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Unraveling the role of liver sinusoidal endothelial cells in COVID-19
liver injury
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Liver injury is common during SARS-CoV-2 infection. Abnor-
malities in liver tests can be found in up to 50% of infected pa-
tients.1 In most cases, COVID-19 liver test perturbations comprise
liver aminotransferase elevation and correlate with disease
severity (defined as intensive care unit admission and mortal-
ity).2,3 Liver injury is generally mild and does not lead to liver
failure in patients without advanced liver disease. Patients with
decompensated cirrhosis, however, are at a significant risk of
developing acute-on-chronic liver failure.4 Although several
mechanisms for these observations have been postulated, the
pathogenesis of liver injury in COVID-19 is largely unknown.
Liver cells such as hepatocytes seem to be poorly permissive to
SARS-CoV-2 infection. ACE2 and TMPRSS2, the 2 major viral cell
entry factors, are expressed at only low levels in hepatocytes and
non-parenchymal cells.3,5 Even though SARS-CoV2 RNA has been
detected in the livers of COVID-19 patients,6 functional studies
demonstrating robust SARS-CoV2 infection of liver cells are
pending.3

Histopathological studies of COVID-19 livers reported an
increased prevalence of moderate steatosis, mild lobular and
portal inflammation, and sinusoidal thrombosis.3 Moreover,
COVID-19 has been reported to be more severe in patients with
obesity and metabolic syndrome.3,7,8 Whereas steatosis, lobular
and portal inflammation are common features of metabolic liver
disease, sinusoidal thrombosis is a potential candidate for a
specific feature of COVID-19-related liver injury. Indeed, COVID-
19 is a prothrombotic disease associated with a high risk of
venous thrombosis, pulmonary embolism and endotheliopathy,9

and sinusoidal thrombosis has also been observed in liver his-
topathological studies of severe COVID-19.3,10,11

COVID-19 is characterized by an intense systemic proin-
flammatory response which can turn into an uncontrolled
massive cytokine release able to induce multi-organ failure.12
; interleukin-6;
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Interleukin (IL)-6 has been postulated as a key proin-
flammatory cytokine in COVID-19 pathogenesis and IL-6 inhibi-
tion may improve outcomes and survival of patients with severe
disease.13 In this issue of Journal of Hepatology, McConnell,
Kawaguchi et al.14 investigated the role of IL-6 signaling in the
induction of a pro-coagulatory and proinflammatory phenotype
in liver sinusoidal endothelial cells (LSECs), also called endo-
theliopathy by some authors.15

IL-6 is a cytokine produced by macrophages, endothelial cells,
T cells and fibroblasts upon stimulation of Toll-like receptor 4, IL-
1 or tumor necrosis factor-a.16 IL-6 signaling involves classical
cis-signaling as well as trans-signaling pathways. In the classical
pathway, IL-6 signaling is initiated upon association of IL-6 with
the membrane-bound IL-6 receptor (IL6-R) which subsequently
forms a complex with glycoprotein 130 (gp130). This classical
pathway of signal transduction restricts IL-6 signaling to cells
expressing IL6-R in the liver, such as hepatocytes, cholangiocytes,
Kupffer cells and hepatic stellate cells. IL-6R can also be cleaved
at the cell surface by metalloproteinases into a soluble receptor
(sIL-6R) which can form a complex with IL-6 and bind to gp130
on the cell surface of IL-6R-negative cells, initiating intracellular
IL-6 signaling. Once initiated, the classical and trans-signaling of
IL-6 both lead to the activation of the tyrosine kinase JAK1, MAP
kinase and STAT1 and STAT3 pathways.

High levels of IL-6 and sIL-6R have been observed in COVID-
19 patients but the effect on the liver is still poorly under-
stood.17 Previous studies have shown that IL-6 not only promotes
the acute phase response but also liver regeneration, tumori-
genesis and modulation of glucose metabolism.16

Aiming to understand the pathogenesis of COVID-19-related
liver injury, McConnell, Kawaguchi et al.14 first showed that, in
COVID-19 patients, the most common liver pathological features
were liver congestion (98%), steatosis (47%), sinusoidal erythro-
cyte aggregation (44%) and neutrophil infiltration (>−2x that in
control livers). Among COVID-19 patients, patients with higher
alanine aminotransferase (ALT >−3x) had higher plasma levels of
IL-6 and procoagulation factors, and more importantly, the liver
histopathological analysis showed significantly higher intra-
lobular neutrophil infiltration (2x that of patients with lower
ALT) as well as trends toward a higher prevalence of steatosis
and sinusoidal erythrocyte aggregation. Immunostaining ana-
lyses revealed that LSECs in COVID-19 patients were highly
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positive for von Willebrand factor (vWF) and showed platelet
aggregates at their surface. Moreover, vWF expression and
platelet aggregates in LSECs were higher in patients with ALT >−3x
and correlated with intralobular neutrophil infiltration and
plasma IL-6 levels. Functional studies in primary LESCs revealed
that IL-6 trans-signaling increases the expression of procoagu-
lant factors (Factor VIII and vWF), proinflammatory molecules
(IL-6 itself, CXCL1 and CXCL2) and cell adhesion molecules such
as ICAM1, P- and E-selectin which are known to mediate and
enhance platelet attachment and neutrophil recruitment.18

Furthermore, their study provides evidence that activated
LSECs contribute to increase the systemic inflammatory response
by cross talking with hepatocytes and increasing their produc-
tion of acute phase reactants such as fibrinogen. These pertur-
bations were IL-6 dependent and could be pharmacologically
restored by JAK1 inhibitors which are currently under evaluation
for the treatment of severe COVID-19.19 In summary, according to
their findings, LSECs respond to IL-6 by acquiring a procoagulant
and proinflammatory phenotype which triggers platelet aggre-
gation in sinusoids and liver neutrophil recruitment, contrib-
uting to COVID-19-related liver injury (summarized in Fig. 1).
Nevertheless, liver neutrophil infiltration appears to be mild
(around 2 neutrophils per high power field).

These observations provide a novel concept for the under-
standing of liver injury in COVID-19 by unraveling a previously
undiscovered role of LSECs. The data suggest that COVID-19-
related liver changes are likely independent from liver cell
infection and that the liver may have a role in sustaining the
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Fig. 1. Model of LSEC activation and cellular crosstalk during COVID-19 accord
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general proinflammatory response. Even though LSECs do not
express IL-6R, McConnell, Kawaguchi et al. showed that LSECs
respond to IL-6 trans-signaling and are able to cross talk with
hepatocytes to produce pro-coagulant and pro-inflammatory
molecules as part of the systemic response to the virus.

Collectively, the paper by McConnell, Kawaguchi et al. adds
another piece to the puzzle in our understanding of the patho-
genesis of liver injury in COVID-19. The novel aspects of the
McConnell study include the proposed liver-specific findings
related to the systemic inflammatory response to SARS-CoV-2,
which do not necessarily require direct hepatic parenchymal or
non-parenchymal cell infection as the initiating event. An addi-
tional strength was the in vitro studies demonstrating the
beneficial effect of JAK inhibition.

However, some limitations will require further investigation:
it remains to be determined whether the endothelial activation
described in this paper is COVID-19 specific, because no control
patients with another viral infection or sepsis were included.
Also, the data cannot infer whether LSEC activation is the only
trigger of liver injury because of a lack of detailed mechanistic
studies and experimental models. It is noteworthy that COVID-19
thrombosis and severe illness are more frequent in patients with
metabolic syndrome and non-alcoholic fatty liver disease
(NAFLD).7,8 In the cohort of patients from the study by McCon-
nell, Kawaguichi et al.,14 there was a high prevalence of steatosis,
and it is also possible that, in the context of systemic inflam-
mation, liver steatosis rather than endotheliopathy, or the com-
bination of the 2 elements, may favor liver neutrophil
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ing to McConnell, Kawaguchi et al.14 SARS-CoV-2 infection induces a systemic
IL-6R and gp130. Activated LSECs acquire a procoagulant and proinflammatory
ltimately favoring platelet aggregation and neutrophil recruitment in the liver.
L-6 via a classical signaling pathway involving the IL-6R. Hepatocytes contribute
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infiltration. Furthermore, IL-6 is only one of several cytokines
which participate in the pathogenesis of COVID-19,20 and the
role of other cytokines or liver cells (e.g. Kupffer cells) on LSEC
activation warrants further study. Finally, while it is likely that
the findings are relevant for patients with decompensated
chronic liver disease who experience high liver-related mortality
rates, additional studies are needed to understand COVID-19
physiopathology in this population as well as the relevance for
patients without, or with mild chronic, liver disease.

Since IL-6 appears to be a major trigger of LSEC activation in
the liver, it would be of interest to investigate whether IL-6
targeting compounds, especially those targeting IL-6R trans-
signaling (e.g. olamkicept), improve liver injury.

In conclusion, although the detailedmechanisms of COVID-19-
related liver injury are not yet fully elucidated, McConnell,
Kawaguchi et al. propose a novel mechanism of liver disease
pathogenesis that could be targeted to improve patient outcomes.
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