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Abstract

Background: The ketone bodies β‐hydroxybutyrate (BOHB) and acetone are

generated as a byproduct of the fat metabolism process. In healthy individuals,

ketone body levels are ∼0.1 mM for BOHB and ∼1 part per million for breath

acetone (BrAce). These levels can increase dramatically as a consequence of a

disease process or when used therapeutically for disease treatment. For example,

increased ketone body concentration during weight loss is an indication of elevated

fat metabolism. Ketone body measurement is relatively inexpensive and can provide

metabolic insights to help guide disease management and optimize weight loss.

Methods: This review of the literature provides metabolic mechanisms and typical

concentration ranges of ketone bodies, which can give new insights into these

conditions and rationale for measuring ketone bodies.

Results: Diseases such as heart failure and ketoacidosis can affect caloric intake and

macronutrient management, which can elevate BOHB 30‐fold and BrAce 1000‐fold.
Other diseases associated with obesity, such as brain dysfunction, cancer, and

diabetes, may cause dysfunction because of an inability to use glucose, excessive

reliance on glucose, or poor insulin signaling. Elevating ketone body concentrations

(e.g., nutritional ketosis) may improve these conditions by forcing utilization of

ketone bodies, in place of glucose, for fuel. During weight loss, monitoring ketone

body concentration can demonstrate program compliance and can be used to

optimize the weight‐loss plan.
Conclusions: The role of ketone bodies in states of pathologic and therapeutic

ketosis indicates that accurate measurement and monitoring of BOHB or BrAce will

likely improve disease management. Bariatric surgery is examined as a case study

for monitoring both types of ketosis.
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1 | INTRODUCTION

The recent popularity of the ketogenic diet (KD) has kindled a

renewed interest in the creation and metabolism of ketone bodies

and the state of ketosis. This diet, characterized by high‐fat and very
low‐carbohydrate (<50 g/day) intake, appears to result in improve-

ments in weight management, metabolic syndrome, and cognition.1–4

Implicitly, the diet mandates a marked reduction in carbohydrate

intake, which results in the generation and utilization of ketone

bodies, instead of carbohydrates, to fuel the brain and other neuro-

logic tissues. Many authorities assumed that ketone bodies, in states

of carbohydrate restriction, are the primary drivers for the perceived

benefits of the KD. Because of this success, an explosion in research

has taken place to identify additional interventions that may increase

ketosis (e.g., intermittent fasting and exogenous supplementation)

and to better understand the effects of ketosis in health and dis-

ease.5–8

Ketosis is defined as the elevated concentration of ketone bodies

in the blood. Ketone bodies are comprised of three chemicals: ace-

toacetate, β‐hydroxybutyrate (BOHB), and acetone. Acetoacetate is

created in the liver from free fatty acids (FFAs) when glucose avail-

ability is limited. Acetoacetate can be enzymatically interconverted

into BOHB.9 Additionally, acetoacetate can be decarboxylated,

spontaneously or by catalytic action, into acetone (Figure 1).10 Ke-

tone body concentrations increase with corresponding increases in

fat metabolism.11,12

Recent studies have also demonstrated a number of non‐diet‐
related disease conditions that can cause elevated ketosis.13,14

These diseases cause hyperketonemia for a variety of reasons,

including poor insulin signaling in diabetes, impaired fatty acid

metabolism in heart failure (HF), and slow ketone body elimination as

a result of genetic disorders. It is logical, therefore, that monitoring

ketosis levels may provide a complete picture of the behavior and

severity of the underlying disease. Additionally, periodic ketosis

monitoring may help in the management and treatment of the

disease.

Some diseases appear to respond favorably to an increase in

ketosis. It has been demonstrated that once ketones reach “thera-

peutic” levels, they help attenuate disease severity or result in dis-

ease regression.15–17 Examples include neurologic diseases where the

ketone bodies provide fuel to metabolically compromised brain re-

gions and treatment of type 2 diabetes to improve diabetic sequelae

and reduce medications. Thus, monitoring ketosis levels can help

maintain therapeutic concentrations of ketone bodies to optimize

disease treatment.

Additionally, weight loss creates an elevation in fat metabolism

that is reflected in elevated ketone body concentrations.11,18

Elevated fat metabolism is correlated with increased ketone body

concentrations.19 Thus, medical weight loss and weight loss prior to

bariatric surgery may be optimized and compliance assessed by

monitoring ketone bodies as surrogate markers of subject‐specific fat
metabolism.

Measurement of ketone bodies is becoming more common

because of an increase in the number of relatively inexpensive con-

sumer devices. These chemical sensors typically measure acetoace-

tate in urine, BOHB in blood, or acetone in breath (BrAce). While

urine samples are common, urine acetoacetate is not typically

assessed using a quantitative method causing significant measure-

ment uncertainty.20,21 Currently, blood BOHB is the gold standard

for assessing ketosis. However, the measurement of BrAce is

becoming more widely accepted as a reliable indicator, particularly at

low ketone body levels where BrAce has greater sensitivity to change

than blood BOHB.19 Ketone body concentrations for two reference

states are as follows (Table 1): (1) healthy individuals on a balanced

macronutrient diet typically have ketone body concentrations of

BOHB ∼0.1 mM or BrAce ∼1 part per million (ppm); and (2) subjects
in nutritional ketosis (i.e., keto‐adaptation) have ketone body con-

centrations of at least BOHB = 0.5 mM35,41,42 or BrAce ≥ 9 ppm.19,22

The concentrations of ketone bodies observed for a range of

diseases haven't been summarized. This review describes diseases

that cause ketosis (ketogenic diseases), their underlying ketogenic

mechanisms, and the ranges of ketosis (as defined by blood BOHB

and BrAce concentrations) that are associated with the disease. For

diseases that can be treated with an elevation in ketosis (therapeutic

ketosis), the underlying mechanism of therapeutic ketosis and the

thresholds of ketone body concentrations associated with a thera-

peutic benefit are detailed. Measurement of ketone body concen-

trations is needed to demonstrate the achievement of a therapeutic

ketone body level. Additionally, ketone body elevation during weight

loss and how it can be used to optimize fat loss are reviewed. Finally,

a case study on bariatric surgery provides a vignette for how moni-

toring ketone bodies can be used for disease and therapeutic benefit.

2 | KETOSIS FROM DISEASE

2.1 | Heart failure

In health, fatty acids provide 50%–70% of the heart's energy.43 In HF,

myocardial fatty acid metabolism is impaired which may be due to a

downregulation of myocardial proteins used to metabolize fatty

acids. However, lipolysis and FFAs are elevated in HF because of

increases in stress hormones (e.g., cortisol), cytokines, malnutrition,

F I GUR E 1 Acetoacetate, formed primarily from β‐oxidation of
fatty acids, can be reduced to β‐hydroxybutyrate (BOHB) or
decarboxylated to acetone. Beta‐hydroxybutyrate dehydrogenase
(BDH) interconverts acetoacetate and BOHB depending on
intercellular conditions (e.g., NADH). Acetone is produced via
spontaneous or catalytic decarboxylation of acetoacetate. NADH,

nicotinamide adenine dinucleotide
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or cardiac cachexia.23,24,44,45 Unable to metabolize FFA, the failing

heart shifts to other fuels including ketone bodies which are elevated

in HF.46 Greater concentrations of ketone bodies are observed

because (1) the abundance of serum FFA causes a rise in liver

ketogenesis, the source of ketone bodies; and (2) skeletal muscles

have lower consumption of BOHB.44,46 BOHB can be rapidly utilized

by the metabolically compromised myocardium because the enzymes

required for ketone body metabolism are more abundant in HF.43,44

In scientific studies, subjects with HF have 2–20‐fold greater

levels of the ketone body acetone in breath (BrAce, Table 1) as

compared to healthy controls (BrAce ∼ 1 ppm) or to cardiac patients

without HF.23,25,26 Increases (decreases) in BrAce correspond to

increased (decreased) HF severity.23,24,47 Thus, monitoring BrAC may

provide a marker of HF deterioration or improvement.24,48

2.2 | Ketoacidosis

In healthy individuals, insulin in the blood interacts with the cell

membrane to facilitate the uptake of blood glucose by the cell.

Additionally, the interaction of insulin with adipose tissue suppresses

lipolysis. In individuals with diabetes, cells are unable to receive the

insulin signal because either insulin is not present (type 1 diabetes) or

the cell is insensitive to insulin and doesn't respond to its presence

(type 2 diabetes). Thus, glucose is not taken up by the cell, and the

concentration of glucose in the blood rises. Without the insulin signal,

lipolysis is no longer inhibited, plasma FFA rises, and hepatic ketone

body production increases.49 In lieu of glucose as a primary fuel

source, cells can use fatty acids and ketone bodies to meet their

energy requirements. Without the insulin signal to reduce blood

sugar and suppress fat breakdown, glucose (hyperglycemia), ketone

bodies (hyperketonemia), and hydrogen ions (acidosis) can increase

dramatically in the blood and, without intervention, lead to diabetic

ketoacidosis (DKA).27,50

Because ketone bodies are a precursor and marker of DKA,

measurement of ketone bodies can help identify the development,

assess the severity, and assist in monitoring the resolution of DKA.

As ketoacidosis develops, BOHB and BrAce increase from healthy

levels (BOHB ∼ 0.1 mM or BrAce ∼1 ppm) to those associated with

the onset of ketoacidosis (BOHB > 3 mM or BrAce > 75 ppm) (Ta-

ble 1). Because of the large concentration range between healthy

ketone body levels and ketoacidosis, ketone body monitoring can

provide a critical tool to alert providers and patients that a healthy

ketosis state is developing into ketoacidosis, allowing expedient

treatment before it reaches a critical level.28,51 When DKA is present,

measurement of BOHB and BrAce may help to assess the severity of

ketoacidosis. BOHB (3–20 mM) and BrAce (75–1250 ppm) range

considerably in people with DKA, and the magnitude of these ketone

bodies may be associated with increased severity of DKA.19,52 After

the intervention, scientific studies have demonstrated that ketone

body measurement can improve the course of DKA resolution.53,54

Four diabetes associations recommend ketone body monitoring,

TAB L E 1 Ketone body (BOHB in mM or BrAce in ppm) concentration ranges observed in health, for disease states and for therapeutic
benefit (minimum concentration thresholds)

Ketosis Condition

Range or threshold

ReferencesBOHB (mM) BrAce (ppm)

Health Balanced macronutrient diet 0.1 1 19

Nutritional ketosis 0.5 9 19,22

Disease Heart failure >0.2 2–20 23–26

Ketoacidosis >3.0 >75 9,13,14,19,27,28

Genetic disorders ― ― See text

Therapy Brain function: Alzheimer’s 0.5 9a 29,30

Brain function: Parkinson’s 1.0 ― 31

Brain function: Dementia 0.5 9a 32

Brain function: Migraine 4.0 ― See text

Cancer 0.5 9a 33,34

Type 2 diabetes 0.5 9a 35,36

Epilepsy 4.0 ― 37–40

Weight loss ― 2 11

Bariatric surgery Ketoacidosis >3.0 >75 See text and references above

Weight loss ― 2

Abbreviations: BOHB, β‐hydroxybutyrate; BrAce, breath acetone.
aNutritional ketosis. BrAce ≥ 9 ppm when BOHB = 0.5 mM.19,22
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typically BOHB, during DKA resolution.55 During DKA, the concen-

tration of BOHB is much greater than acetoacetate.56 As DKA is

treated, BOHB decreases by conversion to acetoacetate, which

causes an elevation of acetoacetate. Because DKA is not resolved

until both BOHB and acetoacetate concentrations return to baseline,

monitoring BrAce, a product of acetoacetate decarboxylation, at 30‐
min intervals, can demonstrate the full resolution of DKA.27,53

Additionally, monitoring ketone bodies during resolution should

reduce the duration and cost of medical treatment.57

Prevention of DKA may be the best use of ketone body mea-

surement. DKA requires immediate medical attention (e.g., emer-

gency room visit), with an average cost for hospitalization of $26,566

in 2014.58 To reduce DKA events and hospitalization, scientific

studies recommend self‐monitoring of ketone bodies in patients with
type 1 diabetes, insulin‐dependent type 2 diabetes, sustained blood

glucose concentration >300 mg/dl, acute illness, or stress.20,27,56

Patients have indicated that measurements of elevated BOHB were

useful in determining subsequent insulin dose and food intake.59

During sick days, particularly those involving nausea, vomiting, or

infections, scientific studies recommend monitoring BOHB

throughout the day, specifically for young children because of the

frequency of illness in this population.59 Studies indicate that chil-

dren and adults who measure BOHB during “sick days” can prevent

the onset of DKA, reduce the time to DKA resolution, reduce mon-

etary costs, and decrease the rate of hospitalizations.55,59,60

2.3 | Euglycemic ketoacidosis

In addition to ketoacidosis associated with poorly controlled dia-

betes, ketoacidosis can occur in patients with diabetes who control

their blood sugar with a sodium–glucose cotransporter‐2 (SGLT2)

inhibitor. The SGLT2 inhibitor eliminates excess blood glucose

through excretion by the kidneys and may lead to ketoacidosis, in a

subset of individuals with diabetes, even though blood glucose is well

controlled (i.e., euglycemic ketoacidosis).61–64

This condition appears to be driven by low insulin levels in in-

dividuals with impaired insulin secretion, poor fluid intake, low car-

bohydrate intake, and/or fasting.51,62,65 Because the SGLT2 inhibitor

maintains blood glucose within a “healthy range”, blood glucose

monitoring will not alert individuals or clinicians to the developing

ketoacidosis. Thus, measurement of ketone bodies is important for

these subjects, perhaps even more so on sick days. The monitoring

guidelines outlined for ketoacidosis (above) could be applied. The

large concentration differential between healthy ketone body levels

and ketoacidosis can be exploited to monitor elevations in ketosis.

Significant elevations can be addressed before a crisis develops.28,51

Interestingly, pregnant women with diabetes (<3% of all diabetic

gestations) can have euglycemic ketoacidosis which may progress

more rapidly as compared to nonpregnancy states.66 Thus, ketone

body measurement may identify the early stages of hyperketonemia

before it escalates to DKA.

2.4 | Genetic disorders

Genetic disorders can elevate ketosis through the overproduction

of ketone bodies or impairment of ketone body utilization. Hepatic

ketone body production elevates when low blood glucose causes a

reduction in insulin and an increase in circulating fatty acids.

Normal glucose levels, maintained via glycogen metabolism

or gluconeogenesis, are dependent on key enzymes such

as glycogen synthase, glycogen phosphorylase kinase, fructose‐
1,6‐diphosphatase, or glucose‐6‐phosphatase. Genetic disorders

can prevent the expression of these enzymes, which would cause

fasting hypoglycemia and accelerated ketogenesis leading to

hyperketonemia.14

A lack of peripheral tissue utilization will cause ketone body

elevation. The pathway for ketolysis is controlled by two enzymes

(Figure 2): succinyl‐CoA:3‐oxoacid‐CoA transferase (SCOT) and

acetyl‐CoA acetyltransferase1 (ACAT1), which early literature iden-

tified as 2‐methylacetoacetyl‐CoA thiolase (MAT). A lack of these

enzymes causes hyperketonemia and ketoacidosis, particularly in a

fasting state.68,69

Monitoring ketonemia via BOHB or BrAce measurement can

provide a quantitative check on dietary compliance, particularly on

sick days, and a method to minimize the conversion of hyper-

ketonemia to ketoacidosis. Ketone body thresholds have not been

described but would likely be similar to those for ketoacidosis

(BOHB > 3 mM or BrAce > 75 ppm—see Section 2.2).

F I GUR E 2 Pathway for utilization of ketone bodies (ketolysis) where deficiencies in SCOT or ACAT1 cause significant ketonemia (adapted
from Aubert et al.67). β‐oxidation is output from β‐oxidation of fatty acids. ACAT1, acetyl‐CoA acetyltransferase1; BDH, β‐hydroxybutyrate
dehydrogenase; MCT, monocarboxylate transporter; SCOT, succinyl‐CoA:3‐oxoacid‐CoA transferase
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3 | KETOSIS FOR THERAPY

In addition to weight loss, multiple obesity‐associated diseases

respond favorably to elevated ketosis. These diseases appear to have

impaired glucose metabolism (e.g., brain dysfunction) or an inability

to manage elevated insulin and glucose (e.g., cancer, diabetes).

Elevated BOHB may provide relief by replacing glucose as a primary

source of energy and removing oxidant species.15,16 For these

obesity‐associated diseases, carbohydrate restriction may be the

optimal modality for elevating ketone bodies while decreasing insulin

and blood glucose concentration. Therapeutic BOHB concentrations

are primarily disease dependent and modulated by a multitude of

factors including age, gender, weight, diet, and disease severity. Thus,

sequential ketone body measurements over time can demonstrate

that the threshold for therapeutic ketosis has been achieved and

maintained.

3.1 | Brain function

In health, glucose fuels the brain. During starvation, glucose is scarce

and FFAs are abundant. Because the brain cannot use fat for fuel, the

body converts fat into ketone bodies to fuel the brain.52,70 Scientific

studies have demonstrated that elevated ketone bodies (via KD,

supplementation with medium chain triglyceride, fasting, etc.) can

improve brain function in subjects with Alzheimer's, dementia, and

Parkinson's disease.

It appears that these diseases are characterized by the

inability of specific brain regions to use glucose for fuel, which

causes regional dysfunction in the brain. When available, ketone

bodies can fuel diseased brain regions resulting in improvement of

neurologic function. At BOHB concentrations >4 mM, ketone

bodies are estimated to supply more than 50% of the brain's en-

ergy requirement.71

3.1.1 | Alzheimer's

Many factors drive Alzheimer's disease including insulin resistance,

genetic defects, and a regional reduction in glucose metabolism

which is correlated to decrements in cognitive scores.7,72 Elevation in

BOHB to ∼0.5 mM (BrAce ≥ 9 ppm) via consumption of ketogenic

foods appears to improve cognitive function.29,30,73,74 Additionally,

improvement in cognitive function is associated with increased

BOHB concentrations.29,30,75

3.1.2 | Parkinson's

The benefits of elevated ketone bodies on mitochondrial activity

have been proposed for Parkinson's disease. While similar to the

mechanisms for other brain maladies, it is hypothesized that

BOHB increases energy production because BOHB may bypass a

defect in complex I of the electron transport chain.76 In one

study, subjects with Parkinson's on a 4‐week KD showed

improvement on the Unified Parkinson's Disease Rating Scale. A

pilot study showed some symptom resolution when BOHB = 1.0

mM.31 While additional studies are needed, it is expected that

BOHB must range between 2 and 7 mM to provide a therapeutic

effect.7,77

3.1.3 | Dementia

Older subjects with mild cognitive impairment may experience

improved verbal memory performance using a very low carbohydrate

diet (<35 g/day on average). Improved memory performance corre-

lated with increases in ketone levels and reductions in insulin

levels.32 Healthy geriatric individuals will also likely benefit from the

best improvement found in subjects with strong dietary compli-

ance.78 Based on the dietary criteria, subjects with cognitive

impairment may need BOHB concentrations >0.5 mM (BrAce ≥ 9

ppm) to achieve a benefit.32

3.1.4 | Migraine

Migraine can be characterized as a neurologic inflammation and a

reduction in brain metabolism.79 To prevent or protect against

migraines, elevated ketone bodies may reduce neuroinflammation,

inhibit oxidative stress, and modulate mitochondrial function.80

Ketotherapeutic benefits for migraines have been known for

almost 100 years.81 In recent studies, consumption of a very low

carbohydrate (<30 g/day) and low‐calorie KD was associated with

significant reductions in the number of migraine attacks per

month (76% drop) and the number of days with headaches (82%

drop).80,82 One subject had complete remission of migraine

headaches.83 Relief was observed within a few days of diet

initiation.79 Because the diets used are similar to those used for

epilepsy therapy, a BOHB greater than 4 mM may be required

(Table 1).

3.1.5 | Epilepsy

Some subjects with epilepsy have intractable seizures, which are

unresponsive to antiepileptic drugs.84,85 The frequency of these sei-

zures can, in many cases, be reduced with a KD. In children,

approximately 50% of subjects experienced an improvement in

seizure frequency when adhering to this diet for a few months.86 For

children adhering to the diet for 1 year, almost 50% of subjects re-

ported a nearly complete (≥90%) reduction in seizures; similar out-

comes persisted for years after study termination.87 Adults with

epilepsy also experienced a reduction in seizure frequency when

placed on KDs. It is clear that elevations in ketone bodies correspond

to successful ketogenic therapy.19 Scientific studies have shown a

650 - ANDERSON ET AL.



relationship between elevated BOHB and improved seizure control

in children.37–39

Ketone body measurement can demonstrate dietary compliance

required for therapeutic benefit.38,88,89 The therapeutic benefit ap-

pears to be around 4 mM for BOHB37–40 (Table 1). When adverse

effects of the diet occur (e.g., constipation, bloating, or irregular

menstrual cycles), ketone body measurement can provide positive

reinforcement, provide information to optimize dietary composition,

and hasten return to therapeutic ketosis after a “cheat” day.

3.2 | Cancer

Rapid and uncontrolled cell growth in cancer is fueled by glucose, an

observation named the Warberg effect.90 Thus, restricting circulating

glucose (e.g., by consumption of a very low‐carbohydrate and high‐fat
diet) should cause tumor cells to starve and die.90 In healthy cells,

energy is produced via aerobic respiration of glucose, fats, or ketone

bodies which requires healthy mitochondria, an intact tricarboxylic

acid cycle, and a functional electron transport chain. In cancer cells,

compromised aerobic respiration forces cancer cells to rely solely on

anaerobic glycolysis and aerobic fermentation of glucose for en-

ergy.91 High corresponding insulin levels signal the expression of

glucose transporters (e.g., GLUT3) and glycolytic enzymes.

Carbohydrate restriction will slow cancer growth in three ways.

Without fuel, these cells starve and become more susceptible to

chemotherapeutics.91,92 A decrease in circulating insulin inhibits the

signal to upregulate the glucose transporters (e.g., GLUT3) and

glycolytic enzymes required for metabolism. Increased BOHB re-

duces oxidative stress and inflammation, induces apoptosis, and is

associated with regression of cancer growth.33,92–94 Meanwhile,

healthy cells thrive via aerobic metabolization of fats and ketone

bodies.90,91

The few studies using ketotherapy have shown potential benefits

(e.g., tumor stability or regression) to the brain (i.e., glioblastoma),

breast, lung, and colon cancer.33,34,93,95 This regimen likely requires

carbohydrate restriction combined with one or more of the following:

high‐fat consumption, caloric restriction, fasting, or exogenous ke-

tone supplementation. Measurement of ketosis in cancer patients

may help monitor compliance, facilitate dietary modifications, and

achieve therapeutic levels of ketone bodies. The minimum threshold

for therapeutic benefit appears to be 0.5 mM (BrAce ≥ 9 ppm) and

likely depends on the cancer type.33,34,95

3.3 | Type 2 diabetes

One hallmark of diabetes is elevated blood glucose. In people with

type 2 diabetes, tissues are insensitive to insulin, resulting in the rise

of blood glucose due to increased liver production and a lack of up-

take. To achieve normal levels of blood glucose, clinical investigators

have proposed “prescribing” a KD to restrict dietary carbohydrates

to <50 g/day.4,96 After adaption to KD, subjects, on average,

experience an improvement in diabetic sequelae and medications,

including weight reduction, reduced exogenous insulin, improved

insulin sensitivity, and reduced HbA1c.35,36,96,97

To achieve these results, clinical studies have measured BOHB

levels to verify carbohydrate restriction, to guide the reduction of

diabetes medication, and to adjust dietary therapy.35,36 Subjects

strive to maintain a state of nutritional ketosis, defined as BOHB ≥
0.5 mM.35,36 As an alternative to BOHB, a BrAce ≥ 9 ppm, which

corresponded to BOHB ≥ 0.5 mM for 95% of measurements, could

be used to demonstrate nutritional ketosis.19,22 Daily ketone body

measurements demonstrate dietary and lifestyle compliance and may

provide a rationale for weaning patients from diabetic medica-

tions.35,36,98 As lifestyle and dietary factors change with time, ketone

body measurements will reflect changes in carbohydrate restriction

and, thus, can be used to help compensate for these changes.

3.4 | Weight loss

During calorie restriction, energy needs are met by mobilizing fat

from adipose cells. A portion of the circulating fatty acids is con-

verted into ketone bodies within the liver. The amount of ketone

bodies produced is proportional to the rate of fatty acid metabolism

within the liver. For subjects on a calorie‐restricted diet, the BrAce

concentration has been shown to be proportional to the rate of fat

loss.19 While BrAce is ∼1 ppm for a typical subject, individuals who

lost one‐half pound of fat mass per week on a calorie‐restricted diet
had BrAce = 2 ppm. Further elevations in BrAce correlated linearly

with increases in fat mass loss.11

As a result of the relationship between BrAce and fat mass loss,

frequent monitoring of BrAce can be used as a tool by individuals and

clinicians to optimize fat loss. During calorie restriction, BrAce ≥ 2

ppm indicates an elevated state of fat metabolism and predicts fat

loss if these levels can be maintained. Frequent monitoring provides

individuals with immediate feedback to understand how their well-

ness choices (e.g., diet, exercise, sleep, stress, etc.) affect their state of

fat metabolism. Using this feedback, individuals can adjust their

choices, daily if needed, to optimize and maintain fat loss and in-

crease compliance (unpublished observations). Coaches and clinicians

can utilize longitudinal BrAce measurements to understand individual

fat metabolism, to customize the program for each individual, and to

counsel patients on how to overcome weight‐loss obstacles. Addi-
tionally, BrAce can be used in weight‐loss strategies when preparing
for bariatric surgery (discussed below).

One case for measuring BrAce could be tailoring the macronu-

trient composition to optimize weight loss. In general, customization

is difficult because the optimal macronutrient composition for weight

loss is not clear. Scientific debates between proponents of a high

carbohydrate diet99 and supporters of a low carbohydrate diet100

have not provided resolution. Optimal diet composition is likely

subject dependent. A recent study101 suggests a high carbohydrate

diet (60% carbohydrate, 20% fat, and 20% protein) is preferred for

women with obesity who were insulin sensitive (fasting insulin <10
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µU/ml) while a lower carbohydrate diet (40% carbohydrate, 40% fat

and 20% protein) is preferred for women with obesity who were

insulin resistant. For all subjects, the preferred macronutrient

composition gave a ∼twofold increase in body weight loss as

compared to the alternative. These findings would indicate that the

ability (inability) to efficiently metabolize carbohydrates, as predicted

by insulin sensitivity (resistance), may predict the best macronutrient

composition for weight loss.

As weight is lost, the body becomes more insulin sensitive. Thus,

at some point during weight loss, the best diet may change from a low

to a high carbohydrate diet. This change could be monitored with

measurements of fasting insulin. However, the cost and invasive

nature make this measurement impractical. A different inflection

point occurs for others during the first 6 months of dieting. Often

when people reach a plateau in their weight loss, they give up dieting

and regain the weight.

Measuring BrAce over days and weeks can give feedback on

metabolic changes within the patient. A reduction in BrAce from

above 2 ppm to near 1 ppm indicates a loss of fat oxidation and, when

combined with a weight‐loss plateau, may suggest the need for a

dietary change. One cause of this plateau could be the increase in

insulin sensitivity which can be quantified via measurement of fasting

insulin. If insulin sensitivity has improved, an increase in the carbo-

hydrate content could restart weight loss. Thus, regular monitoring of

BrAce during a weight‐loss program could potentially enable

personalization of dietary carbohydrates and optimize weight loss

over the weight‐loss journey.

3.5 | Bariatric surgery

Bariatric surgery serves as a case study for monitoring ketone bodies

for both pathologic (i.e., ketoacidosis) and therapeutic (i.e., weight

loss) ketosis. Over the past half‐century, bariatric surgery has

emerged as a valid and effective treatment for significant weight loss

and improvement, if not resolution, of associated comorbidities,

including diabetes, hypertension, and sleep apnea.102 Most of these

operations, typically indicated for patients with a BMI > 35, result in

the correction of the metabolic dysfunction at the center of the

metabolic syndrome and morbid obesity. The dramatic reduction in

hunger and the normalization of disturbed metabolic processes result

in significant weight loss that is derived from a reduction in both fat

and fat‐free mass.103,104

Prior to bariatric surgery, weight loss can reduce surgical com-

plications, surgery time, and length of hospital stay.105 Very low‐
calorie diets (VLCD) are commonly used prior to bariatric surgery

as a means to both reduce initial weight and to reduce liver fat

mass.106 Although VLCDs vary somewhat in calorie and nutrient

composition (typically < 800 calories/day), they are as a group

effective in weight loss and metabolic improvement41 while typically

maintaining fat‐free mass.107–109 VLCD with carbohydrate levels of

<50 g/day result in nutritional ketosis. To demonstrate compliance

with the dietary plan and optimize weight loss, BrAce can be moni-

tored. In fact, measurement of BrAce has been shown to correlate

with weight loss and adherence to the prescribed VLCD

intervention.110

After bariatric surgery, patients are monitored by a multidisci-

plinary team of physicians, nurses, and dietitians, whose main

objective is to ensure that patients maintain optimal benefits with

minimal harm, including that weight loss be predominantly from fat

mass components, and the sparing of fat‐free mass. While many

patients do achieve these healthy weight‐loss objectives, there is a

minority who, for a variety of reasons, may be unable to adhere to

nutritional recommendations and suffer the consequences of poor

oral intake if not rescued in a timely manner. It is imperative,

therefore, that patients at risk should have their fluid status, elec-

trolyte levels, acid–base balance, and nutritional parameters closely

monitored. Comprehensive monitoring may benefit from quantita-

tive measurement of ketone bodies (e.g., BrAce), which could be

used to enhance post‐bariatric diabetes management and distin-

guish between types and degrees of ketoacidosis such as SGLT2‐
associated euglycemic ketoacidosis and post‐surgery starvation

ketoacidosis.111,112

Starvation ketoacidosis can result secondary to poor oral intake

following bariatric surgery.113 Poor oral intake rapidly depletes

hepatic and muscular glycogen stores. Aggravating this situation is

the vomiting and dehydration that are occasionally present and

stimulate the sympathetic system resulting in released cortisol,

adrenaline, glucagon, and growth hormone, which in turn suppress

insulin secretion. The cumulative effects of these changes are

lipolysis and FFA production from adipose tissue and hepatic ke-

tone formation, the basis for starvation ketoacidosis.114 Therefore,

all patients who present with severe acid–base imbalance should

undergo ketone body measurement since their elevation is a key

determinant that ketoacidosis is the underlying mechanism for

metabolic acidosis.

In clinical settings, it is important to differentiate starvation

ketoacidosis from DKA, since the treatment for each condition can

have a critical impact on the outcome of these emergency conditions.

DKA is a potentially lethal condition that is more common in patients

with type 1 diabetes who exhibit poor compliance or inadequate

insulin replacement therapy. It is usually associated with hypergly-

cemia and dehydration, and is typically managed with dedicated

protocols that call for aggressive rehydration and insulin adminis-

tration in an attempt to correct the acid–base imbalance. It is

important to distinguish diabetic from starvation ketoacidosis since

glucose administration can be a life‐saving measure in the latter

situation. Although DKA after bariatric surgery is an uncommon

event, it has been documented in patients with type 1 diabetes who

have undergone gastric bypass.112 Anesthesia and surgical stress,

abrupt discontinuation of insulin or inadequate treatment in the

perioperative period, postoperative infection, prolonged poor oral

intake, and severe dehydration can be the precipitating causes for

postoperative DKA.115
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4 | SUMMARY

The measurement of ketone body concentration (BOHB or acetone)

can provide valuable information. Diseases such as congestive heart

failure, ketoacidosis, and genetic disorders create an elevated

ketosis which, in many cases, correlates to disease severity. Because

the magnitude of the increased ketosis is typically related to dis-

ease severity, early detection can aid in modifying behaviors before

disease symptoms clinically manifest. The intentional induction of

elevated BOHB concentrations can be used to treat obesity and

obesity‐associated diseases such as brain disorders and type 2

diabetes. Elevated BOHB levels provide a benefit through modifi-

cation of mitochondrial energy production and through reduction of

insulin and blood glucose when achieved via glucose restriction.

Measurement of ketosis is critical to verify that a therapeutic level

of ketosis has been achieved and maintained. Frequent measure-

ment of ketosis can allow users to adjust and personalize their diet

and behaviors to maintain therapeutic levels of ketosis. A case

study of bariatric surgery demonstrates that monitoring ketone

bodies before and after surgery may optimize surgical outcomes

and reduce complications.

To date, monitoring ketone concentrations has been shown to

address three conditions: ketoacidosis (prevention, acidosis severity,

and resolution monitoring), improvement of type 2 diabetes (achieve

nutritional ketosis and dietary adherence), and epilepsy (optimize

seizure control). These methods of ketone monitoring can be used as

starting points for the other conditions reviewed. Additional studies

are needed to demonstrate the value of ketone body monitoring for

the other diseases that generate elevated ketosis. For therapeutic

ketosis, ketone monitoring is necessary, at a minimum, to demon-

strate a therapeutic dose has been achieved. Additional research is

needed to better quantify the therapeutic dose as a function of

subject‐specific factors, which include disease severity, de-

mographics, and genetics.
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