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Abstract

Smoking is the second leading cause of preventable death in the United States. Cohort 

epidemiological studies have demonstrated that women are more vulnerable to cigarette-smoking 

induced diseases than their male counterparts, however, the molecular basis of these differences 

has remained unknown. In this study, we explored if there were differences in the gene expression 

patterns between male and female smokers, and how these patterns might reflect different sex-

specific responses to the stress of smoking. Using whole genome microarray gene expression 

profiling, we found that a substantial number of oxidant related genes were expressed in both male 

and female smokers, however, smoking-responsive genes did indeed differ greatly between male 

and female smokers. Gene set enrichment analysis (GSEA) against reference oncogenic signature 

gene sets identified a large number of oncogenic pathway gene-sets that were significantly altered 

in female smokers compared to male smokers. In addition, functional annotation with Ingenuity 

Pathway Analysis (IPA) identified smoking-correlated genes associated with biological functions 

in male and female smokers that are directly relevant to well-known smoking related pathologies. 

However, these relevant biological functions were strikingly overrepresented in female smokers 

compared to male smokers. IPA network analysis with the functional categories of immune and 

inflammatory response gene products suggested potential interactions between smoking response 

and female hormones. Our results demonstrate a striking dichotomy between male and female 

gene expression responses to smoking. This is the first genome-wide expression study to compare 

the sex-specific impacts of smoking at a molecular level and suggests a novel potential connection 

between sex hormone signaling and smoking-induced diseases in female smokers.
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Introduction

Cigarette smoking is the largest single risk factor for premature death in the United States 

and is responsible for 440,000 deaths every year [1]. Smoking adversely affects almost 

every human organ and is a predominant cause of many diseases such as cancer, 

cardiovascular diseases including stroke and heart attack, a range of respiratory diseases, 

and other severe chronic diseases [2,3]. Smoking also increases the incidence of other 

adverse health effects such as cataracts, infection and poor wound healing, inflammatory 

bowel disease and some neurological diseases like Parkinson’s and Alzheimer’s diseases 

[4,5]. Countless studies have demonstrated that smoking causes lung cancer, and smoking 

has also been shown to substantially increase the risk of developing cancer of the larynx, 

pharynx, oral cavity, esophagus, stomach, liver, colon, rectum, pancreas, bladder, kidney, 

pharynx, nasal cavity, cervix and prostate [6].

Increasing evidence suggests respiratory symptoms vary by sex, smoking habits and age. It 

has been reported that the health effects of smoking are more serious for women than for 

men [7]. For instance, women are more vulnerable to cigarette smoke-induced respiratory 

diseases [8,9]. Smoking also adversely affects the fertility of women, causes early 

menopause [8] and increases hazards in pregnancy [7]. Cigarette smoking is an established 

predictor of type-2 diabetes mellitus, and female smokers possess much higher risk of type-2 

diabetes mellitus than their male counterparts [10]. Previous studies also suggested that 

female smokers are more susceptible to tobacco carcinogens [11–13]. The patterns of 

various types of lung cancer incidence suggest that women have a higher absolute risk for 

lung cancer than do men of the same age with the same history of smoking [12–16]. In 

addition to common smoking-induced carcinogenic effects in both sexes, women suffer 

additional hazards in female-specific cancers such as breast cancer [17], ovarian cancer [18] 

and cancer of the cervix [7]. A recent study also suggests that smoking increases the risk of 

colorectal cancers in female compared to male smokers [19].

Sex differences in rates of survival following diagnosis of lung cancer have also been 

reported. Interestingly, women have been found to have higher survival rates regardless of 

lung cancer type, stage and therapy [14,20–23]. In addition to lung cancer, women have a 

higher five-year survival rate than men for the majority of cancers with the exception of 

bladder cancer, for which women have lower survival [24]. Women’s better survival rate 

from the majority of smoking-associated cancers has remained a puzzling issue. It is 

presently unclear whether the basis for this difference is biological, social, or behavioral, 

and these issues are difficult to resolve through epidemiological studies.

The toxic components of cigarette smoke enter the blood stream through the pulmonary 

alveoli and are distributed throughout the body. Thus, blood may provide an appropriate 

biological material in which to study the systemic effects of cigarette smoke exposure. 

Several studies have investigated gene expression in smokers’ peripheral blood lymphocytes 

and reported substantial numbers of genes differentially expressed in smokers and non-

smokers [25–29]. While these studies have identified a large number of genes apparently 

responding to smoking, very few genes have been found to overlap among the studies.
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Moreover, although many clinical and epidemiological studies have indicated that women 

are more vulnerable to smoking associated diseases, no genome-wide expression study has 

investigated the effect of sex on the smoking response. Very recently, Pan et al., [30] 

compared gene expression profiles of B cells between white female smokers and non-

smokers. They reported that over 75% of the smoking responsive genes were down 

regulated and these down-regulated genes predominantly belonged to functional categories 

involved with immune responses. However, the expression pattern of this gene set in male 

smokers is unknown and thus sex-specific differences cannot be determined.

In the present study, we compared gene expression profiles of peripheral blood cells 

between smokers and non-smokers using Agilent whole-genome microarrays, and 

distinguished patterns of smoking-related gene expression that differ dramatically between 

males and females. A large number of the smoking-associated genes identified were directly 

relevant to well-known smoking-related pathologies, and in females were connected to 

signaling by estrogen and progesterone. This is the first genome-wide expression study on 

the sex-specific impact of smoking as reflected in peripheral blood cells, and our findings 

may begin to suggest molecular connections underlying some of the differences in smoking-

related cancer risks and outcomes previously found in epidemiological studies.

Materials and Methods

Study population

Healthy smokers and non-smokers were recruited with written informed consent. The study 

was approved by the Institutional Review Board of Columbia University. A total of 24 

males and 24 females consisting of an equal number of smokers (≥1 pack per day) and non-

smokers (never smokers) of each sex participated in this study. Characteristics including 

age, sex, and details of smoking habit were provided by the subjects at the time of 

enrollment. All participants also reported were not under any therapeutic drug or no record 

of recent radio diagnostic examination. Characteristics of the study population are 

summarized in Table 1.

Sample collection and RNA preparation

Peripheral blood from smoker and non-smoker volunteers was drawn into 0.105 mol/l 

sodium citrate Vacutainer tubes (Becton Dickinson and Company, Franklin Lakes, NJ). 

RNA was prepared using the PerfectPure RNA blood kit (PerfectPure, Gaithersburg, MD) as 

recommended by the manufacturer, followed by GLOBINclear (Ambion Inc., Austin, TX) 

treatment to further reduce levels of both α- and β-globin. The RNA was quantified using a 

NanoDrop-1000 spectrophotometer, and quality was monitored with the Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA). All RNA samples had RNA integrity 

numbers between 7.8 and 9.1 (mean, 8.4). RNA was stored at −80°C until use.

Microarray hybridization and expression profiling

Cyanine-3 (Cy3)-labeled cRNA was prepared from 0.5 μg input RNA using Agilent 

Technologies’ One-Color Quick Amp labeling kit according to the manufacturer’s 

instructions, followed by purification of cRNA by RNAeasy column (QIAGEN, Valencia, 
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CA). Cy3-dye incorporation and yield of cRNA was checked with a NanoDrop ND-1000 

spectrophotometer. The specific activity of all cRNA samples ranged from 10.98 to 20.02 

(mean 14.94). cRNA (1.65 mg) was fragmented and hybridized to Agilent’s whole genome 

microarrays (G4112A) at 65°C for 17 hr with rotation, followed by washing according to the 

manufacturer’s recommendations. Microarray slides were scanned immediately with the 

Agilent scanner (G2404B) using the recommended settings and the images were analyzed 

with Feature Extraction 9.1 (Agilent Technologies) using default parameters.

Data analysis

Background corrected hybridization intensities were imported into BRB-ArrayTools 

Version 3.8.0 beta [31], log2 transformed and normalized using the median over the entire 

array. Features that were non-uniform outliers or not significantly above background 

intensity in 25% or more of the samples, or that did not change at least 1.5-fold from the 

median value in at least 20% of the experiments were filtered out. This resulted in 16,548 

features that were used in subsequent analyses. The microarray data is available online on 

the NCBI’s Gene Expression Omnibus using accession number GSE47415.

BRB class comparison was applied to identify genes that were differentially expressed 

between smokers and non-smokers using a two-sample Student t-test. Genes with p-values 

of p<0.005 were considered statistically significant. The false discovery rate (FDR) was also 

estimated for each gene using the method of Benjamini and Hochberg [32] to control false 

positive results. The 2-way mixed model ANOVA from BRB-ArrayTools Plugins was used 

to identify smoking-responsive genes that were affected by sex.

Multidimensional scaling (MDS) was used in BRB-ArrayTools to visualize differences 

between groups at the transcriptional level based on differentially expressed sets of genes 

using the Euclidian distance metric to compute a distance matrix and the principal 

components of the gene expression signature. In the output, each sample is represented by a 

single point and the distance between any two points indicates the overall similarity of the 

two represented samples. In addition, we executed hierarchical clustering analysis to 

generate a heat map image of the expression of genes differentially expressed between 

smokers and non-smokers using the Euclidean distance matrix.

Pathway and networking analysis by ingenuity pathway analysis (IPA)

The significantly differentially expressed genes in male and female smokers were imported 

into IPA version 7.6 (Ingenuity® Systems, www.ingenuity.com). Following collation, there 

were 131 and 191 transcripts in males and females, respectively that mapped to known 

genes in IPA. We first used the IPA biomarker analysis workflow to identify promising 

molecular biomarker candidates from the dataset. The IPA-Biomarker filter mapped 124 and 

175 biomarker candidate genes in male and female smokers, respectively. We next 

performed IPA core-analysis in the context of pathways and networks, biological function 

and/or diseases. The right-tailed Fisher’s exact test was applied to calculate the p-value 

ascertaining the probability that each biological function and/or disease assigned to that 

dataset was due to chance alone.
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We used network analysis to determine whether immune and inflammatory response gene 

products in female smokers were connected at the molecular network level based on 

connectivity information in the IPA Knowledge Base. We added molecules suggested by the 

IPA “pathway explorer” in order to connect molecules of interest. Priority was given to 

those molecules with a high degree of connectivity within the pathway rather than molecules 

with many connections to molecules not on the pathway.

Gene set enrichment analysis (GSEA)

We used gene set enrichment analysis (GSEA) for interpreting smoking induced microarray 

data using the Broad Institute’s GSEA software [33]. GSEA, using the Kolmogorov-

Smirnov statistic, incorporates biological knowledge into analysis to identify enrichment of 

biological functional categories in sets of ranked differentially expressed genes from 

genome-wide mRNA expression data sets. The GSEA calculates an enrichment score (ES) 

reflecting the degree a gene set is overrepresented by member genes ranking at the top or 

bottom of the ranked gene list. The statistical significance of the ES is estimated using a 

permutation test (p-value) with false discovery rate (FDR) correction for multiple hypothesis 

testing. We ran 1,000 permutations for each analysis, and used the criteria of nominal p-

value<5% and FDR<25% as the statistical cutoff for all analyses. All genes that passed the 

BRB filtering criteria (above) were imported into the GSEA tool and the data were analyzed 

according to the recommendations in the GSEA users’ manual.

Results

Differential gene expression in smokers’ blood

Global gene expression was measured in peripheral white blood cells of 48 donors, 

comprising equal numbers of smokers and non-smokers from each sex. Agilent whole 

genome microarrays were hybridized using the one-color protocol to identify genes 

differentially expressed between smokers and non-smokers. We used the class comparison 

feature of BRB-ArrayTools to identify genes that were differentially expressed between 

smokers and non-smokers. We identified 300 genes with significantly different expression 

(p<0.005) (SI Table 2), of which 170 genes (57%) were up-regulated and 130 genes (43%) 

were down-regulated in smokers. Visualizing the expression of this set of genes by multi-

dimensional scaling (MDS) (Figure 1A) reveals a trend of separation of the samples based 

on smoking status, although the separation is not distinct for all samples, suggesting 

variability between individuals. The visual trend appears slightly stronger between female 

smokers and non-smokers than between male smokers and non-smokers.

Sex-specific smoking signatures

We next investigated the possibility of sex specificity of smoking signatures in males and 

females. We first performed a class comparison for differentially expressed genes between 

smokers and non-smokers using only the 24 male donors. This analysis identified 175 genes 

significantly differentially expressed between male smokers and non-smokers (p<0.005) (SI 

Table 3). Of the 175 genes differentially expressed, 125 genes (71%) were up-regulated and 

50 genes (29%) were down-regulated. This set of 175 genes showed a clear separation 
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between samples from male smokers and non-smokers when visualized by MDS (Figure 

1B).

We next used the same analyses to look for altered gene expression between female smokers 

and non-smokers. In this case, class comparison identified 237 genes as differentially 

expressed (p<0.005) between female smokers and non-smokers (SI Table 4). Among the 

237 potential smoking-modulated genes identified in female smokers, 91 genes (38%) were 

up-regulated and 146 genes (62%) were down-regulated. Expression of this set of genes 

visualized by MDS (Figure 1C) again distinctly separated smokers from non-smokers, in 

this case among female donors. When we attempted to separate smoker and non-smoker 

samples of each sex using the differentially expressed genes identified from the opposite 

sex, MDS failed to discriminate between smokers and non-smokers both in males and 

females (not shown), further suggesting a strong sex-specificity in the gene expression 

response to smoking.

Although a substantial number of genes were found to be differentially expressed in both 

male and female smokers, a divergent pattern of expression was apparent on the basis of the 

number of genes up- or down-regulated in male and female smokers. The intersection of 

male and female gene sets yielded only 13 genes (3%) that responded significantly in both 

sexes (Table 2).

To investigate further if cigarette smoking has any significant interaction with sex, we 

applied BRB-ArrayTools’ 2-way mixed model ANOVA. This analysis identified eighty 

genes with smoking responses modified by sex (p<0.005) (SI Table 5). Interestingly 44% of 

these genes were also identified as differentially expressed in the female smokers and 14% 

in the male smokers.

Functional network analysis

To further assess the sex specific smoking response, we performed pathway analysis with 

the gene sets differentially expressed in male and female smokers using Ingenuity Pathway 

Analysis (IPA), version 7.6. First, we identified overrepresentation of smoking-affected 

genes within known functional categories (Table 3). Although many functional categories 

were significantly affected in both sexes, some were unique to female or male smokers, 

suggesting that biological consequences of smoking could be very different in males and 

females. In female smokers, the most significant disease categories correlated with 

neurological disease, infectious disease, inflammatory disease, cardiovascular disease, 

immunological disease, hematopoiesis, respiratory disease, diabetes mellitus and cancer. In 

male smokers, the highly significant disease categories were cancer, diabetes mellitus, 

neurological diseases and cardiovascular diseases. The expression pattern of male and 

female smoking correlated genes linked to biological function and/or diseases is presented 

by heat-map in Figure 2.

The over-represented biological function categories also differed extensively between male 

and female smokers (Table 3). Further, in female smokers, most genes in the biological 

function categories were down regulated, whereas in male smokers the majority of the genes 

involved in these categories were up regulated. In addition, some biological function 
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categories, such as genes involved in embryonic development, cellular compromise, free 

radical scavenging and DNA repair, were only significant in female smokers, and the genes 

within these functional categories were overwhelmingly down-regulated in female smokers.

There was also high over-representation of canonical pathway categories of smoking 

correlated genes in female smokers that were related well to known smoking pathologies, 

shown in SI Table 7. The most striking of these canonical pathway categories are xenobiotic 

metabolism signaling, actin metabolism signaling, clathrin-mediated signaling, eicosanoid 

signaling, thrombin signaling, tight junction signaling, molecular mechanism of cancer and 

natural killer cell signaling. Of specific interest, there were 6 genes involved in metabolism 

of xenobiotics by Cytochrome 450 in our female smokers data set, three of which 

(AKR1C3, DHRS2, GSTA2) were negatively correlated and three others (UGT1A6, 

CYP4F2, CYP4F12) were positively correlated. Smoking introduces a large number of 

xenobiotics into a smoker’s body and Cytochrome P-450 enzymes have been indicated to 

detoxify tobacco carcinogens [34].

Network analysis

The functional categories of immune and inflammatory responses/diseases differed widely 

between smoking-responsive genes in male and female smokers (Table 3). We added 

molecules suggested by the IPA “pathway explorer” in order to connect molecules of 

interest. The resulting network connected 64 genes associated with immune and 

inflammatory response in female smokers into a single network (Figure 3) that suggested 

potential interactions between smoking response and female hormones. It was also of 

interest to explore the immune and inflammatory response gene products modulated in 

response to male smoking in comparison with the female network (Figure 3). We found that 

only six of the genes in the female network were differentially expressed in male smokers, 

four of which were up-regulated (RGS6, ELL3, TBXA2R and GRM5) and two down-

regulated (RAB6B and GPR15).

Gene set enrichment analysis

Smoking undeniably causes a different pattern of elevated cancer risk in females and many 

clinical studies have reported that women have a higher absolute risk of smoking induced 

cancers [12–16,34], although women have been found to have better survival from the 

majority of smoking-associated cancers [14,20–23]. We used gene set enrichment analysis 

(GSEA) [32] to confirm and explore concordant differences between the two biological 

states of male and female smoking against oncogenic signature gene sets. The GSEA 

analyses identified 12 significant gene sets as a result of male smoking and 14 gene sets for 

female smoking at p-value<5% (SI Table 8A and 8B, respectively). Of the enrichment gene 

sets in male and female smokers only the over-expressing oncogenic form of KRAS.LUNG 

was common to both with 21 “leading edge genes” in male smokers and 39 “leading edge 

genes” in female smokers (Figure 4a and 4b). Interestingly, the KRAS. PROSTATE gene 

set was up-regulated in male smokers and the BRCA1 gene set was down-regulated in 

female smokers. The top oncogenic signatures identified from male smoking include tumor 

suppressor genes (PTEN and RB1), colon cancer gene sets (CTIP and SNF5), skin tumor 

progression protein (ATF2), oncogenic signatures KRAS-600-LUNG and E2F3 pathway 
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genes. The top female smoking enrichment oncogenic signatures are colorectal carcinoma 

genes sets (KRAS.600), neoplasias of kidney (KRAS.KIDNEY), notch signaling pathway 

gene set (NOTCH), anaplastic lymphoma kinase (ALK), polycomb ring finger oncogene 

(BMI1), and activating transcription factor 2 (ATF2) etc. The top 50 genes/features 

representing oncogenic signature gene-sets over-represented in male and female smokers are 

displayed as a heatmap in Fig. 4 c. Natural killer cell-mediated cytotoxicity genes play an 

important role in rejection of tumors, and are overwhelmingly down-regulated in female 

smokers (Figure 4c).

Discussion

The effects of cigarette smoking on human health are serious and in many cases, deadly. 

Cohort epidemiological studies have shown that women are more vulnerable to cigarette-

smoking induced diseases; however, the molecular basis of these differences has remained 

unclear. In this study human peripheral blood was used to explore sex-specific smoking 

induced differential gene expression between smokers and non-smokers. Cigarette smoke 

toxicants enter the body through the pulmonary alveoli and are directly absorbed and 

distributed throughout all tissues. Blood cells are not only one of the most accessible tissues 

for gene expression analysis, they also have been shown to be an excellent tissue type to 

study environmental exposures, like cigarette smoke [29] and radiation exposure [35]. Blood 

cells have the potential to reflect systemic damage occurring in different organs and tissues 

as a result of smoking. Unlike previous studies in which smoking induced gene expression 

was measured in peripheral blood lymphocytes [28–30], we used peripheral blood 

leukocytes to identify smoking related changes in gene expression. Thus many of the genes 

we found to be differentially expressed in the peripheral blood of smokers compared to non-

smokers have not been reported by other studies.

The male and female smoking-correlated genes associated with biological function and/or 

diseases identified in this study are directly relevant to well-known smoking related 

pathologies. The results include strong involvement of a range of smoking-correlated 

diseases such as cancer, neurological disease, immune response, inflammatory diseases, 

cardiovascular disease, respiratory disease, hematological disease, cell death and 

proliferation, cellular development and cell-to-cell signaling, and xenobiotic metabolism. 

However, the extent of these relevant biological function and/or diseases, the number of 

correlated genes and their expression patterns were strikingly over-represented in female 

smokers (Table 3). Our observations are consistent with many clinical studies demonstrating 

that the health consequences of smoking for women are worse than for men [7–10,19,36].

Cigarette smoking is an established risk factor for many cancers, not only at the site of 

contact but also throughout the body. We identified sets of smoking correlated genes in both 

male and female smokers with documented associations with various cancers, consistent 

with risks observed in epidemiological studies. One remarkable finding of this study was the 

altered expression of genes corresponding to sex specific cancers, hyperplasia of prostate in 

male smokers and epithelial ovarian cancer in female smokers. Epidemiological studies have 

suggested that smoking increases the risk of ovarian [18] and prostate [37] cancers in female 

and male smokers, respectively. Another important finding was significance of colorectal 
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cancer in female smokers. It has been suggested that smoking increases the risk of colorectal 

cancers to a greater extent in female compared to male smokers [19]. Furthermore, a higher 

number of smoking-induced alterations in expression of cancer related genes in female 

smokers (Table 3) are consistent with the increased susceptibility of female smokers to 

tobacco carcinogens compared to male smokers.

Gene set enrichment analysis (GSEA) with oncogenic signature gene sets further 

substantiated the gene expression differences underlying the female smokers’ heightened 

susceptibility to tobacco carcinogens. GSEA identified a large number of oncogenic 

pathway gene-sets that were significantly altered in female smokers compared to male 

smokers. Our data corroborate the findings of other investigators suggesting that women are 

more susceptible than men to the ill effects of the carcinogens in tobacco and tobacco smoke 

[11,12,15,16]. Among various functional groups exclusively significant in female smokers 

are DNA repair, xenobiotic metabolism, free radical scavenging and NK cells cytotoxicity, 

and the genes corresponding to these functional categories are overwhelming down-

regulated in female smokers. NK cell cytotoxicity involves defense against foreign cells and 

plays an important role in rejection of tumors. In a murine lung metastasis tumor model, NK 

cell tumor immune surveillance has been shown to decrease in response to cigarette smoke 

exposure [38], consistent with our findings in female smokers. Down-regulation of oxidant 

scavengers may contribute to the down-regulation of DNA repair genes we found in female 

smokers. In our study, and consistent with epidemiological studies [7,12,14,17,19], down-

regulation of oxidant scavengers and oxidative damage repair genes in female smokers may 

contribute to increased risk of cancers compared to non-smokers, or compared to male 

smokers, where this pattern of gene expression was not found.

Although female smokers have a higher absolute risk of developing cancers than their male 

counterparts, women’s better survival rate from smoking-associated cancers [12,14,24] has 

remained a puzzling issue and no molecular mechanism has been proposed to date to explain 

it. We have found several broad differences in the smoking-related pattern of gene 

expression that are highly intriguing in this regard. For example, we identified three genes of 

the K-ras oncogene family, of which two were up-regulated in male smokers (RAB6B, 

RAB42) and two were down-regulated in female smokers (RAB6B, RAB27B). In addition, 

two genes for cytochrome P-450 enzymes (CYP4F2, CYP4F12) were found to be up-

regulated in female smokers. It has been reported that cytochrome P-450 enzymes may be 

able to detoxify tobacco carcinogens by repairing smoking-induced DNA adducts [39]. It 

has been reported that there is a high variability among different ethnic groups in the activity 

of the cytochrome P-450 enzymes (CYP) due to genetic and environmental factors, like 

smoking and alcohol consumption [40]. Polymorphic CYP genes are capable of creating 

differences in the ability to metabolize, detoxify or activate xenobiotic chemicals. Several 

studies have demonstrated that certain polymorphic CYP genes, in association with smoking 

and alcohol consumption, are involved in the development of certain cancers [41–43]. 

Therefore, further studies recruiting larger population of male and female smokers and non-

smokers including different ethnic groups will be necessary to determine the consequences 

of active smoking on genetic variation and genders. The GSEA analysis also indicated that 

the gene-set involved in the TP53 tumor suppressor pathway was up-regulated in female 

smokers but down-regulated in male smokers. In addition, tumor suppressor pathway, the 
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PTEN and RB1gene-sets, were significantly repressed in male smokers. It is currently 

unknown to what extent any of these genes or pathways may play a role in changing the 

balance of survival in cancer. These very different patterns of gene expression could, 

however, provide a basis for further research with male and female patients with smoking-

associated cancers to help unravel the mechanisms involved in the different relative survival 

in smoking associated cancers.

Expression of genes within the functional categories of immune and inflammatory 

responses/diseases also differed widely between male and female smokers. Compared to 

male smokers, a large number of genes corresponding to immune alteration and suppression 

were altered in female smokers. In a recent study, Pan et al., [30] demonstrated that the 

overwhelming majority of smoking correlated genes were down-regulated in peripheral B-

cells of female smokers, and that these down-regulated genes predominantly belonged to 

functional categories involved with immune responses. The overwhelming down-regulation 

of natural killer (NK) cell signaling pathway genes, involved in cytotoxicity and cytokine 

secretion, in response to smoking among females might have an impact associated with 

immune and inflammatory diseases. This wide range of negative influence on the immune 

system in female smokers might also have been related to the over-representation of 

functional groupings relevant to neurological, infectious, cardiovascular, hematological, 

renal and urological, diabetes and respiratory diseases in female smokers. Previous clinical 

studies have suggested that women may be more susceptible than men to cigarette smoke-

induced respiratory diseases [8,9] and possess much higher risk of type-2 diabetes mellitus 

than their male counterparts [10]. In addition a large set of genes related to inflammatory 

diseases including bowel disease, Crohn’s disease, digestive disorders and arthritis were 

highly significant in female smokers. A clinical study partly corroborated our findings with 

the demonstration that smoking adversely affects Crohn’s colitis by sex, with women having 

more disadvantage than men [44].

Since all these studies suggest the importance of immune and inflammatory response in the 

female smoking response, we constructed a network of immune and inflammatory response 

affected by smoking in females based on connectivity information of gene/gene product 

interactions from the IPA Knowledge Base (Figure 3). This network includes 70 genes 

significantly correlated with female smoking, 64 with known involvement in immune/

inflammatory responses (highlighted in yellow in Figure 3) or in both immune/inflammatory 

and NK cell signaling pathways (highlighted in pink in Figure 3). This network also 

connects to multifunctional pathways such as NFκB, cytokine receptors (IL2, IL6), Gpcr 

and free radicals. The network also clearly displays a major interaction with two female 

hormones, progesterone and estrogen, with many of the smoking-responsive immune and 

inflammatory genes, as well as portions of the sub-networks of some essential signaling 

pathway molecules. This network suggests a potential regulatory link between the immune 

and inflammatory genes differentially expressed in smokers and female hormones, as well as 

functional pathways linked to carcinogenesis and inflammatory diseases.

The present study was carried out with a modest number of smokers and non-smokers with a 

broad range of ages using peripheral blood leukocytes. Future investigation of smoking 

effects on different lymphocyte populations in both sexes may provide more precise 
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information of the impact of sex on the physiological response to smoking. The present 

study suggests genes associated with immune functions are severely affected in female 

smokers. Thus, it may be informative to examine smoking impacts specifically in B cells in 

both male and female smokers. To further examine the impact of sex on the response to 

smoking, our results suggest that it will be essential to study sex-specific gene expression 

changes in female smokers in different age groups. If the gene expression response to 

smoking is, indeed, influenced greatly by interactions with female hormones, the smoking-

induced gene expression responses seen in pre- and post- menopausal women should differ 

significantly. Some recent studies have indicated a link between menopausal hormone 

treatment therapy and increased lung cancer risk in females, and female smokers having 

hormone therapy possessed a particular high risk of mortality from lung cancer [45,46]. This 

further underlines the importance of investigating potential interactions between female sex 

hormones and smoking as a step toward understanding the molecular mechanisms 

underlying the observed sex-based differences in smoking-related cancer incidence and 

survival. Several recent works have demonstrated that some common genes were modulated 

from alcohol abuse and tobacco smoking in animal models and in human subjects [47,48]. 

Thus, it will be crucial to record detail life style of the study population in future study.

Conclusion

This is the first genome-wide expression study to compare the sex-specific impact of active 

smoking in vivo. Using defined functional network analyses we have identified sets of 

altered genes related to a large number of smoking-induced pathologies in both sexes. Based 

on defined functional relationships, we suggested a potential novel connection between sex 

hormone signaling and smoking-induced diseases in female smokers (Figure 3). However, 

further studies with larger populations of smokers with different smoking habits, non-

smokers, and previous smokers, both in good health and with smoking associated disease 

and other potential confounding factors such as differences in age, lung function, body mass 

index, race, etc., will be necessary to understand the impact of smoking at the molecular 

level more clearly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multidimensional scaling plot summarizing gene expression differences between smokers 

and non-smokers. Each point represents an individual sample, and the distance between two 

points reflects the overall similarity in expression of the selected set of genes in those two 

samples. A) Separation of smokers and non-smokers according to 300 genes differentially 

expressed between all smokers and non-smokers, irrespective of their sex. The points are 

colored as red (male non-smoker), pink (female non-smoker), green (male smoker) and cyan 

(female smoker). B) Separation of male smokers (red) and non-smokers (green) using a set 

of 175 genes differentially expressed in male smokers and non-smokers. C) Separation of 

female smokers (red) and non-smokers (green) using a set of 247 genes differentially 

expressed in female smokers and non-smokers.
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Figure 2. 
Hierarchical clustering of smoking correlated genes corresponding to IPA functional 

categories in the context of pathways and networks, biological function and/or diseases 

(presented in Table 2). A supervised average linkage clustering of 47 genes in male (A) and 

111 genes in female (B) smokers is presented. The annotation of all genes in clustered order 

is presented in SI Table 6.
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Figure 3. 
Gene product interaction network of immune and inflammatory responsive genes associated 

with smoking in females generated from the information in the Ingenuity knowledge base, 

version 7.6. Genes or gene products are represented as nodes, and the biological relationship 

between two nodes is represented as an edge (line). Solid lines represent direct relationship 

and dashed line represents indirect relationship between nodes. The intensity of node color 

indicates the degree of up- (red) or down- (green) regulation in smokers. Grey nodes 

represent molecules not altered in smokers added by Ingenuity to show network 

connections. The yellow node is a cigarette smoke toxicant manually added to the network. 

The shape of each node indicates the gene product’s functional class as shown in the key. 

The genes involved in immune/inflammatory responses are highlighted in yellow, and those 

involved both in immune/inflammatory responses and the NK cell signaling pathway are 

highlighted in purple. Immune/inflammatory genes known to be influenced by female 

hormones (progesterone and estrogen) are linked with yellow edges.
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Figure 4. 
Enrichment of the over-expressing oncogenic form of KRAS, most commonly mutated 

oncogenes in lung cancer, in male non-smokers vs smokers (A) and female non-smokers vs 

smokers (B). In response to smoking, 21 genes associated with KRAS oncogene were 

overexpressing in male smokers and that of 41 genes in female smokers. C) heat map 

showing the top 50 genes/features representing oncogenic signature gene-sets over-

represented in male and female smokers (red=up-regulated, white=average expression, 

blue=down-regulated). Natural killer cell-mediated cytotoxicity genes down-regulated in 

female smokers are marked with asterisks along the right edge.
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Table 1

Summary of study population characteristics.

Characteristic
Smokers (n=24) Non-smokers (n=24)

Women (n=12) Men (n=12) Women (n=12) Men (n=12)

Age (mean) 39.5 42.5 33.5 38.5

Pack/day of smoking (mean) 1.21 1.21

Years smoked (mean) 19.83 21.67

Age at start of smoking (mean) 18.67 20.83

Note: Age and smoking status of the study population presented were not significant (p<0.05). The level of significance of age between smokers 
and non-smokers of both sexes, the p-vale of smoking status depending on years smoked, number of cigarettes smoked and the age of starting 
smoking between male and female smokers are presented in SI Table 1.
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Table 2

Genes with significant differential expression in both male and female smokers showing the relative fold-

change associated with smoking.

Probe ID Gene Symbol Male fold-change Female fold-change

A_24_P83899 GRM5 0.36 0.3

A_23_P6943 GPR15 1.96 2.14

A_24_P47988 ELL3 0.31 0.4

A_23_P353524 IVL 1.6 1.96

A_24_P83799 ANKRD33B 0.49 0.43

A_23_P90357 TBXA2R 0.63 0.59

A_23_P358709 AHRR 5.11 5.11

A_23_P205666 RGS6 0.69 0.56

A_23_P109974 RAB6B 2.58 0.31

A_23_P162314 DHH 0.42 0.49

A_24_P933688 NAV2 2.78 1.66

A_23_P312752 KCNJ13 2.24 1.84

A_24_P339560 SIGLEC11 2.26 2.32
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