chain rule of probability theory by multiplying the conditional and marginal probabilities to
obtain the joint probability. On the other hand, we have defined a piecewise-linear regression
model with two breakpoints via the changes of slopes which is defined for the entire set of
data.UnlikeBucci et al. [5], we have extended theBayesian piecewise linear regressionmodel
to time series data where the errors are correlated. Instead of assuming independence of data
points, we proposed an auto-regressive correlation structure of the residuals which allowed us
to calculate correlations between successive data points. We further showed how these corre-
lations can be estimated fromMCMC samples using Metropolis algorithm. Note that similar
classical statistical models developed for time series data to capture breakpoints are available
in the literature [1,39,40,46]. Our proposed model is a Bayesian and extended version of the
standard classical models. The beauty of our model lies in its simplicity, less involvement
of model parameters, and evidence-based intuitive assumptions. The main strengths of our
paper are the interpretability of the model parameters (slopes and breakpoints), and simple
and straightforward statistical inference procedures.

The proposed Bayesian piecewise-linear regression model has been applied to data of
two housing markets—(1) Chilliwack, BC, and (2) Kamloops, BC. We hypothesize that the
changes in government policies in large cities, such as imposition of the new non-resident
property transfer tax, cause threshold effects on home prices in nearby cities.We also hypoth-
esize that when the government changes policies such as imposition of new non-resident
property transfer tax in the smaller cities, it also causes similar ripple threshold effects in
nearby cities of similar size.

Therefore, the first objective of our paper is geared by the application for the detection of
threshold effects of the introduction of government’s tax policy changes in Vancouver, British
Columbia, Canada on housing prices in two similar sized cities in the province (similar in
terms of population, business capacity and size of universities). The second objective is to
extend the Bayesian piecewise linear regression model (segmented regression model) for
the detection of thresholds in time series data. Our findings showed that the changes in
government tax policies caused significant threshold effects in housing prices.

The model building procedure is summarized as follows. Firstly, we visualize the data
to observe the type of relationships between variables and define the model. The model is
finalized by adaptive imposition of the appropriate correlation structure evident in the data
points. We then define appropriate prior distributions for the model parameters, and derive
their posterior distributions. We propose the Metropolis and Gibbs sampling algorithm to
generate Markov Chain Monte Carlo (MCMC) samples from the posterior distributions.
Lastly, we propose a two-step procedure to determine appropriate proposal distribution for
the parameters of interest.

2 Housing price/time series data

We collect time series data of monthly average home prices for two small cities in British
Columbia—Chilliwack, which is about 100 km east to metropolitan Vancouver, and Kam-
loops, which is about 350 km north-east of Vancouver. These two cities are of similar size in
terms of landmass, business capacity and population, and each is the home to one similar-sized
university. The data are collected from January 2011 to July 2020 for a total of 115 months
from the monthly statistical report of the Canadian Real Estate Association (CREA) (https://
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(a) (b)

Fig. 1 Auto-correlation functions for monthly home prices against time

creastats.crea.ca/en-CA/). In our data, the monthly average home prices are the average of
all types of houses such as detached and semidetached houses, townhouses, and condos.

3 Methods

Beforewe propose themodel,we introduce the autocorrelation function (ACF) of themonthly
average home prices in Chilliwack (left panel) and Kamloops (right panel), British Columbia
(BC) against time lag (months) in Fig. 1. We can see that the monthly home prices are
highly correlated. Even at the time lag of month 21, the autocorrlation is above 0.40 and
highly statistically significant. This observation leads us to propose a model with positively
correlated errors as defined below.

3.1 Themodel

Let Y and x be the average monthly home price and the linear trend variable, in month,
respectively. We define our model as:

Yt = θ0 + θ1xt + θ2(xt − θ4)I (xt − θ4) + θ3(xt − θ5)I (xt − θ5) + εt , (1)

where θ4 and θ5 are the first and second breakpoints, respectively, and

I (xt − θ j ) =
{
1 for xt ≥ θ j

0 for xt < θ j ,

for j ∈ {4, 5} and ε = (ε1, ε2, . . . , εn)
T ∼ Multivariate Normal(0, �). The linear trend

part of our proposed model deals with non-stationarity in time series data modeling. In this
formulation, θ1, θ1 + θ2 and θ1 + θ2 + θ3 are the slopes in the first, second and third segments
of the model demarcated by the thresholds θ4 and θ5, respectively. When θ2 and θ3 are 0,
the thresholds θ4 and θ5 are statistically insignificant and, thus, there is no threshold via the
changes in slope. The beauty of this model lies in the easy interpretation of the linear trends
via the slopes.
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Given the conditional mean of the response variable against linear trend of time denoted
as E (Y|x, θ , �) = θ0 + θ1x + θ2(x − θ4)I (x − θ4) + θ3(x − θ5)I (x − θ5), the conditional
distribution of the response variable can be written as

Y|x, θ , � ∼ Multivariate Normal (E (Y|x, θ , �) ,�) , (2)

where � is the variance-covariance matrix of the vector of error term. From the auto-
correlation function plot of the average home price, we consider that the error terms are
not independent, but temporally autocorrelated. As a result, the structure of the variance-
covariancematrix� needs to reflect positive autocorrelation between sequential observations.
As the autocorrelation gradually decreases over time, we consider the following first-order
autoregressive structure for the variance-covariance matrix of the error term:

� = σ 2Cp = σ 2

⎛
⎜⎜⎜⎜⎜⎝

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
...

...

ρn−1 ρn−2 ρn−3 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

,

where ρ is the correlation between successive error terms εt and εt+1. Under this covariance
structure, the variance of εt is σ 2, and the autocorrelation between εt and εt+d is ρd , which
decreases as the time-lag d grows larger.

3.2 The sampling distribution of data

Let θ = (θ0, θ1, θ2, θ3, θ4, θ5)
T be the vector of regression coefficients. Then the sampling

distribution of data is defined as

P(Y = y|x, θ, �) ≡ P(Y = y|x, θ, σ 2, ρ) ∼ MVN (E (Y|x, θ , �) ,�) , (3)

where MVN stands for the multivariate normal distribution with mean vector E (Y|x, θ , �)

and variance-covariance matrix �.

3.3 Prior distributions

The prior distribution for the error variance is considered as Inverse-Gamma as following

σ 2 ∼ Inverse-Gamma

(
ν0

2
,
ν0σ

2
0

2

)
, (4)

where the prior mean is E(1/σ 2) = 1/σ 2
0 with strength of prior belief ν0. Here, larger values

of ν0 > 0 indicate stronger prior belief and vice versa.
The prior distribution for θ is considered as Multivariate-Normal

θ ∼ Multivariate Normal (μ0, �0) , (5)

with prior mean μ0 and variance-covariance matrix �0.
As noted before, we consider that the successive observations are positively correlated,

and use a flat prior for correlation coefficient ρ on the range from 0 to 1:

ρ ∼ Unif [0, 1] , (6)

where Unif stands for the density of Uniform distribution defined over [0, 1].
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3.4 The posterior distributions

The posterior distribution for the error variance σ 2 is obtained by combining the sampling
distribution (Eq. 2) and the prior distribution of σ 2 (Eq. 4) as following:

σ 2|y, x, θ, ρ ∼ Inverse-Gamma

(
ν0 + n

2
,
ν0σ

2
0 + SSEρ(θ)

2

)
, (7)

where the sum of squares of errors is expressed as

SSEρ(θ) = (y − E(Y|x, θ , �))T C−1
ρ (y − E(Y|x, θ , �)) .

Unfortunately, the posterior distribution for θ has no closed form expression. We write

θ |y, x, � ∼ P (y|θ, x, �) × P(θ)

∼ MVN (E(Y|x, θ , �)) × MVN (μ0, �0) ,
(8)

where MVN stands for the Multivariate Normal distribution.
As like the posterior distribution for θ , the posterior distribution for ρ has no closed form

expression. Thus, we write

ρ|y, x, θ, � ∼ P (y|θ, x, �) × P (ρ)

∼ MVN (E(Y|x, θ , �)) × Unif (0, 1) ,
(9)

where Unif stands for the Uniform distribution defined over [0, 1].

3.5 Metropolis and Gibbs sampling algorithm

As we do not have a closed form expression for some of the posterior distributions, we
cannot use Monte Carlo method or Gibbs sampling to generate posterior values. Instead, we
propose the followingMetropolis andGibbs sampling algorithm to generate samples from the
full posterior distribution of the parameters. Here, we have fused the Metropolis and Gibbs
sampling algorithms together in a single algorithm to estimate the set of parameters of our
model which has been designed for the estimation of breakpoints (i.e., structural breaks). For
a given set of parameter values {θ (s), σ 2(s), ρ(s)} for sth MCMC iteration, the next iteration
s + 1 is generated as following:

1. Update σ 2 using Gibbs sampling:

(a) Calculate the sum of squares of error given θ (s) and ρ(s)

SSEρ(s) (θ
(s)) =

(
y − E(Y|x, θ (s))

)T
C−1

ρ(s)

(
y − E(Y|x, θ (s))

)
.

(b) Generate a new value

σ 2(s+1) ∼ Inverse-Gamma

(
ν0 + n

2
,
ν0σ

2
0 + SSEρ(s) (θ (s))

2

)
,

where the posterior distribution is given by Eq. 7.

2. Update θ using Metropolis algorithm:

(a) Given the current state of θ (s), propose θ∗ from a symmetric proposal distribution
J1(θ |θ (s))
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(b) Given the parameter values θ (s), σ 2(s+1), ρ(s), and the proposal θ∗, calculate the
acceptance ratio for the proposal

rθ∗ = P
(
y|x, θ∗, σ 2(s+1), ρ(s)

)
P

(
θ∗)

P
(
y|x, θ (s), σ 2(s+1), ρ(s)

)
P

(
θ (s)

) ,

where the expression for the numerator and denominator is given in Eq. 8.
(c) Accept or reject the proposal as following

θ (s+1) =
{

θ∗ with probability min(rθ∗ , 1)
θ (s) with probability 1 − min(rθ∗ , 1).

3. Update ρ using Metropolis algorithm:

(a) Given ρ(s), propose ρ∗ from a symmetric proposal distribution J2(ρ∗|ρ(s))

(b) Given the parameter values θ (s+1), σ 2(s+1), ρ(s), and the proposal ρ∗, calculate the
acceptance ratio for the proposal

rρ∗ =
P

(
y|x, θ (s+1), σ 2(s+1), ρ∗

)
P (ρ∗)

P
(
y|x, θ (s+1), σ 2(s+1), ρ(s)

)
P

(
ρ(s)

) ,

where the expression for the numerator (and denominator) is given in Eq. 9.
(c) Accept or reject the proposal as following

ρ(s+1) =
{

ρ∗ with probability min(rρ∗ , 1)
ρ(s) with probability 1 − min(rρ∗ , 1).

3.6 Proposal distributions

1. The proposal distribution for θ is considered as

J1
(
θ |θ (s)

)
= MVN

(
θ (s), �p

)
,

where �p is the proposal variance-covariance matrix of θ .
2. We set the proposal distribution for ρ as

J2
(
ρ|ρ(s)

)
= Unif

(
ρ(s) − δ, ρ(s) + δ

)
.

If ρ∗ < 0, reassign it to be |ρ∗|. If ρ∗ > 1, reassign it to be 2 − ρ∗.

3.7 Prior specification

In order to specify the hyper-parameters for the prior distribution of σ 2, we depend on the
loess fits. We calculated the residual variance from the loess fit, and assign that as σ 2

0 to be
17,037.932 and 12,080.952 for Chilliwack and Kamloops data, respectively. We further use
a non-informative prior and assign ν0 = 1 for both sets of data. This ensures minimal effects
of our prior knowledge on the posterior model.

To specify the hyper-parameters for the prior distribution of θ , we depended on the
prior knowledge, the hypotheses, and the raw data. The hyper-parameter vector μ0 =
(θ00, θ10, θ20, θ30, θ40, θ50) is specified as follows. On July 25, 2016, the provincial gov-
ernment of British Columbia introduced Bill 28, Miscellaneous Statutes (Housing Priority
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Initiatives) Amendment Act, 2016. The bill amended the Property Transfer TaxAct to include
an additional 15% transfer tax on foreign entities buying property in Metro Vancouver. We
hypothesize that this bill introduces threshold effects in the surrounding cities of the Lower
Mainland of British Columbia and reaching as far as Kamloops. This hypothesis helps us
specifying θ40 to be 67 (as July 2016 is the 67th month counting from January 2011). On
February 20, 2018, the government of British Columbia extended the foreign buyer property
transfer tax to the following regions (i) Capital Regional District, (ii) Fraser Valley Regional
District, (iii) Metro Vancouver Regional District, (iv) Regional District of Central Okana-
gan, and (v) Regional District of Nanaimo. We further hypothesize that the extension of
the foreign buyer tax to these regions introduces threshold effects in the cities within these
regions. This hypothesis helps us to specify θ50 to be 86 (as February 2018 is the 86th month
counting from January 2011). The fitted non-parametric loess model helped us to determine
the other hyperparameters for Chilliwack, BC data. We used the fitted loess values at some
index time points (e.g., the first, 67th, 86th and last months) to calculate the slopes reason-
able in the three segments of the data. We then used the relationships between the parameters
and slopes to produce the following vector of hyperparameters for Chilliwack, BC as μ0 =
(275573.80, 1860.78, 3859.67,−3589.30, 67, 86). Following the same steps, we specify the
hyperparameters for Kamloops, BC as μ0 = (308941.00, 462.53, 1456.33, 866.66, 67, 86).

To specify the hyper-parameter �0, we use statistical knowledge and common sense. In
every specification, we make the prior distribution flat and diffuse leading to large prior
variance. We define the prior covariance matrix for Chilliwack first. We consider that the
covariances between θi and θ j are zero. The standard deviation of θ0 is considered as 10,000.
For the parameters θ1, θ2 and θ3 (parameters specific to the slopes), we consider the standard
deviation such as 1900, 3900 and 3600, respectively. Such specification ensures that each
of the prior distributions of θ1, θ2 and θ3 includes 0 well within the high probability region.
For the threshold parameters θ4 and θ5, we consider prior distributions by assigning enough
masses within 24-month time spans. This gives us a prior covariance matrix for Chilliwack
as

diag(�0) = (
100002, 19002, 39002, 36002, 82, 82

)
.

Similarly, the prior covariance matrix for Kamloops is considered as

diag(�0) = (
100002, 5002, 15002, 9002, 82, 82

)
.

Such specification of hyperparameters make the prior distributions for (θ0, θ1, θ2, θ3) diffuse
and flat leading to negligible effect on the posterior distributions. On the other hand, the
priors variances for θ4 and θ5 (the breakpoints) make their priors informative. The reason for
using informative prior is that [2] suggested to use informative prior instead of vague, flat or
diffuse prior for the parameters whenever prior information is available.

3.8 Initial values of the parameters

In order to start the Metropolis and Gibbs sampling algorithm, we use the following initial
values {θ (s), σ 2(s), ρ(s)} = {μ0, σ

2
0 , ρ̂1}, where ρ̂1 is the lag-1 autocorrelation of the residuals

obtained from the fitted loess. The lag-1 autocorrelations of the loess residuals are calculated
as ρ̂1 = 0.30 for Chilliwalk and ρ̂1 = 0.12 for Kamloops.

To determine the proposal covariance matrix �p , we ran the algorithm in two phases. In
the first phase, we considered �p = �0/k, and determined a reasonable value of k using
trial-and-error method. In the first phase, a total of 22,000 MCMC iterations were generated
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and the first 2000 iterations were used as burn-in. Among the 20,000 MCMC iterations after
burn-in, we saved every 20th iteration for the θ vector as part of thinning. The empirical
covariance matrix of the thinned values for θ was used as the proposal covariance matrix �p

for the second phase of the algorithm. In the second phase, the algorithmwas run for a total of
120,000 iterations and the first 20,000 iterations were used as burn-in. After throwing out the
burn-in iterations, in the second phase, every 100th iteration was saved as part of thinning.
This provided us exactly 1000 values for each parameter after burn-in and thinning.

3.9 MCMC diagnostics

The second phase of the algorithmgave us an acceptance rate of 21.58%and 77.05% for θ and
ρ, respectively, for the data from Chilliwack, BC. Fig. 2 shows the autocorrelation functions
for each of the θ ’s. As usual, the generated MCMC iterations are highly autocorrelated.
This justifies our approach of thinning the generated MCMC iterations. After thinning, the
effective sample sizes for θ0, θ1, θ2, θ3, θ4, θ5, σ , and ρ are 1000, 1000, 1000, 1000, 1000,
1000, 1000, and 995, respectively. Fig. 3 shows the autocorrelation functions for each of the
θ ’s for the data obtained from Kamloops, BC. As usual, the generated MCMC iterations are
highly autocorrelated. After thinning, the effective sample sizes for θ0, θ1, θ2, θ3, θ4, θ5, σ ,
and ρ are 1000, 1000, 1000, 479, 1000, 444, 1000, and 1000, respectively.

Figure 4 shows the trace plots of the generated regression coefficients after burn-in and
thinning for Chilliwack data. The plots show that the Markov Chains achieved stationarity.
Similarly, the stationarity for the MCMC iterations of the coefficients were also checked for
the Kamloops data (Fig. 5).

Note that the four parameters (θ0, θ1, θ2 and θ4) in Fig. 3 decayed quickly, but not θ3 and
θ5. This is because, for Kamloops data, only the first threshold is statistically significant. Pre-
cisely, there is no significant difference between the slopes in the second and third segments,
demarcated by the threshold θ5, represented by θ1+θ2 and θ1+θ2+θ3 (details are reported in
Fig. 6 andTable 2). Fromcomputational perspective, the estimates of θ3 were scattered around
0 and showed greater autocorrelation. This indicates strong evidence towards insignificant
second threshold effect in Kamloops, BC. The corresponding, traceplots in Fig. 5 show that
the MCMC iterations mixed nicely and their distributions achieved stationarity. To our sup-
port, the ACFs of the six parameters for Kamloops data (figure not shown) after burn-in and
thinning showed negligible autocorrelation between the saved MCMC iterations. Finally,
after burn-in and thinning, the effective sample sizes for θ3 and θ5 became 479 and 444,
respectively, which are reasonably large to effectively measure various statistical properties.

4 Results

For all the parameters of our model, the point estimates represent the median of the posterior
distribution of the parameters calculated from the thinned MCMC samples. Moreover, the
lower and upper limits of the 95% credible intervals are calculated using the 2.5th and 97.5th
percentiles, respectively, of the posterior distribution.

Figure 6a shows the 95% credible intervals (equivalent to confidence intervals in classical
statistics) for θ2 and θ3 for Chilliwack data. None of the credible interval of θ2 and θ3 includes
0 value inside, making the thresholds of θ4 and θ5 statistically significant. Table 1 shows the
95% credible intervals for the breakpoints θ4 and θ5. The breakpoints occurred in months
of 54 (April 2015) and 87 (March 2018) with non-overlapping intervals. Hence, the two
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Fig. 2 Auto-correlation functions for θ against MCMC iterations for the data from Chilliwalk, British
Columbia, Canada

breakpoints are significantly different from each other. Fig. 6b and bottom part of Table 1
show the 95% credible intervals of the slopes. In the first segment of the model (from January
2011 to April 2015), the slope θ1 is 686.75 with 95% credible interval ranging from 288.17
to 1112.54: The average price increase per month is $686.75. In the second segment of the
model (from April 2015 to March 2018), the slope θ1 + θ2 is 5681.86 with 95% credible
interval ranging from 4965.46 to 6857.23: The average price increase per month is $5681.86.
In the third segment of the model (from March 2018 to July 2020), the slope θ1 + θ2 + θ3
is 1281.52 with 95% credible interval ranging from 381.15 to 2232.62: The average price
increase per month is $1281.52. The price increases in the first and third segments are not
significantly different as the two credible intervals overlap each other.

Figure 6c shows the 95% credible intervals for θ2 and θ3 for the Kamloops data. The
credible interval for θ2 does not include zero inside, and, thus, the threshold effect θ4 is
statistically significant. On the other hand, the credible interval of θ3 includes zero inside,
and the threshold effect of θ5 is statistically insignificant. Table 2 shows the 95% credible
intervals for breakpoint θ4 which occurred in month of 58 (August 2015) with 95% credible

123



372 J.H. Tomal, H. Rahman

Fig. 3 Auto-correlation functions for θ against MCMC iterations for the data from Kamloops, British
Columbia, Canada

interval ranging from 50.17 to 65.82. Fig. 6d and bottom part of Table 2 show the 95%
credible intervals for the slopes. In the first segment of the model (from January 2011 to
August 2015), the slope θ1 is 407.87 with 95% credible interval ranging from 161.37 to
623.11: The average price increase per month is $407.87. In the second segment of the
model (from August 2015 to February 2018), the slope θ1 + θ2 is 1991.66 with 95% credible
interval ranging from 1449.35 to 2608.90: The average price increase per month is $1991.66.
Although the effect is insignificant in the third segment of the model defined from February
2018 to July 2020, the slope θ1 + θ2 + θ3 is 2093.71 with 95% credible interval ranging from
1500.72 to 2889.25: The average price increase per month is $2093.71. The price increases
in the second and third segments are not significantly different from each other as the two
credible intervals are highly overlapping.

Having seen the numbers and figures relating the regression coefficients, we produce
the expected regression model (expected home price over linear trend in time) with 95%
credible intervals. Fig. 7a shows the expected home price plotted against linear trend in
time (in month) for Chilliwack data highlighting the breakpoints along the horizontal axis
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Fig. 4 Traceplots for θ against thinned MCMC iterations for the data from Chilliwack, BC

with 95% credible intervals. As noted before, the first and second breakpoints occurred in
June 2015 and March 2018, respectively. After the second breakpoint, the slope in the third
segment becomes similar to the slope in the first segment. Fig. 7b shows the expected home
price plotted against linear trend in time (in month) for Kamloops data highlighting one
breakpoint along the horizontal axis with 95% credible interval. The breakpoint occurred in
August 2015 and the slope remained steep ever since.

It is interesting to note that the first breakpoint in Chilliwack occurred in June 2015 while
the foreign buyer’s tax was introduced in Vancouver on August 2, 2016. It appears that the
debate and discussions surrounding this policy change and the resulting expectations of the
impact on the cost of buying homes inVancouver led to the shift in demand for housing in other
cities in BC even before the tax was finally introduced. The breakpoint in Kamloops came
with a 2-month time lag in August 2015 possibly for it being further away from Vancouver
than Chilliwack.

To better understand the reasons for shifting the breakpoint in Chilliwack earlier than the
date of the introduction of higher property transfer tax, we may need to consider the context
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Fig. 5 Traceplots for θ against thinned MCMC iterations for the data from Kamloops, BC

Table 1 Estimates and 95% credible intervals for breakpoints and slopes for Chilliwack data

Names Parameter Median 95% credible interval
Lower limit Upper limit

Breakpoints θ4 53.66 48.99 58.75

θ5 86.84 80.24 90.50

Slopes θ1 686.75 288.17 1112.54

θ1 + θ2 5681.86 4965.46 6857.23

θ1 + θ2 + θ3 1281.52 381.15 2232.62
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(a) (b)

(c) (d)

Fig. 6 The 95% credible intervals for θ ’s and slopes

for which the Government of British Columbia introduced the higher property transfer taxes
to foreign buyers. Note that the home prices in Metro Vancouver had been increasing sharply
in the years preceding 2016. When the home prices already became unbearable, some buyers
might have shifted their interests of buying homes fromMetro Vancouver to the nearby cities
like Chilliwack. This shift of interest might have caused the rapid increase of home prices
in Chilliwack earlier in 2016. Later, when the Government of BC introduced the higher
property transfer taxes for foreign buyers it would have caused increased influx of buyers to
the neighbouring city of Chilliwack, resulting in further rapid changes in home prices there.
In that light, the early structural break in home prices in Chilliwack may therefore have been
caused by these additional contributing factors along with the strong expectations of the tax
to be introduced by the government.

Finally, we finish the results section by reporting the numbers regarding the lag-1 auto-
correlation ρ among the residuals. The median of the posterior realization of ρ is 0.274
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Table 2 Estimates and 95% credible intervals for breakpoints and slopes for Kamloops data

Names Parameter Median 95% credible interval
Lower Limit Upper Limit

Breakpoints θ4 58.18 50.17 65.82

Slopes θ1 407.87 161.37 623.11

θ1 + θ2 1991.66 1449.35 2608.90

θ1 + θ2 + θ3 2093.71 1500.72 2889.25

with 95% credible interval ranging from 0.064 to 0.485 for Chilliwack data. For Kamloops
data, the median of the posterior realization of ρ is 0.168 with 95% credible interval ranging
from 0.024 to 0.361. The numbers show non-negligible autocorrelation among successive
residuals of the Bayesian piecewise-linear regression model.

Also, the median of the posterior standard deviation of residuals is 16,659.21 with 95%
credible interval ranging from 14,449.39 to 19,674.93 for Chilliwack, BC. The median of
the posterior standard deviation of residuals is 12,514.00 with 95% credible interval ranging
from 10,933.89 to 14,422.36 for Kamloops, BC.

Note that the robustness of the results has been assessed by making the prior distributions
of θ further diffuse. Specifically, we multiplied the prior variances for θ0, θ1, θ2 and θ3 by 22,
and for θ4 and θ5 by 42. These changes caused a few small changes in the results, here and
there, but did not alter the inference. Therefore, we consider that the results obtained from
our model are robust against changing priors from informative to non-informative.

5 Discussion

The Provincial Government of British Columbia introduced Bill 28, Miscellaneous Statutes
(Housing Priority Initiatives) Amendment Act, 2016 on July 25, 2016. The introduction of
an additional Property Transfer Tax on foreign entities buying property in Metro Vancouver
caused threshold effects in housing prices in nearby cities such as Chilliwack, and as far as
Kamloops. The threshold effect in Chilliwack happened relatively earlier than the threshold
effect in Kamloops. This happened most likely because Chilliwack is situated within a closer
proximity of the Metropolitan Vancouver than Kamloops which is 350 km farther. We iterate
that the threshold effects in both cities occurred more or less at the same time as the two
credible intervals (one to each city) highly overlapped each other.

Most importantly, on February 20, 2018, the Government of British Columbia extended
the foreign buyer additional property transfer tax to the following regions: Capital Regional
District, Fraser Valley Regional District, Metro Vancouver Regional District, Regional Dis-
trict of Central Okanagan, and Regional District of Nanaimo. These extended regions for
additional property transfer tax to foreign entities include Chilliwack, but not Kamloops. As
a result of the implementation of this policy Chilliwack experienced a second threshold in
March 2018 with 95% credible interval extending from September 2017 to July 2018. This
policy implementation from the local government of British Columbia did not cause any
threshold effects via the changes in slopes in the Kamloops housing market.

The housing prices in Chilliwack show three linear trend segments demarcated by the two
thresholds. The first threshold caused the housing prices to shoot up very quickly, whereas the
second threshold caused a price correction by stabilizing the growth in housing prices back
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(a) (b)

Fig. 7 Expected price with 95% credible intervals

to normal as in the first segment. In contrast, there is only one threshold in Kamloops housing
market due to the change in government policy back in July 2016. The housing market in
Kamloops is sky rocketing since then with rapid growth in home prices quantifying 513.33%
higher after threshold effect than the price growth before October 2015.

In a recent paper, Tomal and Ciborowski [42] developed a piecewise linear regression
model with two breakpoints, where the model is defined through the conditional mean of
the response variable given the predictor, and applied the model to two ecological datasets
to detect environmental thresholds caused by human induced disturbances to aquatic habitat
for fishes in the Great Lakes Coastal Wetland. They used classical method such as non-linear
least squares for parameter estimation and inference. Moreover, they developed a piecewise
linear quantile regression model which is defined through the conditional quantile of the
distribution of the response variable given the predictor. In this paper, we proposed the
Bayesian counterpart of the two-thresholds piecewise linear regression model, defined the
priors, derived the posteriors, and presented the Metropolis and Gibbs sampling algorithm
to generate data from the posterior. The proposed model is further extended to incorporate
non-independent correlated error terms suitable for time series data. The methods have been
applied to the housing market data of two nearby cities in British Columbia, Canada to
estimate the threshold effects resulting from the implementation and changes of government
tax policies.

There are methods in Business and Economics, Lagrange Multiplier unit root test [9] and
Bayesian model averaging [36] and GARCH model [3], which can detect thresholds in the
relationships between variables. Thesemodels detect thresholds in the distribution of the time
series variables, and are not very useful in terms of interpretation of the relationship. On the
other hand, there are non linear autoregressive models [39,40] and partial structural change
model [1] for time series data that can estimate the slopes for the relationships between
variables while testing for the presence of breakpoints. However, these latter models are
developed using classical statisticalmethod. In contrast, our proposedmodel is fullyBayesian
in nature. Besides, our proposed model comes with the strength of estimating the thresholds
while performing statistical tests to determine if the estimated breakpoints are significant or
not.While estimating the breakpoints, our model estimates the relationships via slopes which
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are easy to interpret. Moreover, our model comes with capabilities to test if the estimated
slopes in the different segments of the data are statistically significant or not. We have proved
the ability of our model via two applications in housing price trend analysis. Last but not the
least, the proposed model is equipped with abilities to estimate the appropriate amount of
autocorrelation that is present in the data points defined through the autocorrelation of error
terms.

In a recent article, Tomal et al. [43] developed a missing value imputation method for
a Bayesian hierarchical model to measure the effect of COVID-19 on students’ marks. In
that model, the authors used conjugate prior distributions and, eventually, proposed Gibbs
sampling to generate data and missing values from the posterior distributions. In this paper,
we have used conjugate prior for the variance parameter σ 2, and non-conjugate priors for the
regression coefficients θ and correlation coefficient ρ for the error term. As a result, we have
used Gibbs sampling for the variance parameter, and Metropolis algorithm for the regression
coefficients and correlation coefficient for the error terms.

In order to initiate the algorithm, one needs to come up with a good proposal distri-
bution to yield a reasonable acceptance rate. It is difficult to come up with a reasonable
proposal variance-covariance matrix for the regression coefficients vector especially when
the dimension of the matrix is large. Even if one comes with a reasonable positive definite
variance-covariance matrix, a compact matrix may produce high acceptance rate and a sparse
matrix may produce low acceptance rate. Note that both low and high acceptance rates gen-
erate highly autocorrelated MCMC iterations, which contain less amount of information in
the generated samples. To overcome this problem, we have proposed a two-step method. In
the first step, we run the algorithm for a small number of iterations and obtain a reasonable
approximation for the proposal covariance matrix. The variance-covariance matrix for the
regression coefficients is then used as the proposal distribution in the second step of the
algorithm. The results show that this proposed method produces a nice balance in the accep-
tance rate and reasonable autocorrelation in the generated MCMC iterations. This method of
dealing with the proposal distribution in higher dimension may become useful in many com-
putational algorithms used in Bayesian statistical methods. Our two-step updating method
for the proposal distribution is similar in nature to the adaptive Metropolis and Hastings
algorithm proposed by [8,21].

Note that the other two cities within the proximity of Vancouver, British Columbia are
Victoria and Kelowna. These cities have experienced their own threshold effects from the
introduction of property transfer taxes by the provincial government of British Columbia.
Importantly, the patterns of threshold effects in these two cities are different than those
observed in Chilliwack and Kamloops. The reasons for different patterns could be that
the cities of Victoria and Kelowna are much different in size and business capacity than
Chilliwack and Kamloops. Also, each of them houses a different sized university than the
universities in Chilliwack and Kamloops. In summary, the differences of threshold patterns
in these two cities make the proposed model not directly applicable to the data from Victoria
and Kelowna. However, at this moment, the authors of this paper are working on developing
models to detect threshold effects in Victoria and Kelowna as well. All of these results, when
available and published,might help the readers to gain a better understanding of spatial effects
of the introduction of property transfer taxes on housing prices in cities nearby Vancouver,
BC.

In this paper, we considered an Inverse-Gamma prior for σ 2 and a Multivariate Normal
prior θ . These conjugate prior distributions made the posterior distributions simpler and
enabled us generating MCMC samples using Gibbs sampling. As alternatives, one may wish
to use other prior distributions as they fit instead of the provided priors. However, the use
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of alternative prior distributions may complicate the computational process especially when
the posterior distributions are not in closed form. In such a situation, one may need to use
Metropolis or Metropolis-Hastings algorithm instead of Gibbs sampling for σ 2 and θ . On the
other hand, the applications of open-sourceMCMC softwares, such as JAGS [13],WinBUGS
[29], or Stan [7] may appear handy to improve computational issues.

The proposed methodology of this paper might appear useful to model other macroe-
conomic variables such as gross domestic product, economic growth, inflation, and
unemployment rates of a country to detect potential threshold effects of some events defined
over time using Eq. 1 after careful exploratory analysis of the data using scatterplot such as
in Fig. 7 and autocorrelation function plot as in Fig. 1. To understand the effects of finan-
cial crisis on international asset diversification in real estate market, via structural breaks in
increased volatility during a high turbulent period, the readers are encouraged to read the
article by Gerlach et al. [20]. Furthermore, to detect structural breaks using autoregressive
model with exogeneous inputs (ARX) and GARCH model for the conditional variances, via
volatility during a high turbulent period, we encourage readers to read the article by Than-
Thi et al. [41], which examined the impact of inflation and interest rates on housing price
dynamics.
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