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ABSTRACT

The diverse and growing omics data in public do-
mains provide researchers with tremendous oppor-
tunity to extract hidden, yet undiscovered, knowl-
edge. However, the vast majority of archived data
remain unused. Here, we present MetaOmGraph
(MOG), a free, open-source, standalone software
for exploratory analysis of massive datasets. Re-
searchers, without coding, can interactively visual-
ize and evaluate data in the context of its metadata,
honing-in on groups of samples or genes based
on attributes such as expression values, statisti-
cal associations, metadata terms and ontology an-
notations. Interaction with data is easy via interac-
tive visualizations such as line charts, box plots,
scatter plots, histograms and volcano plots. Statisti-
cal analyses include co-expression analysis, differ-
ential expression analysis and differential correla-
tion analysis, with significance tests. Researchers
can send data subsets to R for additional anal-
yses. Multithreading and indexing enable efficient
big data analysis. A researcher can create new
MOG projects from any numerical data; or explore
an existing MOG project. MOG projects, with his-
tory of explorations, can be saved and shared.
We illustrate MOG by case studies of large cu-
rated datasets from human cancer RNA-Seq, where
we identify novel putative biomarker genes in dif-
ferent tumors, and microarray and metabolomics
data from Arabidopsis thaliana. MOG executable and
code: http://metnetweb.gdcb.iastate.edu/ and https:
//github.com/urmi-21/MetaOmGraph/.

INTRODUCTION

Petabytes of raw and processed data generated with mi-
croarray, RNA-Seq (bulk and single-cell) and mass spec-

trometry for small molecules and proteins are available
through public data repositories (1–4). These data represent
multiple species, organs, genotypes and conditions; some
are the results of groundbreaking research. Buried in these
data are biological relationships among molecules that have
not yet been explored. Integrative analysis of data from
the multiple studies representing diverse biological condi-
tions is the key to fully exploit these vast data resources
for scientific discovery (5,6). Such analysis allows efficient
reuse and recycling of these available data and metadata
(1,5,7). Higher statistical power can be attained with bigger
datasets, and the wide variety of biological conditions can
reveal the complex regulatory structure of genes. Yet, de-
spite the availability of such vast data resources, most bioin-
formatic studies use only a limited amount of the available
data.

A common goal of analyzing omics data is to infer func-
tional roles of particular features (genes, proteins, metabo-
lites or other biomolecules) by investigating co-expression
and differential expression patterns. A wide variety of R-
based (8) tools can provide specific analyses (9–12). Such
tools are based upon rigorous statistical frameworks and
produce accurate results when the model assumptions hold.
Several tools avoid the need to code by providing ‘shiny’
interfaces (13) to various subsets of R’s functionalities (14–
20). Such R tools based on the ‘shiny’ interface have the gen-
eral limitations that they are not well suited for very large
datasets and can have limited interactivity.

Increasing the usability of the vast data resources by
enabling efficient exploratory analysis would provide a
tremendous opportunity to probe the expression of tran-
scripts, genes, proteins, metabolites and other features
across a variety of different conditions. Such exploration
can generate novel hypotheses for experimentation, and
hence improving the fundamental understanding of the
function of genes, proteins and their roles in complex bi-
ological networks (6–7,21–25).

At present, there are very limited options for researchers
to interact with expression datasets using the fundamen-
tal principles of exploratory data analysis (26). Exploratory
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data analysis is a technique to gain insight into a dataset,
often using graphical methods which can reveal complex
associations, patterns or anomalies within data at different
resolutions. By adding interactivity for visualizations and
statistical analyses, researchers with little or no program-
ming experience are able to directly explore the underlying,
often complex and multidimensional, data themselves. Re-
searchers in diverse domains (e.g. experts in Parkinson’s dis-
ease, malaria or nitrogen metabolism) can mine and re-mine
the same data, extracting information and deriving testable
hypotheses pertinent to their particular areas of expertise.
These hypotheses can inform the design of new laboratory
experiments. Being able to explore and interact with data
becomes even more critical as datasets become larger. The
information content inherent in the vast stores of public
data is enormous. Due to the sheer size and complexity of
such big data, there is a pressing requirement for effective
interactive analysis and visualization tools (27,28).

In this paper, we present MetaOmGraph (MOG), a Java
software, to interactively explore and visualize large expres-
sion datasets. MOG overcomes the challenges posed by the
size and complexity of big datasets by efficient handling of
the data files. Further, by incorporating metadata, MOG
adds extra dimensions to the analyses and provides flexi-
bility in data exploration. At any stage of the analysis, a
researcher can save her/his progress. Saved MOG projects
can be shared, reused and included in publications. MOG is
user-centered software, designed for exploring diverse types
of numerical data and their metadata, but specialized for
expression data.

MATERIALS AND METHODS

Overview

MOG is an interactive software that can run on any op-
erating system capable of running Java (Linux, Mac and
Windows). MOG’s Graphical User Interface (GUI) is the
central component through which all the functionality is
accessed (Figure 1). Access to MOG is easy. MOG is a
standalone program and runs on the researcher’s computer;
thus, the researcher does not need to rely on internet ac-
cessibility for computations, and is not slowed down by the
data transfer latency. Furthermore, the data in a researcher’s
project is secure, remaining on the researcher’s computer,
particularly important for confidential data such as human
RNA-Seq.

Interactive data exploration. MOG displays all the data in
interactive tables and trees, providing a flexible and struc-
tured view of the data. The user can interactively filter or
select data for analysis. This ability is particularly impor-
tant for aggregated datasets, as users may wish to split data
into groups of studies, treatments or organs. A novel as-
pect of MOG is its capability of producing interactive visu-
alizations. The researcher can visualize data via line charts,
histograms, box plots, volcano plots, scatter plots and bar
charts, each of which is programmed to allow real-time in-
teraction with the data and the metadata. Users can group,
sort, filter, change colors and shapes, zoom and pan in-
teractively, via the GUI. At any point in the exploration,
the researcher can look-up external databases: GeneCards

(29), Ensembl (30), EnsemblPlants (31), RefSeq (32),
TAIR (33) and ATGeneSearch (http://metnetweb.gdcb.
iastate.edu/MetNet atGeneSearch.htm) for additional in-
formation about the genomic features in the dataset. Re-
searchers can also easily access SRA and GEO databases
using the accessions present in the study metadata.

Efficient, multithreaded and robust. A key advantage of
MOG is its minimal memory usage, enabling datasets to
be analyzed that are too large for other available tools. Re-
searchers with a laptop/desktop computer can easily run
MOG with data files containing thousands of samples and
fifty thousands of transcripts. MOG achieves computa-
tional efficiency via two complementary approaches. First,
MOG indexes the data file, rather than storing the whole
data in main memory. This enables MOG to work with
very large files using a minimal amount of memory. Sec-
ond, MOG speeds up the computations using multithread-
ing, optimizing the use of multi-core processors. MOG is
robust and can cope with most of the errors and exceptions
(such as missing values or forbidden characters) that can
occur when handling diverse data types. Bug reports can be
submitted with a single click, if encountered.

Data-type agnostic. Although specifically created for the
analysis of omics data, which is the focus of this paper,
MOG is designed to be flexible enough to generally han-
dle numerical data. A user can supplement a MOG project
with any type of metadata about the features, and about the
studies. Thus, a MOG user can interactively analyze and vi-
sualize voluminous data on any topic. For example, a user
could create a project on: transmission of mosquito-borne
infectious diseases world-wide; public tax return data for
world leaders over the past 40 years; daily sales at Dimo’s
Pizza over 5 years; player statistics across all Women’s Na-
tional Basketball Association (WNBA) teams; climate his-
tory and projections since 1900.

Leverage of third party Java libraries. In addition to the
functionality we have programmed into MOG, MOG bor-
rows some functionality from freely available and exten-
sively tested third-party Java libraries (JFreeChart, Apache
Commons Math, Nitrite and JDOM). We have combined
these to create a highly modular system that is amend-
able to changes and extensions and developers can eas-
ily implement new statistical analyses and visualizations
in the future. MOG is an open source project and we
plan to expand and develop it further through commu-
nity driven efforts. Information on how to contribute to
MOG, and who to contact with further questions, is pro-
vided at https://github.com/urmi-21/MetaOmGraph/blob/
master/CONTRIBUTING.md.

Interface to R. Based on the utility and popularity of R
for data analysis, we have implemented a GUI to facili-
tate execution of R scripts through MOG. MOG’s GUI
enables a user to interactively select or filter data using
MOG; these data are then passed to R. This avoids the
need to constantly write new R code to specify different
genes and samples for analyses. For example, a user can
write an R script for hierarchical clustering of genes based
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Figure 1. An overview of MOG’s modules. All functionality is accessed through MOG’s GUI. First, the researcher selects an existing MOG project or
creates a new MOG project (.mog) with input data files. Once the project is open in MOG, the workflow is non-linear. The GUI enables interactive
exploration of data through a choice of statistical analyses and data visualizations. The researcher can export visualizations and results throughout the
analysis, and can save her/his feature lists and statistical analyses in the MOG project file for future exploration. Saved MOG projects can be shared and
further analyzed by new researchers.

on the expression levels, interactively select or filter data
using MOG, and execute the R script. More details on
how to use MOG for executing R scripts are provided in
the user manual available from (https://github.com/urmi-
21/MetaOmGraph/tree/master/manual).

Creating a new MOG project or using an existing one

A user can quickly create a new MOG project using two de-
limited files: (i) a file with unique identifiers (IDs) for each
feature (e.g. gene), metadata about that feature and numeri-
cal data quantifying each feature across multiple conditions
(e.g. multiple samples and studies), and (ii) a file containing
unique identifiers for each sample and metadata about the
samples and studies in the datafile. These are virtually com-
bined by MOG, using the unique identifier in each file (Sup-
plementary Figure S1). Selecting appropriate methods for
data normalization, batch correction and vetting are impor-
tant considerations for a user when creating a new project
(Supplementary File 1).

New MOG projects, as well as those from well-vetted
datasets, including the human and Arabidopsis thaliana
datasets described herein, can be re-opened, analyzed, mod-
ified or shared. Ongoing exploration results, such as cor-
relations, lists and other interactive analyses, can be saved
in any MOG project, regardless of whether it was obtained
from our website or created from custom data.

Detecting statistical association within data

Measures of statistical association between a pair of fea-
tures in a dataset quantify the similarity in their expres-
sion patterns across the samples that comprise that dataset
(34–37). Genes with significant statistical association may
participate in common biological processes and pathways
(23,34,38). Genes with significant association only under
specific conditions may reveal their functional significance
under those conditions (39,40).

MOG provides the researcher with several statistical
measures to estimate associations/co-expression among the
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features. It can also compute association between samples,
which reflects similarity between the samples. Choosing ap-
propriate statistical measures and interpretations for each
dataset is left to the user.

Correlation, mutual information and relatedness. We have
incorporated four key methods that measure association
among pairs of features. Each has its own advantages and
disadvantages, depending on the types of relationships the
researcher wishes to detect, and the characteristics of the
dataset being explored.

MOG can compute pairwise Pearson and Spearman cor-
relation for pairs of selected features across all samples
or conversely, between selected samples across all features.
The Pearson correlation coefficient measures the extent of
a linear relationship between two random variables, X and
Y, whereas, the Spearman correlation coefficient measures
monotonic relationships between the two variables. Both
excel at detecting linear relationships, however, Spearman
is less sensitive to outliers (41). Pearson and Spearman cor-
relations are often used to find co-expressed genes and gen-
erate matrices used for inferring gene expression networks
(23,35,39).

MOG also computes pairwise mutual information (MI)
between selected features across samples. MI quantifies the
amount of information shared between two random vari-
ables. Let (X, Y) be a pair of discrete random variables over
the space X × Y . Then, the MI for X and Y is defined as:

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
,

where, p(x, y) is the joint probability mass function of X
and Y, and p(x) and p(y) are the marginal probability mass
functions for X and Y, respectively. Compared to correla-
tion measures, MI is a more general approach that can de-
tect complex, non-linear associations. The interpretation of
the MI value is different than that of correlation values: an
MI value of zero, I(X; Y) = 0, implies statistical indepen-
dence of X and Y, whereas a correlation value of zero need
not imply statistical independence (41). MI has been applied
to detect non-linear associations in gene expression datasets
(25,42–44). MOG computes MI using B-splines density es-
timation, as described in Daub et al. (42).

MOG can also determine the context likelihood of relat-
edness (CLR) (37). CLR determinations aim to identify bi-
ologically relevant associations by discounting features (e.g.
genes) that have promiscuous associations. Specifically, the
CLR compares the MI value between each pair of features
to the background distribution of MI values that include
either of these features (37).

Meta-analysis of correlation coefficients. MOG can per-
form meta-analysis of Pearson correlations. Studies using
microarray data showed that meta-analysis and analysis of
pooled normalized samples each bring out meaningful, but
different, relationships among genes (24). For meta-analysis
of correlation coefficients, MOG calculates a weighted aver-
age of the individual Pearson correlation coefficients com-
puted from each study. The weights are proportional to
the sample size, i.e. correlations estimated from larger stud-

ies are more trusted (45,46). Meta-analysis can be useful
when multiple studies run a similar experiment (e.g. effect
of heat-stress on A. thaliana), but may not control ancil-
lary sources of variation (e.g. coverage variation in RNA-
Seq data). MOG provides a choice between a fixed effects
model (FEM) or a random effects model (REM) (45,46)
for the meta-analysis. The FEM combines the estimated ef-
fects by assuming that all studies probe the same correla-
tion in the same population, i.e. studies are homogeneous.
In contrast, the REM allows studies to be heterogeneous,
with additional, uncontrolled sources of variation (45,46).
The FEM does not account for all heterogeneities, thus the
researcher should choose a model and interpret the results
with appropriate caution.

Differential expression between groups

Determining differentially expressed features from aggre-
gated datasets provides direction for further data explo-
ration. In MOG, we have incorporated several popular sta-
tistical methods to evaluate differential expression between
two groups of samples. For analysis of groups with indepen-
dent samples, we have implemented: Mann–Whitney U test
(a non-parametric test that makes no assumptions about
data distribution); Student’s t-test (assumes equal variance
and normally distributed data); Welch’s t-test (does not
assume equal variance, assumes a normal distribution of
data); and a permutation test (makes no assumptions about
data distribution; computes null distribution empirically
using the data). For analysis of groups with paired sam-
ples, we have implemented: a Paired t-test (assumes normal
distribution of data); a Wilcoxon signed-rank test (a non-
parametric test; no assumption of data distribution); and a
permutation test for paired samples (makes no assumptions
about data distribution but computes null distribution em-
pirically using the data).

MOG’s methods to identify differentially expressed genes
are general statistical methods which are designed for large
sample sizes (30 or more samples for gene expression data).
Computation of these methods via MOG permits interac-
tivity, which promotes data exploration. A limitation of the
interactive differential expression analysis methods imple-
mented in MOG is that they are designed for large sample
sizes and use normalized data as input. For smaller sam-
ple sizes, a user can apply specialized model-based methods,
accessible through R, to infer differentially expressed genes
in RNA-Seq or microarray datasets. For example, methods
like edgeR (12), DESeq2 (11) and limma (10) require raw
counts as input and can provide more reliable differential
expression analysis (47) for smaller sample sizes. Tools like
ideal (20) and DEBrowser (19) provide interactive interface
for accessing these popular differential expression analysis
methods (10–12).

Differential correlation between groups

Features whose correlation with other features is signifi-
cantly different only under particular environmental, ge-
netic or developmental conditions are designated as dif-
ferentially correlated. Such shifting biological interactions
among these genes or their regulators (40,48) reflect the
context-dependency of gene expression.
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MOG can find the features whose Pearson correlation
to a user-selected feature differs significantly between two
groups of samples. To do this, MOG applies a Fisher trans-
formation (49) and performs a hypothesis test for equal-
ity of Pearson correlation coefficients from the two groups.
(The difference of the two Fisher transformed Pearson cor-
relation coefficients follows a normal distribution (40)). The
researcher can choose to conduct a test for statistical signif-
icance on the Fisher transformed Pearson correlation coef-
ficients or on the raw Pearson correlation coefficients.

Statistical significance determinations

For each statistical test, MOG provides a non-parametric
option (a permutation test) and parametric options (cal-
culations under distributional assumptions) to estimate P-
values.

Empirical P-values are calculated by a permutation test
that estimates the null distribution of a test statistic by ran-
domly permuting the labels of the observed data points (as-
suming that the labels are exchangeable under the null hy-
pothesis) (50). Because permutation tests do not rely on
any data distribution, they are applicable even if paramet-
ric assumptions are not met. More permutations yield more
precise estimates of the null distribution and P-values, but
at the cost of longer computation times. MOG accelerates
computation of permutation tests by multithreading, and
processing the permuted datasets in parallel (Supplemen-
tary File 1).

MOG provides three popular parametric methods to ad-
just the P-values for multiple comparisons: the Bonferroni
method (51), the Holm method (52) and the Benjamini–
Hochberg (BH) method (53). Bonferroni and Holm meth-
ods are applied to control the family-wise error rate
(FWER), whereas the BH method controls the false dis-
covery rate (FDR). Controlling the FWER limits the total
number of false positives; the Holm method is less conser-
vative as compared to the Bonferroni method. In contrast,
controlling the FDR controls the proportion of false posi-
tives among the significant tests.

Datasets

To create case-studies with MOG, we assembled MOG
projects based on three technical platforms.

Human cancer RNA-Seq dataset (7142 samples). We cre-
ated a new MOG project based on the well-vetted dataset
from Wang et al., (21). This dataset combines RNA-Seq
data from The Cancer Genome Atlas (TCGA, tumor and
non-tumor samples) (https://cancergenome.nih.gov/) and
Genotype Tissue Expression (GTEX, non-tumor samples)
(54).

To create the MOG project, we excluded from the dataset
any organ types in which the number of tumor or non-
tumor samples was <30. To ensure statistical independence
among the samples, we removed all non-tumor samples
from TCGA and included only one TCGA tumor-sample
per patient (Supplementary File 2). We also excluded an
outlier sample with very low expression values, based on
a preliminary exploration of sample replicates using MOG
(See ‘Results’ section).

We then compiled metadata for the studies/samples and
for the genes and integrated this metadata into the dataset.
We downloaded the study and sample metadata (TCGA
metadata from TCGAbiolinks (55); GTEX metadata from
GTEX’s website (https://gtexportal.org/home)). We were
unable to locate metadata for 17 of the TCGA samples and
excluded these samples from the dataset (Supplementary
File 2). We extracted metadata about the genes from the
HGNC (https://www.genenames.org/), NCBI Gene (https:
//www.ncbi.nlm.nih.gov/gene), Ensembl (30), Cancer Gene
Census (56) and OMIM (57) databases and added these in-
formation to the gene metadata in our dataset. We also elim-
inated the 1870 genes that were not reported for all studies
resulting in a dataset, called herein, ‘Hu-cancer-RNASeq-
dataset’.

We generated the MOG project (Hu-Cancer-18212-7412-
RNASeq.mog) from the Hu-cancer-RNASeq-dataset and its
metadata. The MOG project contains expression values for
18 212 genes, 30 fields of metadata detailing each gene,
across 7142 samples representing 14 different cancer types
and associated non-tumor tissues (Table 1); it also has 23
fields of metadata describing each study and sample in the
dataset. We used MOG to log2 transform the data for sub-
sequent analyses.

A. thaliana microarray dataset (424 samples). We created
a new MOG project, AT-Affy-22746-424-microarray.mog,
based on the A. thaliana curated microarray dataset (‘AT-
microarray-dataset’) from Mentzen and Wurtele (23). This
dataset had been compiled using 963 Affymetrix ATH1
chips with 22 746 probes from 70 diverse studies encom-
passing different conditions of development, stress, geno-
type and environment. All chips in the dataset were indi-
vidually normalized and scaled to a common mean using
MAS 5.0 algorithm. Only chips with good quality biolog-
ical replicates were kept and all the biological replicates
were averaged to yield 424 samples. At last, median ab-
solute deviation (MAD)-based normalization (58) was ap-
plied to the data. We compiled new metadata for the genes
from TAIR gene annotations (33) and added phylostratal
inferences (59). The sample metadata were obtained from
Mentzen and Wurtele (23).

A. thaliana metabolomics GC-MS dataset (656 samples).
The small molecule composition (metabolomics) data that
we used to create a MOG project were from 656 GC-MS
samples describing the effect of 50 knock out (or knock
down) mutations of genes of mostly unknown functions
on the accumulation of metabolites in A. thaliana (60)
(called herein, ‘AT-metab-dataset’). We downloaded these
data from the Plant/Eukaryotic and Microbial Resource
(PMR) (61). We created the MOG project AT-Mutation-
242-656-metab.mog with this dataset.

RESULTS

We illustrate MOG’s usability and flexibility by exploring
three diverse datasets from different perspectives. The sta-
tistical analyses and visualizations shown were generated
exclusively using MOG. Often, our exploration led us to
conclusions consistent with prior experimental or in silico

https://cancergenome.nih.gov/
https://gtexportal.org/home
https://www.genenames.org/
https://www.ncbi.nlm.nih.gov/gene


e23 Nucleic Acids Research, 2020, Vol. 48, No. 4 PAGE 6 OF 19

Table 1. Tumor and non-tumor samples in the Hu-cancer-RNASeq-dataset and the number of upregulated and downregulated genes in each tumor type
with respect to the corresponding normal samples, as calculated by MOG

TCGA disease GTEX #TCGA #GTEX Total #Up #Down
organ samples samples

Breast invasive carcinoma (BRCA) Breast 965 89 1054 1093 2827
Colon adenocarcinoma (COAD) Colon 277 339 616 1401 3036
Esophageal carcinoma (ESCA) Esophagus 182 659 841 1989 2229
Kidney Chromophobe (KICH) Kidney 60 32 92 986 4214
Kidney renal clear cell carcinoma (KIRC) Kidney 470 32 502 1877 2263
Kidney renal papillary cell carcinoma (KIRP) Kidney 236 32 268 1152 2737
Liver hepatocellular carcinoma (LIHC) Liver 295 115 410 1527 1485
Lung adenocarcinoma (LUAD) Lung 491 313 804 1361 2753
Lung squamous cell carcinoma (LUSC) Lung 486 313 799 2210 3734
Prostate adenocarcinoma (PRAD) Prostate 426 106 532 577 1633
Stomach adenocarcinoma (STAD) Stomach 380 192 572 1527 1631
Thyroid carcinoma (THCA) Thyroid 441 318 759 993 1525
Uterine Corpus Endometrial Carcinoma (UCEC) Uterus 141 82 223 2135 3250
Uterine Carcinosarcoma (UCS) Uterus 47 82 129 2419 2491

results. In other cases, the exploration led us to completely
novel predictions that could be tested experimentally.

Preliminary exploration of the Hu-cancer-RNASeq-dataset

Determining that a dataset is valid, properly normalized
and free of batch effects is a critical preliminary step in
the analysis. To verify that samples from similar biologi-
cal conditions exhibit similar expression patterns for all the
genes, we used MOG to compute pairwise Pearson corre-
lations among samples from the same biological condition
(tumor/non-tumor and organ type). All the samples had
high Pearson correlations (>0.70) with others taken from
the same organ and tumor status, except one sample from
lung adenocarcinoma (LUAD), which we removed from the
dataset (Additional File 1).

We visualized the distribution of Pearson correlation val-
ues for non-tumor samples. For homogeneous samples,
such distributions should appear unimodal. However, sev-
eral organs show multimodal distributions (Supplementary
Figure S2). This finding led us to conjecture that sam-
ples might have been taken from different anatomical sites
within these organs. By exploring further with MOG, we
were able to identify additional metadata on sub-locations
in the colon and esophagus that support this conjecture
(Supplementary Figure S2). However, the stomach sample
metadata does not further specify location (or any other ob-
vious factor, such as gender, race or age) that might distin-
guish subgroups of samples. Because the stomach samples
are of several distinct types, a researcher might want to con-
sider analyzing them as such.

Using MOG to identify a catalog of differentially expressed
genes in cancers

We wanted to identify key genes that are regulated by, or
implicated in, the molecular and cellular processes driving
cancer, and to further explore the processes in which these
genes are involved. For this task, we used MOG first to iden-
tify the differentially expressed genes in samples from each
tumor type versus corresponding non-tumor samples, and
then to examine the expression patterns of these genes. We
define a gene as differentially expressed between two groups
if it meets each of the following criteria:

Table 2. MOG identifies 35 genes as differentially expressed in all of the
14 tumor types

Upregulated in each cancer Downregulated in each cancer

BIRC5, BUB1, CDC45 ADH1B, C7, CHRDL1
CDKN2A, CENPF, DLGAP5 CMTM5, DCN, DES
FAM111B, KIF4A, KIF20A DPT, GPM6A, GSTM5
MELK, MKI67, PBK HPD, HSPB6, MRGPRF
PKMYT1, TOP2A, TPX2 NKAPL, PEG3, PI16
UBE2C PTGDS, SCN7A, TCEAL2

TGFBR3

(Mann–Whitney U test, |FC| ≥ 2, BH corrected P-value <10−3).

(i) Estimated fold change in expression of 2-fold or more
(log fold change, |logFC| ≥ 1 where logFC is calculated
as in limma (10).)

(ii) Mann–Whitney U test, on the log2 transformed data,
is significant between the two groups (BH corrected P-
value <10−3)

In each type of cancer in the Hu-cancer-RNASeq-dataset,
between 2000–5000 of the 18 212 genes are differentially ex-
pressed (Table 1 and Supplementary File 3). Thirty-five of
these genes are consistently differentially expressed in all of
the cancers (Table 2).

Several genes that are deeply implicated in cancer are not
differentially expressed in any of the tumor types we ana-
lyzed. One example is tumor suppressor protein 53 (TP53)
(Figure 2 A and B). (TP53 is differentially expressed in col-
orectal tumors (62); colorectal tumors are not included in
the Hu-cancer-RNAseq-dataset).

Fifteen of the 16 genes upregulated across all tumor types
are co-expressed across the tumor samples, across the non-
tumor samples and across the combined tumor plus non-
tumor samples (Figure 2 C and Supplementary File 4). Cy-
clin dependent kinase inhibitor (CDKN2A) is an outlier
(Spearman correlation < 0.50) (Figure 2 D and Supplemen-
tary File 4). This co-expression might imply that these 15
genes function together as a module in both tumor and non-
tumor cells.

In contrast, there is no co-expression cluster among the
19 genes that are downregulated across all cancer types; 62
individual gene pairs are correlated across all the samples
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Figure 2. MOG visualizations of expression of selected genes across all tumor types and non-tumor samples. Tumor samples, black dots; non-tumor sam-
ples, red dots. Correlations and differential expression analyses were performed using MOG (Mann–Whitney U test, |FC| ≥ 2, BH corrected P-value <10-3).
Plots were generated in MOG by interactively splitting the gene expression data into the categories ‘tumor’ and ‘non-tumor’ using the sample metadata. (A)
Histogram showing the distribution of Tumor Protein P53 (TP53) expression (number of bins set to 50). (B) Box plot summarizing the expression of TP53
over all tumor versus all non-tumor samples. The horizontal line inside the box represents the median log expression, which is 9.1 for non-tumor samples
and 9.6 for tumor samples. (C) Scatter plot visualizing co-expression of mitotic checkpoint serine/threonine kinase (BUB1) and kinesin family member 4A
(KIF4A) (both are upregulated across all tumor types). (Spearman correlation=0.92 in non-tumor samples; Spearman correlation=0.84 in tumor samples;
Spearman correlation=0.94 over both tumor and non-tumor samples). (D) Scatter plot visualizing co-expression of genes cyclin dependent kinase inhibitor
2A (CDKN2A) and KIF4A. Both are upregulated across all tumor types, but they are are not co-expressed. (E) Scatter plots visualizing transforming
growth factor beta receptor3 (TGFBR3), which has a complex role as regulator of angiogenesis (117), decorin (DCN), autophagy, mitophagy and embry-
onic cell development including endovascular differentiation (118). TGFBR3 and DCN are downregulated across all tumor types and are co-expressed in
non-tumor samples (Spearman correlation=0.64) but not in tumor cells (Spearman correlation=0.14). The co-expression of TGFBR3 and DCN in only
the non-tumor samples suggests that the processes in which each gene participates are associated under normal conditions; the loss of this association in
tumors is consistent with a hypothesis that an imbalance, or factors that cause that imbalance, may further contribute to the etiology of cancer. (F) Scatter
plot visualizing co-expression of genes dermatopontin (DPT) and DCN Spearman correlations are 0.82 (tumor samples), 0.69 (non-tumor samples) and
0.84 (combined samples) (Both gene are downregulated across all tumor types.)
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(Spearman correlation ≥ 0.60) (Supplementary File 4). Ex-
pression of seven of these gene pairs is strongly correlated
only among tumor samples but is not correlated among
non-tumor samples; conversely, 18 gene pairs are strongly
correlated among non-tumor samples but not among the
tumor samples (e.g. Figure 2E)––this finding indicates a
context-dependent coordination of these gene pairs. Four
gene pairs are strongly correlated among both tumor and
in non-tumor samples (e.g Figure 2F).

Functional analysis of differentially expressed genes. To de-
termine whether the genes that are differentially expressed
in cancers are involved in known biological processes, we
performed gene ontology (GO) enrichment analysis using
GO::TermFinder (63) and Revigo (64) on the genes that are
upregulated, downregulated or not significantly changed
across all the cancer types. Consistent with the behavior of
cancer cells, upregulated genes are significantly enriched in
GO terms related to cell proliferation: cell cycle, cell divi-
sion, organelle organization, regulation of cellular compo-
nent organization and regulation of cell cycle (Supplemen-
tary File 4 and Figure S3). The 5784 genes that did not
change expression were enriched in GO terms RNA pro-
cessing, mRNA metabolic process, nucleic acid metabolic
process and gene expression (Supplementary Figure S4 and
File 4). The downregulated genes show no significant GO
term enrichment.

Using MOG for gene-level exploration

With the aim to use MOG from the vantage point of an in-
dividual gene, we selected the glypican 3 (GPC3) gene as
an interesting candidate for a case study. GPC3, encoding
a glycosylphosphatidylinositol-linked heparan sulfate pro-
teoglycan, is located on the X chromosome and has been
implicated as a critical regulator of tissue growth and mor-
phogenesis (65). GPC3 inhibits cell proliferation and hedge-
hog signaling during embryonic development (66). In tu-
mors, GPC3’s role is complex and not well understood. It
can promote or inhibit cell growth depending on the can-
cer type (67,68). Mutations in GPC3 have been linked to
Wilms tumor as well as Simpson-Golabi-Behmel syndrome
(SGBS) (69,70).

GPC3 Expression patterns. We explored expression pat-
terns of GPC3 with regards to the 14 tumor types. Dif-
ferential expression of GPC3 in non-tumor versus tumor
samples varies by organ. GPC3 expression is 30-fold higher
in the LIHC samples than in the non-tumor liver samples,
and 8-fold higher in the UCS samples compared to the
non-tumor uterus samples (Supplementary File 5). In con-
trast, GPC3 is downregulated in nine tumor types (BRCA,
COAD, ESCA, KIRC, KIRP, LUAD, LUSC, THCA and
UCEC) and unchanged in three tumor types (KICH, STAD
and PRAD) (Figure 3A and B; Supplementary File 5).

These results are consistent with targeted studies of liver,
breast and lung tumors. GPC3 expression is upregulated in
liver cancer (67,71–72), and has been suggested as a diag-
nostic biomarker and as a potential target for cancer im-
munotherapy in hepatocellular carcinoma (71–73). GPC3

is downregulated in breast (74), lung (75) and ovarian can-
cers (76), and it may act as a tumor suppressor in lung and
renal cancer (76,77).

GPC3 Co-expression patterns. We then investigated co-
expression patterns of GPC3 in the tumor and non-tumor
tissues from different organs (Additional File 3). GPC3 co-
expression patterns differ between tumor and non-tumor
samples according to the organ sampled (Figure 3C), more-
over, the genes whose expression is correlated with GPC3
are distinct according to organ types, all reflecting the com-
plex role of this gene (Supplementary File 5). For exam-
ple, 4219 genes are co-expressed with GPC3 in non-tumor
esophagus samples, whereas no gene is co-expressed with
GPC3 in non-tumor samples from prostate and stomach
(Supplementary File 5). Co-expressed genes also differed
according to whether disease was present. For seven organs,
fewer genes were co-expressed with GPC3 in tumor sam-
ples than in non-tumor samples (Supplementary File 5). For
example, 192 genes were co-expressed with GPC3 in non-
tumor liver samples, whereas no genes were significantly co-
expressed with GPC3 in LIHC tumor samples (Figure 3D
and E).

We analyzed GO term enrichment for those organs with
more than 10 GPC3-co-expressed genes: colon, esopha-
gus, kidney and liver. The term cell adhesion is enriched
in GPC3-co-expressed genes from colon, esophagus, kidney
and liver. The terms cell development, extracellular matrix
organization and multicellular organism development are
enriched among GPC3-co-expressed genes in colon, esoph-
agus and kidney. Other GO terms are over-represented in a
organ-specific manner (Supplementary File 5).

GPC3-associated clusters in tumor versus non-tumor sam-
ples from liver. To further explore potential interactions
of GPC3 with other genes, we used MOG to build two
gene co-expression networks from the 3012 genes that are
differentially expressed in LIHC––one network from non-
tumor liver samples, and a second from LIHC samples (Ad-
ditional File 3). Then, we imported each network into Cy-
toscape (78) and identified the tightly connected modules
using MCODE (79).

In the network built from non-tumor liver samples,
MCODE ranked the GPC3-containing cluster second most
significant (73 nodes (genes); MCODE score 30.7). GPC3
was directly connected with 21 genes in this cluster (Sup-
plementary Figure S5), which is most enriched in GO terms:
sulfur compound catabolic process, aminoglycan catabolic
process and extracellular matrix organization (Supplemen-
tary Figure S6 and File 5).

In contrast, in the LIHC samples, GPC3 was not signifi-
cantly co-expressed with any other genes, and thus was ab-
sent from the entire LIHC network. However, the LIHC
network does contain a module with 114 genes (MCODE
score 94.3), 33 of which are in the GPC3-containing cluster
identified from the non-tumor network (17 of these genes
are directly connected with GPC3 in the non-tumor net-
work) (Supplementary Figure S5). This cluster is enriched
in GO terms: extracellular matrix organization, blood vessel
development and vasculature development (Supplementary
File 5 and Figure S7).
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Figure 3. MOG visualizations of glypican 3 (GPC3) expression pattern in tumor and non-tumor organs. (A) Line chart generated by interactively filtering
by study metadata to retain 3184 samples from 5 tumor types and corresponding non-tumor organs, and grouping the chart by organ/tumor type. (B) Box
plot summary of data in (A). Generated by interactively splitting box plot according to organ/tumor type. (C) Scatter plot showing co-expression of GPC3
and Lumican (LUM) in liver non-tumor and LIHC samples. In non-tumor liver (red), GPC3 and LUM expression are strongly correlated (Spearman
correlation ≤ 0.7). In LIHC samples (black), GPC3 and LUM expression show no association (Spearman correlation = −0.1). (D and E) Histograms of
distribution of Spearman correlation coefficients of expression of GPC3 with all other genes. Non-tumor liver samples (D), LIHC samples (E). The longer
right tail of non-tumor liver samples indicates Spearman correlation coefficients of GPC3 expression with selected genes are higher in non-tumor than
LIHC samples.

Stage-wise analysis of Hu-cancer-RNASeq-dataset

Identifying new candidate biomarkers for cancers. To iden-
tify potential biomarkers for tumors, we used MOG to dis-
tinguish genes whose expression is associated with the dis-
ease progression. We used MOG to separate samples by or-
gan, and then by early stage (stage I or stage II) and late
stage (stage III and later), based on the study metadata. At
last, we performed a Mann–Whitney U test on those genes
that are upregulated in tumor versus non-tumor samples
(Supplementary File 3) to reveal the genes that are upreg-
ulated in late stage compared to early stage (expression in-
crease 2-fold or more, and BH corrected P-value < 0.05).
These genes have increasing expression with cancer progres-
sion. We similarly identified the genes that have a decreasing
pattern of expression with cancer progression.

ESCA, KIRP, KIRC THCA all included metadata and
had sufficient numbers per stage to detect differentally ex-

pressed genes. (Full results in Additional file 4.) MOG re-
veals 221 genes that increase expression during tumor pro-
gression (gene numbers for each tumor type are: ESCA:91,
KIRP:89, THCA:25, KIRC:24), and 227 genes that de-
crease expression (gene numbers for each tumor type:
ESCA:89, KIRP:68, LIHC:64, KIRC:13) (Supplementary
File 6 and Additional File 4). Of these 448 genes, 122
are flagged as prognostic markers by The Human Pro-
tein Atlas (THPA), which identifies prognostic markers
by survival analysis (80). For example, Figure 4B and C
shows the expression pattern of two such genes, Phos-
phoenolpyruvate Carboxykinase 1 (PCK1, known to be
downregulated in KIRC (81) and general marker of re-
nal failure (82)) and Chromosome 10 Open Reading
Frame 99 (C10orf99, a known colon cancer inhibitor
(83), and positive marker of KIRC (84)), in KIRC and
KIRP.
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Figure 4. MOG visualization of expression of selected genes during pro-
gression of three types of renal cancer. (A) Box plots summarizing CD70
expression in non-tumor kidney and in different stages of KICH, KIRC
and KIRP cancer progression. CD70 is designated as prognostic unfavor-
able for renal cancer by THPA (80). However, although CD70 levels in
tumor samples increase 93-fold in KIRC and 14-fold in KIRP, CD70 lev-
els decrease in KICH by 3-fold (logFC = −1.56; B-H corrected P-value
= 0.004). (B and C) Line charts showing average expression of PCK1 (blue)
and C10orf99 (green) over different stages of KIRC (B) and KIRP (C). The
vertical lines are error bars. THPA designates PCK1 as prognostic favor-
able and C10orf99 as prognostic unfavorable for renal cancer.

Three hundred and twenty-seven genes that were identi-
fied in our study as differentially expressed in at least one
tumor type were not labeled as prognostic in THPA (Sup-
plementary File 6). For example, out of the 111 genes that
increase during progression of KIRC or KIRP, only 56
were flagged as unfavorable prognostic for renal cancer by
THPA. Of the 79 genes MOG identifies as decreasing with
cancer progression in KIRC or KIRP, 39 were labeled as
prognostic favorable for renal cancer by THPA. Twenty-
seven genes out of the 64 that we identified by MOG as
decreasing with cancer progression in LIHC were labeled
by THPA as prognostic favorable for liver cancer. Out of
25 genes identified as having increasing pattern in THCA,
none were labeled as prognostic by THPA. We propose that
these genes may provide new candidates as biomarkers for
prognosis of these tumor types (Supplementary File 6).

A number of the 327 genes identified as differentially ex-
pressed in MOG but not listed in THPA have been exper-
imentally evaluated for their potential as prognostic mark-

ers (Table 3). For example, ARG1, CYP2C8, CYP3A4,
CYP3A7 and CYP4A11, which we identified using MOG
as decreasing expression with LIHC progression, have each
been recently studied as prognostic markers for hepatocel-
lular carcinoma (85–88). MOG analysis provides additional
support for use of these genes as biomarkers.

Using MOG to analyze and visualize the results by tu-
mor type can reveal more nuanced information. For exam-
ple, the Cluster of Differentiation 70 (CD70) gene is flagged
by THPA and high CD70 expression is prognostic unfa-
vorable for renal cancer. MOG analysis shows CD70 ex-
pression is higher in two types of renal tumors, KIRC and
KIRP, and increases with disease progression (Figure 4A),
but CD70 levels in another renal tumor type, KICH, have
slightly lower expression than in non-tumor samples; thus,
specifically in the case of KICH, low CD70 levels might be
an unfavorable prognosis.

For prognosis and personalized medicine (89,90) excep-
tions can be extremely important, because specific tumor
sub-types might respond differently to a particular treat-
ment. By using MOG to explore RNA-Seq from large num-
bers of conditions and organs, a researcher can visualize
data for individual samples or groups of that show changed
expression of a prognostic marker or sets of markers, and
compare these to those that do not.

Such exploration could suggest statistical analyses to try
out in other, independent datasets to determine whether
subsets of non-canonical samples might have a biologically
distinct signature, revealing a different modality for a par-
ticular cancer. This in turn could be followed up by targeted
experimental approaches or clinical studies.

Exploring genes of unknown functions in AT-microarray-
dataset

Our aim in the case study of AT-microarray-dataset was to
explore patterns of expression of genes with little or nothing
known about them. The well-vetted dataset we used (23),
encompasses expression values for 22 746 genes across 424
A. thaliana samples, representing 71 diverse studies and a
wide variety of environmental, genetic and developmental
conditions (23). We updated the gene metadata to the cur-
rent TAIR annotations (33) and added phylostrata designa-
tions (obtained from phylostratr (59)).

We sought to identify genes of unknown or partially
known function that might be involved in photosynthesis,
the process that gave rise to the earth’s oxygenated atmo-
sphere and the associated evolution of extant complex eu-
karyotic species. We focused particularly on regulation of
the assembly and disassembly of the photosystem I and
II light harvesting complexes; these dynamic processes re-
spond sensitively to shifts in light and other environmen-
tal factors (91–94). In particular, Met1 (AT1G55480) is a
36 Kda protein that regulates the assembly of the photo-
system II (PSII) complex (94). To explore genes that might
be involved in PSII assembly, we calculated Spearman cor-
relation of Met1 expression with that of the 22 746 genes
represented on the Affymetrix chip (Figure 5). This analy-
sis finds 104 genes whose expression is highly correlated to
Met1 (Spearman’s coefficient > 0.9) across all conditions
(Supplementary File 7).
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Table 3. Genes identified by MOG as showing changing expression with cancer progression (B-H corrected P-value < 0.05) that had been identified in
experimental studies as potential prognostic biomarkers but were not marked as prognostic for the given cancer type in The Human Protein Atlas (THPA)
(80)

Disease Gene Gene name Pattern Ref.

LIHC ARG1 arginase 1 Decreasing (85)
LIHC CYP2C8 cytochrome P450 Decreasing (86)

family 2 subfamily
C member 8

LIHC CYP3A4 cytochrome P450 Decreasing (87)
family 3 subfamily
A member 4

LIHC CYP3A7 cytochrome P450 Decreasing (87)
family 3 subfamily
A member 7

LIHC CYP4A11 cytochrome P450 Decreasing (88)
family 4 subfamily
A member 11

THCA CHI3L1 chitinase 3 like 1 Increasing (119)
THCA SFTPB surfactant protein B Increasing (120)
THCA CD207 CD207 molecule Increasing (121)
THCA MUC21 mucin 21, cell Increasing (121)

surface associated
THCA MMP7 matrix Increasing (122,123)

metallopeptidase 7
THCA IGFL2 IGF like family Increasing (121)

member 2
THCA KLK7 kallikrein related Increasing (124,125)

peptidase 7
THCA FN1 fibronectin 1 Increasing (126)

We examined whether genes of photosynthesis were over-
represented in this Met1-co-expressed cohort. Among the
Met1 co-expressed genes, the Gene Ontology (GO) Bio-
logical Functional terms most highly over-represented (P-
value < 10−5) are integral to the light reactions of photo-
synthesis: generation of precursor metabolites and energy;
photosynthetic electron transport in photosystem I (PSI);
reductive pentose-phosphate cycle; response to cytokinin;
and PS2 assembly (Supplementary File 7). For example, the
gene most highly correlated with Met1 is At2g04039, a gene
encoding the NdhV protein, which is thought to stabilize
the nicotinamide dehydrogenase (NDH) complex of PS1
(95); phylostratal analysis (59) indicates that NdhV has ho-
mologs across the photosynthetic organisms, streptophyta
(land plants and most green algae). Eighteen of the Met1
co-expressed genes are designated as ‘unknown function’ or
‘uncharacterized’; six are restricted to Viridiplantae. These
genes would be good candidates to evaluate experimentally
for a possible function in photosynthetic light reaction.

Our next aim was to use MOG to directly explore an or-
phan gene (a gene encoding a protein unrecognizable by
homology to those of other species) (59,96–97), and to de-
termine potential processes that it might be involved in.
First, we filtered each gene’s target description to retain
‘unknown’. From these, we filtered to retain only the phy-
lostratigraphic designation ‘A. thaliana’. From this gene list,
we identified genes that had an expression value greater
than 100 in at least five samples. We selected the orphan
gene of unknown function, At2G04675, for exploratory
analysis. At2G04675 encodes a predicted protein of 67 aa
with no known sequence domains (domains searched using
CDD (98)). A Pearson correlation analysis of the expression
pattern of At2G04675 with the other genes represented on

the Affymetrix chip showed 48 genes had a Pearson correla-
tion of higher than 0.95 (Supplementary File 7); these genes
are expressed almost exclusively in pollen (the male game-
tophyes of flowering plants) (Figure 6). The exploration im-
plicates At2G04675 as a candidate for involvement in some
aspect of pollen biology.

Using MOG to further explore genes that are associ-
ated with pollen, we identified sets of leaf and pollen sam-
ples (Supplementary Figure S8 and Additional File 5), and
then calculated genes that are differentially expressed in
the leaf samples versus the pollen samples using a Mann–
Whitney U test (fold change of 2-fold or more; BH cor-
rected P-value < 10−3) (Additional File 5). The GO terms
most highly enriched (P-value < 10−20) among genes up-
regulated in pollen are processes of cell cycle, mitosis, or-
ganellar fission, chromosome organization and DNA re-
pair (Additional File 5). This reflects and emphasizes the
critical role of these processes in male gametophyte devel-
opment, particularly sperm biogenesis. Each angiosperm
pollen grain must produce two viable sperm each used in
the double fertilization of the ovule. Above all else, proper
mitogenesis is essential to the function of a pollen grain.
We visualized the leaf versus pollen differential analysis by
volcano plot (Figure 7 and Supplementary Figure S9), this
time to explore genes upregulated in leaf. Among these is
At1G67860, an Arabidopsis specific gene encoding a pro-
tein of ‘unknown function’. We used MOG to correlate ex-
pression of this gene versus all genes across all samples.
One hundred sixteen genes, dispersed across all five chromo-
somes, are co-expressed with At1G67860 (Spearman cor-
relation ≥ 0.65) (Supplementary File 7). The genes are ex-
pressed almost exclusively in mature leaf (Supplementary
Figure S10). Most have no known function; a GO enrich-
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Figure 5. Spearman correlation followed by line-plot visualization, using MOG, shows that Met1 (At1G55480) is highly expressed in photosynthetic organs
and highly correlated with several genes of unknown function. The ‘peaks’ of expression are all leaf samples; the ‘troughs’ of expression are predominantly
root and cell culture samples. AT-microarray-dataset representing 71 diverse studies and a wide variety of environmental, genetic and developmental
conditions (23). Several genes of unknown function are closely co-expressed in this cluster.

ment test indicates that GO biological processes overrepre-
sented (P-value < 10−3) among the genes are: defense re-
sponse, response to stress, response to external biotic stim-
ulus and response to other organism (Supplementary File
7).

Identifying co-expressed metabolites in AT-metab-dataset

Metabolomics is providing a growing resource for under-
standing metabolic pathways and identifying the structural
and regulatory genes that shape these pathways and their
interconnected lattice (61,99–100). Here, we use the AT-
metab-dataset metabolomics dataset that represents a com-
prehensive study of 50 mutants with a normal morpholog-
ical phenotype but altered metabolite levels, and 19 wild-
type control lines (60). There are 8–16 biological replicates
for each genetic line; data is corrected for batch effects. Data
and metadata were retrieved from PMR (61). The aim of
this case study was to tease out co-expressed metabolites
that are affected by genetic perturbations. We identified a
group of four highly co-expressed metabolites (Pearson cor-
relation > 0.8): the amino acid arginine, its precursor L-
ornithine, cyclic ornithine (3-amino-piperidine-2-one), and
one unidentified metabolite. Plots across the means of the
biological replicates of each sample (Supplementary Figure
S11), shows accumulation of these metabolites is upregu-
lated over 4-fold in four mutant lines: mur9, mutants have
altered cell wall constituents; vtc1, encodes GDP-mannose
pyrophosphorylase, required for synthesis of manose, ma-
jor constituent of cell walls, upregulated upon bacterial in-
fection; cim13, gene of unknown function associated with
disease resistance, eto1, negative regulator of biosynthe-

sis of the plant hormone ethylene. An arginine-derived
metabolite, nitrous oxide, has been widely implicated in sig-
naling pathways in plants (101). MOG analysis might sug-
gest to a researcher a potential relationship between argi-
nine and the cell wall defense response, providing a sugges-
tion for future experimentation.

Comparison to other software

Few tools that do not require coding are available for on-
the-fly exploration of expression data. Most are ‘shiny’ (13)
apps (15–18,102) providing a web interface to a limited
number of R packages for data visualization, batch correc-
tion, differential expression analysis, PCA analysis (among
samples) and gene enrichment analysis. Although shiny (13)
is constantly improving, existing tools written in R (15–17)
must rely on R’s present capabilities for interactive applica-
tions (103). In contrast to R, Java, MOG’s platform, has
been used to develop numerous software with interfaces
that are interactive and user-friendly (e.g. (78,104–106)),
and MOG provides the researcher with specialized GUIs
and methods for exploratory data analysis. MOG’s GUI al-
lows direct interactivity with the data through interactive
tables, trees and visualizations, so that a researcher can eas-
ily explore data from different perspectives.

Most available R-based tools read all data directly into
the main memory. Thus, on a laptop/desktop computer,
analysis of a big dataset is slow (or crashes) if the available
memory is not sufficiently large. For example, a dataset of
100 000 human transcripts over 5000 samples (500 000 000
expression values) requires at least 4GB (8 byte for each
value) of free memory to be loaded into memory at once.
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Figure 6. MOG line chart visualization shows the expression of orphan gene At2G04675 over the AT-microarray-dataset representing 71 diverse studies and
a wide variety of environmental, genetic and developmental conditions (23). X-axis are samples, and Y-axis indicates their expression value. The orphan
gene At2G04675 is of no known function, and genes highly correlated with At2G04675 are expressed almost exclusively in pollen/male gametophyte
samples. Each line represents a gene. (Lines in this visualization are for clarity and the connections from sample to sample do not imply a relationship).

To circumvent this problem, R developers can use the new
DelayedArray (107) framework together with DelayedMa-
trixStats (108) which can enable efficient handling of big
datasets with R. For example, iSEE’s (18) code is compati-
ble with using DelayedArray (107) objects.

In contrast, MOG uses an indexing strategy to read data
only when it is needed, which drastically reduces the total
memory consumption of the system. Table 4 compares five
of the most recent tools for exploratory analysis of expres-
sion data to MOG. (More details are provided in Supple-
mentary File 8.)

Benchmarking. We benchmarked MOG’s performance
with the Hu-cancer-RNASeq-dataset (18 212 genes over
7142 samples) using a laptop with 64 bit Windows 10,
8 GB RAM and Intel(R) Core(TM) i5-7300HQ CPU;
the system’s resource utilization was monitored by Win-
dows Performance Monitor tool (WPMT) (109). During
benchmarking, only the software being tested was running.
MOG’s efficiency was compared to that of one of the R-
based ‘shiny’ web-app (13) (choosing PIVOT, because it per-
mits loading normalized data).

PIVOT repeatedly crashed and failed to load the full Hu-
cancer-RNASeq-dataset (Additional File 6), but was able
to load a subset of data consisting only of 410 tumor and
non-tumor liver samples. We measured the execution time
(time taken to compute and display output) of the Mann–
Whitney U test for differentially expressed genes in tumor
versus non-tumor samples. The test completed in 21 min
with PIVOT, but only seven seconds with MOG (Figure 8).
We kept MOG running idle until total runtime reached 30
min and compared memory and processor usage (Supple-

mentary File 8); average memory usage of PIVOT (1869
MB) was about twice that of MOG (995 MB) (Supple-
mentary File 8). Peak % processor time (CPU) was greater
for MOG; however, MOG completed its task much more
quickly, and over the 30 min, the average % processor time
was 64% for PIVOT but only 2% for MOG (Figure 8A).

We benchmarked MOG’s performance on datasets of dif-
ferent sizes, created by splitting the Hu-cancer-RNASeq-
dataset by organ type (tumor and non-tumor samples). For
each dataset, we performed a Mann–Whitney U test on all
the genes for tumor versus non-tumor groups. MOG took
only 31 s to compute a Mann–Whitney U test on 18 212
genes over 1054 samples (Figure 8B and Additional File 6).
We then measured the execution time for calculating Pear-
son correlations of one gene with all others. MOG took only
a couple of seconds to compute a Pearson correlation over
1000 samples and 16 s to compute over 7142 samples (Fig-
ure 8C).

DISCUSSION AND CONCLUSION

We demonstrated MOG’s functionalities by exploring
three different well-validated datasets: a human RNA-
Seq dataset from non-tumor and tumor samples (Hu-
cancer-RNASeq-dataset), an A. thaliana microarray dataset
(AT-microarray-dataset) and an A. thaliana metabolomics
dataset (AT-metab-dataset). In each case, known informa-
tion was recapitulated in the MOG analysis, and new po-
tential relationships became apparent.

During exploration of the Hu-cancer-RNASeq-dataset by
MOG, we created a catalog of genes that are differentially
expressed in different types of tumors, identifying in this
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Figure 7. Using MOG for differential expression analysis of leaf and pollen samples, followed by volcano plot visualization (Y-axis: -log10(P-value)).
At1G67860, an Arabidopsis specific gene with no known function, is 16-fold more highly accumulated in leaves relative to pollen (Mann–Whitney U test;
BH corrected P-value<10−3). The gene metadata is revealed upon hovering the mouse over a data point.

process 35 genes that are consistently upregulated or down-
regulated in every type of cancer in the dataset. GPC3
(67,71–72) was identified by MOG as a biomarker gene
for liver cancer. Gene-level resolution analysis by MOG re-
vealed that the cadre of genes that are co-expressed with the
GPC3 gene change drastically among the individual organs,
and between tumor samples and corresponding non-tumor
samples. By mining the sample and study metadata, we
identified genes that showed regulation with cancer progres-
sion. Many of the genes we identified have been reported
previously in the literature and in THPA to be prognos-
tic biomarkers for different cancers. Many other genes that
MOG identified as differentially expressed genes are not
marked as prognostic in THPA. These genes present poten-
tial new biomarkers for disease progression. Because each
tumor type has many variations, investigating multiple can-
didate prognostic markers in individual tumors can provide
critical information for personalized medicine (110).

Using the AT-microarray-dataset, we explored expression
patterns of genes with unknown functions including or-
phan genes, identifying 18 mostly plant-restricted genes that
are tightly co-expressed with genes central to photosystem
assembly. We also identified an Arabidopsis-specific gene,
At2G04675, to be highly expressed in pollen development,
suggesting a potential involvement of this gene in game-

togenesis. With the AT-metab-dataset, we identified a po-
tential relationship between arginine and the cell wall de-
fense response. Such exploratory analyses provide clues as
to how to approach experimentally testing the function of
these genes or metabolites.

Processing multiple heterogeneous RNA-Seq data is a
formidable and unsolved challenge. We have intentionally
not added capabilities for data processing (e.g. alignment,
normalization, and batch-correction to minimize unwanted
technical and biological effects) into MOG for two reasons.
First, the selection of appropriate statistical and compu-
tational methods depends on the data structure and the
biological questions to be asked. Different types of data
have different characteristics (111–113), and if statistical
methods are misapplied during normalization and batch-
correction, especially when the data are from multiple het-
erogeneous studies, the resultant dataset may be mislead-
ing. Much as if using R or MATLAB statistical software,
a MOG user must consider these technicalities. Second,
the data science field is far from unsettled (112–115) with
new approaches and variations being developed each year.
(GoogleScholar retrieved over 10 000 journal articles from
the first half of 2019 for ‘RNA-Seq normalization meth-
ods’). Potentially a researcher could use MOG as a tool to
compare the results of different methods of processing the
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Table 4. MOG compared to existing tools for exploratory analysis of expression data

MOG PIVOT iSEE iGEAK IRIS-EDA DEvis

Reference This paper (15) (18) (16) (17) (102)
Year 2019 2018 2018 2019 2019 2019
Platform/GUI Java/Swing R/Shiny R/Shiny R/Shiny R/Shiny R/None
Interactive tables and trees Yes No No No No No
Interactive drag and drop
operations

Yes No No No No No

Interactive visualizations Yes Partial Partial Partial Partial No
Interactively subset data Yes Partial Partial Partial No No
Save progress Yes Yes Partial (if user

saves R code)
No No No

Use any R package Yes No No No No No
Supported data types Omics or

other
numerical
data

RNA-
Seq/scRNA-
Seq

Omics RNA-
Seq/microarray

RNA-
Seq/scRNA-
Seq

RNA-Seq

MW U test (sec.) 7 1260 NA NA NA NA

MOG’s GUI, designed with Java swing, is fully interactive; in contrast, other available tools are based on R and provide limited or no interactivity. A
MOG user can execute any R package/script with interactively selected subsets of data if s/he wishes to perform additional analysis, whereas only a limited
number of R-packages are available in the other tools. The last row compares the Mann–Whitney U test’s execution time for MOG and PIVOT using the
liver tumor and non-tumor datasets (18 212 genes over 410 samples). A more detailed comparison of the tools is available in Supplementary File 8.

Figure 8. MOG performance benchmarks. MOG was benchmarked using the entire Hu-cancer-RNASeq-dataset (18 212 genes over 7142 samples), and
using chunks of this dataset.(A) Comparison of MOG to R-based (PIVOT). Dataset size was limited to the amount of data that could be loaded in PIVOT
(410 samples). % processor time (% CPU utilization) was calculated over 30 min; theoretical maximum value = total processors in computer x 100 (400 in
this case). (B) Execution times for computing differentially expressed genes using Mann–Whitney U test. Red dots, MOG; blue dot, PIVOT (410 samples).
Inset, expanded scale to display MOG execution times. (C) MOG execution times for pairwise computations of Pearson correlation of a gene (BIRC5)
with all other genes in the datasets. (Other tools cannot perform this computation). Execution times are linear with data size; full dataset analysis took
16 s.

same raw data. Such interactive comparisons would enable
biologists to gain insight as to which processing methods
best reflect experimentally-established ‘ground truths’. This
approach would provide a complement to the more typical
validation of a dataset by determining GO term enrichment
in gene clusters.

Analyses performed while exploring and statistically an-
alyzing datasets on MOG can be saved; by clicking ‘save’,
all the analyses that have been performed are added as ob-
jects to the MOG project file. Results obtained with MOG
can be shared by sharing the saved MOG project file. If a
user wishes to document the information to reproduce the
analysis, she/he needs to manually specify the parameters
and methods used. In the future, we plan to implement au-
tomated report generation for each analysis.

MOG is a novel Java software for interactive exploratory
analysis of big ’omics datasets or other datasets. By using
an indexing strategy to read data only when it is needed,
the total memory consumption of the system is minimized,
enabling MOG to perform much more efficiently than
the available R-based software. Visualizations produced by
MOG are fully interactive, and enable researchers to detect
and mine interesting data points and probe the relation-
ships among them. The statistical methods implemented in
MOG help to guide exploration of hidden patterns in a user-
friendly manner. By integrating metadata, MOG affords an
opportunity to extract new insights into the relationships
between gene expression and gene structure, gene location,
or any of the diverse information entered by scientists about
the biology and experimental conditions.
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Taken together these features can aid a researcher in de-
veloping new, experimentally testable hypotheses.

DATA AVAILABILITY

We subscribe to FAIR data and software practices
(116). MOG is free and open source software pub-
lished under the MIT License. MOG software, user
guide and all compiled datasets in this article are
freely downloadable from http://metnetweb.gdcb.iastate.
edu/MetNet MetaOmGraph.htm. MOG’s source code and
user guide is available at https://github.com/urmi-21/
MetaOmGraph/. MOG’s source code (version 1.8.0) at
the time of submission is archived and can be ac-
cessed using the DOI:10.5281/zenodo.3520986. Addi-
tional files are available at https://github.com/urmi-21/
MetaOmGraph/tree/master/MOG SupportingData.
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