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Abstract

Purpose: This study was aimed to determine whether pure molecular-based

diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion

fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and

fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging.

Material and Methods: 17 healthy volunteers and 34 patients with

histopathologically confirmed liver fibrosis patients (stage 1514, stage 258, stage

3& 4512, METAVIR grading) were included. Liver MR imaging was performed at

1.5-T. IVIM diffusion weighted imaging sequence was based on standard single-

shot DW spin echo-planar imaging, with ten b values of 10, 20, 40, 60, 80, 100, 150,

200, 400, 800 sec/mm2 respectively. Pixel-wise realization and regions-of-interest

based quantification of IVIM parameters were performed.

Results: D, f, andD* in healthy volunteer livers and patient livers were 1.096¡0.155

vs 0.917¡0.152 (1023 mm2/s, p50.0015), 0.164¡0.021 vs 0.123¡0.029

(p,0.0001), and 13.085¡2.943 vs 9.423¡1.737 (1023 mm2/s, p,0.0001)

respectively, all significantly lower in fibrotic livers. As the fibrosis severity

progressed, D, f, and D* values decreased, with a trend significant for f and D*.

Conclusion: Fibrotic liver is associated with lower pure molecular diffusion, lower

perfusion volume fraction, and lower perfusion-related diffusion. The decrease of f

and D* in the liver is significantly associated liver fibrosis severity.
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Introduction

Chronic liver disease is a major public health problem worldwide [1]. Liver

fibrosis, a common feature of almost all chronic liver diseases, involves the

accumulation of collagen, proteoglycans, and other macromolecules in the

extracellular matrix. Clinically liver fibrosis usually has an insidious onset and

progresses slowly over decades. Originally considered to be irreversible, hepatic

fibrosis is now regarded as a dynamic process with the potential for regression [1].

To date, noninvasive diagnostic tests available from clinical practice are not

sensitive or specific enough to detect occult liver injury at early or intermediate

stages. The reliability of liver function tests, serological tests of specific serum

makers, and liver stiffness measurement in assessing liver fibrosis is still under

investigation [2–6]. Liver biopsy is currently the standard of reference for the

diagnosis and staging of liver fibrosis. However, it is an invasive procedure with

possible complications [7]. Histologic assessment of fibrosis is also an inherently

subjective process, and it is subject to sampling variability. The extent of

variations from observer interpretation by expert histopathologists may be as high

as 20% [8]. These limitations make liver biopsy somewhat suboptimal for

diagnosis and longitudinal monitoring in the general population. A noninvasive

and quantitative technique for assessing liver fibrosis and monitoring disease

progression or therapeutic intervention will be valuable [1, 9, 10].

The principle of intra-voxel incoherent motion (IVIM) imaging is a method

initially proposed by Le Bihan et al [11, 12] to quantitatively assess the

microscopic motions that occur in the sub-voxel scale on MR imaging. It is

demonstrated that three parameters, i.e., pure molecular diffusion, microcircu-

lation (or blood perfusion, pseudo-diffusion), as well as their volume fraction, can

be distinguished and quantified by fitting the acquired diffusion-weighted (DW)

images with multiple b values encompassing both low b values (,200 sec/mm2)

and high b values (.200 sec/mm2) to a bi-exponential decay model. These three

IVIM parameters have shown potentials for better tissue characterization than the

apparent diffusion coefficient (ADC) derived from the normal mono-exponential

diffusion weighted imaging (DWI) model for many clinical applications [13, 14].

Previously, the use of IVIM imaging has been limited to neuroradiologic

applications because the abdominal organs can be subject to respiratory and other

motion artifacts. The advent of respiratory triggering combined with the use of

parallel imaging allows IVIM MR imaging to be applied in the evaluation of the

liver in patients with fibrosis. Liver fibrosis is a nonspecific response to chronic

liver disease that leads to excess synthesis of extracellular matrix (ECM), especially

collagen fibers, in which the protons are less abundant and are tightly bound.

Several studies suggested that molecular water diffusion in fibrotic liver would be

restricted by the presence of collagen fibers in the distorted lobular structure, and

that ADC values decreased in fibrotic liver as compared with normal liver [13, 14].

Given the relatively high blood volume fraction of <25–30 mL of blood per 100 g

in liver [15], perfusion can contribute to the diffusion measurements significantly

because of the incoherent motion of blood in pseudorandom capillary network at
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the macroscopic level. It is well accepted that liver fibrosis is associated with

reduced liver perfusion [15–18]. Blood perfusion in chronic liver disease has been

recognized as an important marker of liver fibrosis [19]. The purpose of this study

was to prospectively evaluate a respiratory triggered DW imaging sequence

combined with parallel imaging to determine whether pure molecular-based

diffusion coefficient (D) and perfusion-related diffusion parameters (perfusion

fraction f, perfusion-related diffusion coefficient D*) differ in healthy livers and

fibrotic livers through intra-voxel incoherent motion (IVIM) MR imaging.

Material and Methods

This prospective study was approved by The Shenzhen No. 3 People’s Hospital

Research and Ethics Committee and written informed consent for all participants

was obtained. The consent form was also approved by the local Research and

Ethics Committee and hard copy was archived in the Department of Radiology of

the Shenzhen No. 3 People’s Hospital. 17 healthy volunteers (10 males, 7 females,

mean age: 36.4-yrs old; range: 21–79 yrs old) and 34 consecutively patients (23

males, 11 females; mean age: 37.3 yrs old; range: 22–57 yrs old) with confirmed

liver fibrosis (stage 1 - stage 4) were included. All the patients had hepatitis B virus

infection. Liver biopsy and MRI were performed with less than one month

interval (range: 0–30 days, median: 12 days), with biopsy performed ahead of

MRI. All liver MR imaging examinations were reviewed by two radiologists.

Besides liver fibrosis, no patient had liver focal lesions. Biopsy specimen of 10 mm

length was taken from each patient and Hematoxylin and Eosin (HE) staining was

used. The histopathology results were read in consensus by two pathologists

with.10 years’ experience. Histopathologically [20], stage 1 of liver fibrosis is

mild fibrosis only seen at the portal area; stage 2 indicates fibrosis extending out

from the portal areas with rare bridges between portal areas, but without the

destruction of the lobular structure; stage 3 of liver fibrosis is severe fibrosis, there

is fibrostic bridging between portal areas and between portal areas and center

veins; In stage 4 there are pseudo-lobules formed and this stage is the final stage of

cirrhosis. Of the 34 patients, 14 had stage-1 liver fibrosis, 8 had stage-2 liver

fibrosis, 8 had stage-3 liver fibrosis, and 4 had stage-4 liver fibrosis.

All MR imaging examinations were performed with a 1.5-T MR imaging system

(Achieva, Philips Healthcare, Netherlands). The liver MR imaging protocol

included transverse T1-weighted gradient-echo sequence, transverse T2-weighted

turbo spin-echo sequence, and the transverse IVIM DW imaging sequence. T1-

weighted gradient-echo sequence included TR 511 ms, TE 56.9 ms, Matrix

52526151, FOV 5375 mm6304 mm, slice thickness: 7 mm, slice gap 51 mm,

Slices 24, NEX 51. T2-weighted gradient-echo sequence included TR 5421 ms,

TE 580 ms, Matrix 52686184, FOV 5375 mm6297 mm, Slice thickness

57 mm, slice gap 51 mm, slices 524, NEX 51.

The IVIM DW imaging sequence was based on a single-shot DW spin-echo

type echo-planar imaging sequence, with ten b values of 10, 20, 40, 60, 80, 100,
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150, 200, 400, 800 sec/mm2 respectively. SPIR technique (Spectral Pre-saturation

with Inversion-Recovery) was used for fat suppression. Respiratory triggering was

performed using an air-filled pressure sensor fixed around the upper part of

abdomen for each subject. Respiration waveform was detected and monitored on

a gating control screen. The DWI acquisition window was only limited to the

expiratory phase while dummied to the inpiratory phase. The respiratory-gating

resulted in an average TR of 1500 msec, and the TE was 63 msec. Other

parameters included slice thickness 57 mm, matrix: 124697, FOV

5375 mm6302 mm, NEX 52. The IVIM DW imaging was centered around the

liver and the number of slices 56. The data acquisition time was 6:42 minutes.

The IVIM signal attenuation is modeled according to the Equation

SI(b)~SI0 1{fð Þ:exp({b:D)zf :exp({b:D�)
h i

, ð1Þ

where SI(b) and SI0 denote the signal intensity acquired with the b-factor value of

b and 0, respectively. f is the fraction of the pseudo-diffusion linked to

microcirculation, D is the true diffusion coefficient representing the pure

molecular diffusion (slow component of diffusion), and D* is the pseudo-

diffusion coefficient representing the incoherent microcirculation within the voxel

(perfusion-related diffusion, or fast component of diffusion).

IVIM parameter was quantified using the asymptotic fitting method [21],

which was verified to perform better that the normal simultaneous bi-exponential

fitting, particularly at relatively low signal-to-noise ratios (SNRs). In detail,

considering that D* is significantly greater than D due to the much faster capillary

blood flow velocity than the water thermal diffusion, its influence on signal decay

could be neglected for the b factors greater than 200 sec/mm2 [4]. Hence, the

estimation of D was obtained by a least-squares linear fitting of the logarithmized

image intensity at the b values greater than 200 sec/mm2 to a linear equation. The

fitted curve was then extrapolated to obtain an intercept at b50. The ratio

between this intercept and the SI0, gave an estimate of the perfusion fraction f.

Finally, the obtained D and f were substituted into Eq. [1] and were non-linear

least-square fitted against all b-factors to estimate D* using the Levenberg-

Marquardt algorithm. When the function failed to converge, pixel values were

automatically discarded. To ensure the quantification reliability, the calculated

IVIM parameter values for those pixels with the goodness of fit R2,0.7 were

excluded for the subsequent analysis as well [22–23]. R2 was defined as

R2~1{

P
i (yi{ŷi)

2P
i (yi{�yi)

2 where yi is the measured value, byi is the corresponding fitted

value, and y is mean value of measured data values, i.e. �y~
1
n

Xn

1

yi.

All curve fitting algorithms were implemented in a home-developed program

using MatLab (Mathworks, Natick, MA), which allowed the extraction of

parametric maps of f, D, and D*. All regions-of-interest (ROIs) were manually

positioned on the b50 DW images by a single author who had 5 years’ experience
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reading abdominal MR images. ROIs were positioned to cover a large portion of

liver parenchyma while avoiding large vessels (Fig 1), with confirmation provided

by visually comparing the ROI positioning on IVIM DW images and on T1-

weighted and T2-weighted images. For ROI analysis, the IVIM parameters were

calculated based on the mean signal intensity of the whole ROI. Out of the six

IVIM DW slices, the central three slices were selected for measurement, and the

mean ROI based value of the three slices was regarded as the value of the patient.

Statistical analysis was performed using software SPSS (version 12.0 for

Windows; SPSS, Chicago, Ill). The mean value of IVIM parameters as well as

standard deviation (SD, related to per subject) of each groups are presented.

Mann Whitney U test was used for comparison between the IVIM parameter

values obtained from healthy volunteer and patients. One-way analysis of variance

(ANOVA) and Bonferroni adjustment for multiple comparisons were used in

evaluating the IVIM values from different grades of liver fibrosis. For the

comparison between different liver fibrosis stages, stage-3 subjects and stage-4

subjects were grouped together for analysis, due to the limited patient number of

stage-4. A p value ,0.05 was considered significant.

Results

IVIM DW imaging data were acquired in all subjects. No data suffered from

severe motion induced displacements or artifacts hampered IVIM quantification

in this study. Curves of IVIM signal-intensity decrease demonstrated biexpo-

nential type decay as previously reported [13], regardless of the measurements

were obtained in the healthy livers or in the liver fibrotic livers (Fig 1).

The mean D, f, and D* (61023 mm2/s) values measured in healthy volunteers

and patients liver were 1.096¡0.155 vs 0.917¡0.152 (1023 mm2/s, p50.0015),

0.164¡0.021 vs 0.123¡0.029 (p,0.0001), and 13.085¡2.943 vs 9.423¡1.737

(1023 mm2/s, p,0.0001) respectively (Fig 2). With D, f, and D* in fibrotic livers

all significantly lower than those in healthy livers. As the fibrosis severity

progressed, D, f, and D* values decreased. A trend towards lower f and D* with the

increase of fibrosis stage was statistically significant (Table 1, 2).

Discussion

In patients with early liver fibrosis, the liver parenchyma usually has a normal

appearance or may exhibit only subtle, nonspecific heterogeneity on conventional

MR images, though later-stage fibrotic liver develops characteristic morphologic

alterations such as surface nodularity, widening of fissures, expansion of the

gallbladder fossa, notching of the right lobe, atrophy of the right lobe, and relative

enlargement of the lateral segments of the left lobe and caudate lobe [24, 25]. A

number of MR imaging techniques have been investigated to assess liver fibrosis,

including T1rho imaging [22, 23, 26–29], double contrast material–enhanced MR

imaging [30], gadoxetate disodium-enhanced MRI [31], computer-aided analysis
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of hepatic contours [32], assessing liver strain using tagged MRI [33], and MR

elastography [34, 35]. The IVIM model assumes that each imaging voxel

comprises nonexchanging intravascular and extravascular compartments. While

the intravascular compartment with perfusion fraction f is described by the

pseudorandom blood perfusion D*, the extravascular compartment is described

by the true molecular diffusion D. With low b-values, the intravoxel spin

dephasing caused by the pseudorandom blood flow in the presence of diffusion

gradient will contribute more to the signal attenuation. During the latter part of

the signal decay, the attenuation was mainly a consequence of the molecular water

diffusion because the blood signal would be mostly suppressed by the large

diffusion gradients. Faster signal decay occurred with low b-values in liver due to

the contribution from both diffusion and perfusion because of its relatively high

blood volume fraction. Recently there are great interests of using IVIM technique

to study diffused liver diseases. IVIM MR imaging is a noninvasive technique, it

does not require the intravenous injection of contrast agents or the use of

additional hardware (such as the external mechanical driver in the case of

Figure 1. Region of interest (ROI) on the b50 diffusion weighted MR image (left) and the
corresponding IVIM fitted curve of measured signal (right), showing a bi-exponential decay. The ROI
was placed over the whole liver avoiding artifacts and blood.

doi:10.1371/journal.pone.0113846.g001

Figure 2. D, f, and D* values in healthy livers and fibrotic livers. D, f, and D* are significantly lower in fibrotic livers than in healthy livers.

doi:10.1371/journal.pone.0113846.g002
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elastography), also its imaging sequence is readily available on all commercial

clinical MRI scanners.

Yamada et al were the first to assess IVIM MRI in abdominal organs, although

they used only a limited number of b-values (30, 300, 900, and 1100 s/mm2), and

did not calculate pseudo-diffusion values [36]. They found the ADCs of solid

organs and solid lesions were significantly higher than their D values, indicating a

high contribution of perfusion f to the ADCs. With IVIM techniques, Luciani et al

reported that D* was significantly reduced in the liver fibrosis compared with

those in the healthy liver group, but there was no significant difference between D

and f measurements in the healthy liver (n525) and the liver fibrosis (n512)

groups [13]. Guiu et al reported that D and D* were significantly lower in steatotic

compared with nonsteatotic livers. However, f was significantly higher in steatotic

compared with nonsteatotic livers [37]. In another patient based study, Patel et al

reported that f, D and D* in liver cirrhosis were lower than non-cirrhosis liver,

however, no further grading was performed within their liver cirrhosis subjects as

only 3 patients (out of 14 patients) had histopathology data [38]. In a rat model of

diethylnitrosamine-induced liver fibrosis, Zhang et al reported that f values

decreased significantly with the increasing fibrosis level; but D was poorly

correlated with fibrosis level [39]. In a carbon tetrachloride induced rat liver

fibrosis model, Chow et al reported that as liver fibrosis progressed, D and D*

decreased, however there was no change in f [14]. Joo et al reported that f was

significantly lower in rabbits with nonalcoholic fatty liver disease than in those

with a normal liver, and it decreased further as severity of nonalcoholic fatty liver

disease increased, on the other hand, D and D* did not differ significantly between

the nonalcoholic fatty liver disease severity groups [40].

Table 1. Pure molecular diffusion (D), perfusion fraction (f), and perfusion-related diffusion (D*) values in different stages of fibrotic livers.

Patients D (61023 mm2/s) f D*(61023 mm2/s)

stage 1 (n514) 0.981¡0.138 0.145¡0.028 10.584¡1.872

stage 2 (n58) 0.833¡0.146 0.119¡0.014{ 9.028¡1.290

stage 3&4 (n512) 0.898¡0.152 0.100¡0.014{ 8.332¡0.851

p-value of ANOVA 0.074 ,0.001 0.001

p-value of trend 0.154 ,0.001 ,0.001

{p-value,0.05 comparing stage 2 or stage 3&4 with stage 1, with Bonferroni adjustment for multiple comparisons.

doi:10.1371/journal.pone.0113846.t001

Table 2. p-value with Bonferroni adjustment for comparison of pure molecular diffusion (D), perfusion fraction (f), and perfusion-related diffusion (D*) values
in different stages of fibrotic livers.

p-value with Bonferroni adjustment D(61023 mm2/s) f D*(61023 mm2/s)

stage 1 vs 2 0.083 0.024 0.065

stage 1 vs 3&4 0.462 ,0.001 0.001

stage 2 vs 3&4 0.995 0.184 0.903

doi:10.1371/journal.pone.0113846.t002
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In the phantom part of the study Luciani et al showed that the signal decay with

the IVIM DW imaging sequence was monoexponential, thus suggesting that the

biexponential signal decay encountered in vivo cannot be attributed to a

systematic error due to the imaging sequence [13, 41]. Our findings confirm that

liver diffusion combines both pure molecular diffusion (slow component of

diffusion) and capillary perfusion (fast component of diffusion). Liver fibrosis is

associated with progressive increase in connective tissue. The increased

proportion of collagen fibers is believed to impair Brownian water motion within

fibrotic livers. It is well accepted that liver cirrhosis is associated with reduced liver

perfusion, particularly with reduced portal flow [13]. Accumulation of collagen

deposits and highly contractile activated stellate cells contribute to increased

hepatic resistance to portal blood flow, development of portal hypertension, and

reduced portal blood perfusion in liver fibrosis. The decreased blood perfusion

could arise from a number of concomitant alterations in the tissue microenvir-

onment, including collagen deposition, fatty infiltration, hepatitis, cell necrosis/

apoptosis, inflammatory cell infiltration, and fibroblast proliferation with

different degrees. Our results demonstrated all D f, and D* values were lower in

the fibrotic livers compared with the healthy livers, and progressively so as the

severity of liver fibrosis increased. To our knowledge, this is the first study such

effects are demonstrated in biopsy confirmed human livers in a prospective

clinical trial. Compared with the previous patient based studies, our study is

characterized by that the coefficient of variation is relatively small, being 0.22 and

0.18 for healthy volunteers and patients respectively, while the patient number was

relatively large. Different f and D* values have been reported in literature [14, 37–

40]. It is known that IVIM techniques can suffer from measurement

reproducibility for f and D* values [41]. Further studies with better measurement

precision and larger study cohort are necessary to resolve the differences reported

in the literature.

There are a few limitations of this study. Only hepatitis B virus related liver

fibrosis were included in this study. The study subject number was small for the

stage 4 fibrosis group. For this reason, the ability of IVIM DW imaging to help

provide a distinction between patients with scores of stage 3 to stage 4 could not

be reliably assessed. Statistical power could be further increased with access to

larger sample sizes in future studies. This study was carried out using a 1.5 T

scanner. Although the image artifacts, e.g., susceptibility induced artifacts, at 1.5 T

are considered less than at 3 T, the relatively low signal-to-noise ratio (SNR) may

compromise the precision of the calculated IVIM parameters, particularly for f

and D*. This technical issue was compensated by the NEX of two for acquisition

as well as the carefully optimized asymptotic IVIM fitting [21, 42]. It is possible

that a higher field 3 T scanner may offer more distinguishing power with the

better SNR by taking the advantage of better SNR. In this pilot study, ROIs were

manually positioned on the extracted parametric images. The inter-reader

measurement reproducibility was not assessed in this study. However, previous

study demonstrated excellent inter-reader measurement reproducibility for

similar approaches [43]. Future study can employ other sophisticated methods
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like histogram analysis and texture analysis. IVIM quantification can be affected

by the choice of b-values used and measurement accuracy at low b-value [44–46].

Another limitation is that liver fat content has not been quantified in this study.

As cirrhosis tends to be coupled with fat accumulation, fatty tissues in liver have

low diffusion values [36, 47]. However, another study reported that hepatic

steatosis did not affect measurement of perfusion or diffusion and is unlikely to

confound the use of apparent diffusivity to evaluate hepatic fibrosis [48]. The

extent of perfusion contribution to apparent diffusion measurement can be

influenced by the actual imaging sequences and imaging parameters, such as voxel

size and the effects of blood flow under a specific sequence setting. Optimizations

of acquisition protocol and a post-processing algorithm may minimize the overall

measurement errors and hence be more robust for clinical applications. In this

study, simultaneous assessment of the traditional contrast enhanced liver

perfusion MR imaging was not performed, combining perfusion MR imaging

with IVIM imaging would potentially provide additional information. Better

improvement of IVIM MR imaging technique will extend its application in other

organs and also for therapeutic effect evaluations [49–52]

In conclusion, our IVIM MR study shows lower pure molecular diffusion,

lower perfusion volume fraction, and lower perfusion-related diffusion in fibrotic

livers. Through employing multiple b-values, IVIM analysis has the potential to

quantify diffusion and perfusion parameters in liver without the use of contrast

agents.
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