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Epigenome-wide association study 
in peripheral white blood cells 
involving insulin resistance
Ana Arpón1, Fermín I. Milagro   1,2, Omar Ramos-Lopez1, M. Luisa Mansego1, 
José Luis Santos3, José-Ignacio Riezu-Boj   1,4 & J. Alfredo Martínez1,2,4,5

Insulin resistance (IR) is a hallmark of type 2 diabetes, metabolic syndrome and cardiometabolic risk. 
An epigenetic phenomena such as DNA methylation might be involved in the onset and development 
of systemic IR. The aim of this study was to explore the genetic DNA methylation levels in peripheral 
white blood cells with the objective of identifying epigenetic signatures associated with IR measured 
by the Homeostatic Model Assessment of IR (HOMA-IR) following an epigenome-wide association 
study approach. DNA methylation levels were assessed using Infinium Methylation Assay (Illumina), 
and were associated with HOMA-IR values of participants from the Methyl Epigenome Network 
Association (MENA) project, finding statistical associations for at least 798 CpGs. A stringent statistical 
analysis revealed that 478 of them showed a differential methylation pattern between individuals 
with HOMA-IR ≤ 3 and > 3. ROC curves of top four CpGs out of 478 allowed differentiating individuals 
between both groups (AUC≈0.88). This study demonstrated the association between DNA methylation 
in some specific CpGs and HOMA-IR values that will help to the understanding and in the development 
of new strategies for personalized approaches to predict and prevent IR-associated diseases.

Type 2 diabetes (T2D) is a worldwide major health concern and the most predominant type of diabetes1. 
According to the World Health Organisation, the global prevalence of diabetes among adults over 18 years old 
has risen from 4.7% in 1980 to 8.5% in 2014. Furthermore, in 2015 about 1.6 million deaths were directly attrib-
uted to diabetes1.

T2D is a multifactorial disease defined by the interaction of genetics and environmental factors2. The herit-
ability for T2D is estimated to be between 15 and 85%. However, the genetic loci identified to date only explain 
5–10% of this heritability3. In this context, available evidences suggest that epigenetics may be contributing to 
variations in gene expression and the risk for this metabolic disease4. In fact, recent investigations have associated 
the onset and progression of diabetes with specific changes in the epigenome3,5.

Insulin resistance (IR) is a pathological condition in which cells fail to respond properly to insulin6. IR is 
one of the most important precursors of T2D and other adversely associated cardiometabolic conditions, such 
as obesity, hypertension, cardiovascular disease (CVD)7, and metabolic syndrome8. IR is specifically associated 
with a low-grade inflammation, as well as with chronic enhancement of oxidative stress, triggering endothelial 
dysfunction and promoting atherogenesis4. Furthermore, both genetic and epigenetic factors are involved in the 
development of systemic IR9. The validated method Homeostatic Model Assessment of IR (HOMA-IR) is usually 
employed for measuring IR and β-cell function10.

Epigenetic marks are heritable changes that cannot be explained through variations in DNA nucleotide 
sequence11. These modifications are potentially reversible and can be altered by environmental factors2, resulting 
in alterations of gene expression and providing an interactive connection among genetics, specific diseases and 
the environment12.

Among the different epigenetic modifications, DNA methylation has been widely searched13. Some 
epigenome-wide association studies (EWASs) have revealed significant associations between DNA methylation 
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and glucose homeostasis5,14–20, but only four of them studied some relationships with IR in different populations 
and approaches5,14,15,18. Therefore, the aim of the current work was to explore DNA methylation levels in periph-
eral white blood cells (PWBCs) by using an EWAS strategy with the objective of identifying epigenetic signa-
tures associated with HOMA-IR and specifically identifying potential biomarkers that allow the discrimination 
of potentially hazardous HOMA-IR levels.

The assessment of epigenetic phenomena may help to understand the basis of metabolic pathway regulation, 
as well as the relationships between genomics and the environment influence, to promote new strategies to better 
understand human health and to develop novel biomarker panels related to T2D, obesity and accompanying 
comorbidities20,21.

Results
Participant characteristics.  Anthropometric and biochemical characteristics of the participants are 
reported (Table 1).

DNA methylation was significantly associated with HOMA-IR.  Methylation values of CpGs were 
analysed for Linear Models for Microarray Data (LIMMA) regression with HOMA-IR in 332 subjects. Significant 
CpGs were selected by a False Discovery Rate (FDR) cut-off of 0.05 and a slope ≥ |0.1|, obtaining 798 CpGs 
(Supplementary Material Table S1). The top 10 CpGs were further analysed for robustness. Spearman correlations 
were performed, and six CpGs were selected by having higher rho coefficient. Then, multiple linear regressions 
were performed adjusting by sex, age, study and body mass index (BMI), remaining three of the six CpGs signif-
icant (Table 2). These CpGs were cg13133503 (corresponding gene according to Illumina CG database CLCA4), 
cg07638362 (NA), and cg16462528 (LECT1), which are highlighted in a Manhattan plot (Fig. 1). Linear regres-
sion graphs between methylation values and HOMA-IR for these three CpGs are also represented (Fig. 2).

Individuals with HOMA-IR > 3 showed a differential methylation pattern.  Participants were clas-
sified according to the HOMA-IR cut-off of 3 in order to analyse whether methylation was differential between 
both groups. There were 78 individuals with HOMA-IR > 3 and 254 with HOMA-IR ≤ 3 (Table 1). Methylation 

Variables

TOTAL ADULTS (n = 474)*
DiOGenes-
UNAV OBEPALIP

Food4Me-
UNAV GEDYMET ICTUS

NUGENOB-
UNAV

PREDIMED-
UNAV RESMENA NormoP OBEKIT

n Values n Values n Values n Values n Values n Values n Values n Values n Values n Values n Values

Sex (females) 474 303 (64) 52 27 (52) 29 29 (100) 39 21 (54) 57 57 
(100) 7 5 (71) 22 14 (64) 116 59 (51) 44 22 (50) 12 6 (50) 96 63 (66)

Age (years) 474 47.0 
(14.3) 52 42.7 

(5.8) 29 37.4 
(7.3) 39 41.7 

(10.0) 57 27.0 
(6.2) 7 57.1 

(7.4) 22 34.7 
(9.7) 116 65.0 

(3.7) 44 48.6 
(10.1) 12 39.4 

(5.6) 96 46.8 
(9.6)

Weight (kg) 474 81.7 
(19.1) 52 95.3 

(17.7) 29 83.1 
(9.5) 39 74.4 

(14.6) 57 60.7 
(8.8) 7 121.9 

(15.2) 22 87.3 
(20.8) 116 71.7 

(9.2) 44 103.0 
(18.1) 12 65.8 

(9.3) 96 89.2 
(13.6)

BMI (kg/m2) 474 30.0 
(5.7) 52 33.9 

(3.8) 29 31.6 
(3.1) 39 26.0 

(5.3) 57 24.1 
(3.5) 7 44.3 

(4.0) 22 31.1 
(8.2) 116 27.7 

(2.3) 44 36.5 
(3.7) 12 22.8 

(1.5) 96 31.9 
(3.7)

Glucose  
(mg/dL) 443 102.3 

(29.8) 37 99.0 
(12.1) 29 89.9 

(5.9) 39 91.8 
(10.3) 57 78.1 

(5.7) 7 120.6 
(29.5) 12 102.3 

(23.4) 110 121.5 
(42.5) 44 122.2 

(33.6) 12 85.1 
(7.3) 96 95.8 

(11.9)

Insulin  
(μUI/mL) 332 9.7 (7.0) 37 13.0 

(7.1) 29 6.3 (3.3) 39 6.0 
(4.6) 57 8.3 

(2.7) 7 23.0 
(12.2) 11 11.3 

(6.4) 0 NA 44 15.8 
(9.7) 12 3.6 

(2.2) 96 8.5  
(5.3)

HOMA-IR 332 2.4 (2.3) 37 3.2 
(2.0) 29 1.4 (0.7) 39 1.4 

(1.0) 57 1.6 
(0.6) 7 7.1 

(4.5) 11 3.0 
(2.3) 0 NA 44 4.9 (3.4) 12 0.8 

(0.5) 96 2.1  
(1.5)

HOMA-
IR > 3 78 5.7 (2.7) 19 4.7 

(1.7) 1 3.3 
(NA) 1 6.2 

(NA) 1 3.2 
(NA) 7 7.1 

(4.5) 3 6.1 
(2.1) 0 NA 28 6.7 (3.1) 0 NA 18 4.6  

(1.5)

HOMA-
IR ≤ 3 254 1.5 (0.7) 18 1.7 

(0.7) 28 1.3 (0.6) 38 1.2 
(0.7) 56 1.6 

(0.5) 0 NA 8 1.9 
(0.9) 0 NA 16 1.7 (0.4) 12 0.8 

(0.5) 78 1.5  
(0.7)

Table 1.  Anthropometric, clinical and biochemical characteristics of the study population and by project/
consortium. Values are Mean (SD), except for Sex, which is represented as number of cases (%). *474 
individuals obtained after processing the methylation raw data of 523 initial samples. BMI: Body mass index; 
HOMA-IR: Homeostatic model assessment of Insulin resistance; NA: not applicable.

Variable 
(x100)a β SE p [95% CI]

cg16462528 −0.046 0.011 <0.001 −0.067, −0.025

cg13133503 −0.080 0.036 0.028 −0.151, −0.009

cg07638362 −0.135 0.050 0.007 −0.234, −0.037

Table 2.  Significant adjusted linear regression models of the top CpGs selected by a slope ≥ |0.1| and False 
Discovery Rate (FDR) < 0.05 and Spearman’s rho. Adjusted by study, sex, age and body mass index. CI: 
confidence interval; SE: standard error. aβ coefficients for those variables reflect increases in 0.01 units.
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values of the 798 CpGs were compared between both HOMA-IR groups. After applying the Bonferroni correction 
for multiple comparisons, a total of 478 CpGs showed statistically significant differences (Supplementary Material 
Table S2).

The resulting 478 CpGs were clustered in a heat map according to methylation patterns (Fig. 3). Two main clusters  
of 61 and 271 individuals were generated. The first cluster contained 62.3% of individuals with HOMA-IR > 3. 
However, the second cluster only included 14.8% of HOMA-IR > 3. The difference in HOMA-IR proportions of 
the clusters was statistically significant (p < 0.001).

Figure 1.  Manhattan plot of HOMA-IR-associated CpGs selected by a slope ≥|0.1|. Points above the dot line 
showed a False Discovery Rate (FDR) < 0.05. The three CpGs selected by slope ≥|0.1|, FDR < 0.05, Spearman’s 
rho, and by multiple linear regressions adjusting by sex, age, study and body mass index are marked.

Figure 2.  Linear regression graphs between HOMA-IR and methylation β values of the significant three CpGs 
selected by slope ≥|0.1|, False Discovery Rate (FDR) <0.05, and Spearman’s rho. Adjusted by study, sex, age 
and body mass index. Dot lines on both sides of the solid line (linear regression for correlation) represent 95% 
confidence band.

Figure 3.  Heat map of 478 CpGs selected by Student’s t-test between HOMA-IR ≤3 and >3 (p < 6.26·10−5 after 
Bonferroni correction).
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Differentially methylated CpGs between HOMA-IR groups were related to glucose and insulin 
pathways.  Canonical pathways were obtained from Ingenuity Pathway Analysis (IPA) for these 478 CpGs 
(Fig. 4). Some of the statistically significant pathways were related to insulin and glucose, such as Protein Kinase 
A Signalling, Sirtuin Signalling Pathway, G-Protein Coupled Receptor Signalling, Rac Signalling, Mature Onset 
Diabetes of Young (MODY) Signalling, RhoA Signalling, and Leptin Signalling in Obesity. The top four CpGs differ-
entially methylated between HOMA-IR ≤3 and >3 were cg23475244 (NA), cg06115835 (SH3RF3), cg16278828 
(MAN2C1) and cg16639311 (NA) as illustrated (Fig. 5).

The top four CpGs allow to differentiate between HOMA-IR ≤3 and >3.  In order to further analyse 
whether methylation could differentiate between both HOMA-IR groups, the Receiver Operating Characteristic 
(ROC) curves adjusted by study, sex, age and BMI for the top four CpGs (cg23475244, cg06115835, cg16278828, 
and cg16639311) were calculated. The areas under the curve (AUC) of these CpGs were around 0.90 (AUC 
cg23475244 = 0.8965, AUC cg06115835 = 0.9026, AUC cg16278828 = 0.8989, and AUC cg16639311 = 0.8952), 
and after an internal validation (Fig. 6), the values were around 0.88 (AUC cg23475244 = 0.8865, AUC 
cg06115835 = 0.8919, AUC cg16278828 = 0.8893, and AUC cg16639311 = 0.8826).

Discussion
This study involving the Methyl Epigenome Network Association (MENA) project demonstrated the associa-
tion between DNA methylation in specific CpGs and HOMA-IR values. Our results also provided evidence of a 
differential methylation pattern between individuals with a HOMA-IR ≤3 and >3. Additionally, these data have 
led to the identification of four CpGs that allow us to differentiate individuals between HOMA-IR ≤ 3 and >3 
with an approximate AUC of 0.88. This assay adds further insights and knowledge about the relationship between 
T2D-related traits and epigenetic DNA modifications.

As aforementioned, IR is a hallmark of several diseases and unhealthy cardiometabolic conditions such 
as T2D, CVD, hypertension, obesity7 and metabolic syndrome8. Epigenetic mechanisms have been involved 
in the onset and development of IR9. Indeed, several studies have related methylation of specific genes with 
HOMA-IR3,7,8,22–31. Nevertheless, few EWAS have been performed to date5,14,15,18. In line with these studies, this 
EWAS of the MENA project showed an association of 798 CpGs with HOMA-IR (slope ≥ |0.1| and FDR < 0.05). 
In our study, from the top 10 CpGs, selected ones with better association and significant after linear regressions 
adjusting by study, age, sex, and BMI were cg07638362 (according to Illumina CG database this CpG was not 
associated to any gene), cg13133503 (CLCA4) and cg16462528 (LECT1). These CpGs, to our knowledge, have not 
been previously described in other EWAS. However, some of the mentioned genes have been found in the list of 
one study. Specifically, differentially methylated regions of LECT1 and CLCA4 have been significantly different 
between diabetics and non-diabetics32. Both CLCA4 and LECT1 have been related to methylation regulation33–35. 
CLCA4 has been involved in the activation of cAMP-dependent protein kinase A [www.genecards.org]. This 

Figure 4.  Canonical pathways from Ingenuity Pathway Analysis of 478 CpGs selected by Student’s t-test 
between HOMA-IR ≤3 and >3 (p < 6.26·10−5 after Bonferroni correction).

https://doi.org/10.1038/s41598-019-38980-2
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pathway is intimately connected to glucose homeostasis36. On the other hand, LECT1 plays a role as antiangio-
genic factor in cardiac valves, preventing valvular heart diseases37. Methylation of this gene may be associating IR 
with CVD. Thus, the association of several CpGs between DNA methylation and IR detected in our study adds 
further support for a potential role of abnormal DNA methylation in IR7.

Since IR is a key feature of T2D, obesity and metabolic syndrome7,8, it is interesting to analyse other EWAS 
and methylation studies related to these adverse metabolic conditions. These investigations have been per-
formed in several tissues such as pancreatic islets, liver, adipose tissue, skeletal muscle and blood cells38. There 
are five genes in our list that were previously related to insulin resistance (CXCR1, HDAC4, IGFR1, LEPR, and 
ABCG1)4,5,18. On the other hand, T2D and glycaemic traits have been associated with the following genes found in 
our selection NR4A332, KCNQ139, IRS139,40, SREBF114,16,17,20, SOCS314,16,17,20, ZNF518B8, SAMD1215,19, LY6G6E16, 
PHGDH20, and ABCG15,14–16,18,41. Additionally, IRS140, SREBF118,20,42, ABCG117,20,43–45, SOCS317,44,46, LY6G6E43 
and PHGDH45,47 have also been found in EWAS analysing BMI or obesity traits. Other genes from our list that 
are related to obesity or BMI were AOC348, c7orf5043, NOD220,42, and SLC1A542. Regarding genes associated 
with age, ZNF42349 and THRB50 were found in our list. In the case of smoking-associated genes, ECE1, ATP8B2, 
c7orf50, IGF1R, RPL23A, SFRS151, RPTOR, RARA52, c6orf4853, and IER354 appeared in the selection. Interestingly, 
the specific CpGs described for ABCG1 (cg06500161)5,14–18,20,42–45, SREBF1 (cg11024682)14,16–18,20,42,43, SOCS3 
(cg18181703)14,16,17,20,46, and PHGDH (cg14476101)20,42,45,47 were also found in our list. These four mentioned 
CpGs probably represent the widest described ones in relationship with T2D, obesity and other metabolic impair-
ments in several studies with different tissues such as skeletal muscle, liver, pancreas and blood cells. Our inves-
tigation adds some new CpGs and genes to the previously described list, contributing to the knowledge and the 
management of IR-associated diseases.

As a novelty, our results have shown that individuals with HOMA-IR ≤ 3 or >3 exhibited a differential meth-
ylation pattern for at least 478 CpGs. Furthermore, the clustering showed that 62.3% of individuals in the first 
cluster had a HOMA-IR > 3. Thus, more than half of the people with similar methylation patterns presented a 
HOMA-IR > 3. However, the distribution of some cohorts was not heterogeneous. This situation is due to the 
specific recruitment requirements for each cohort. Indeed, cohorts such as RESMENA, where all the patients had 
metabolic syndrome, is completely found in the first cluster.

Furthermore, these 478 CpGs corresponded to some genes involved in glucose and insulin-related pathways 
according to IPA. For example, Protein Kinase A Signalling, where protein kinase A activation triggers insu-
lin secretion in β-cells55; Sirtuin Signalling Pathway, where sirtuins influence many steps of glucose metabolism 
in liver, pancreas, muscle and adipose tissue56; and G-Protein Coupled Receptor Signalling, where insulin and 

Figure 5.  Box plots of top four CpGs selected by Student’s t-test between HOMA-IR ≤3 and >3 (p < 6.26·10−5 
after Bonferroni correction). Whiskers represent minimum and maximum values.

https://doi.org/10.1038/s41598-019-38980-2


6Scientific Reports |          (2019) 9:2445  | https://doi.org/10.1038/s41598-019-38980-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

glucagon secretion is affected by factors binding to G-protein coupled receptors on the surface of β- and α-cells57. 
Other pathways were Rac Signalling, which is involved in the regulation of insulin-stimulated glucose uptake58; 
RhoA Signalling, pathway that has been implicated in the pathogenesis of diabetes59; and Leptin Signalling in 
Obesity, since leptin is a regulator of glycaemic control60. Furthermore, Maturity Onset Diabetes of Young (MODY) 
Signalling represents the pathway of another type of diabetes that accounts for less than 2% of all diabetic cases. 
MODY is a monogenic form of diabetes characterized by an early onset, autosomal dominant mode of inher-
itance and a primary defect in pancreatic β-cell function61.

Only two of the top four CpGs with statistically significant differences between HOMA-IR ≤3 and >3 indi-
viduals presented associated genes according to Illumina CG database. Those genes were SH3RF3 and MAN2C1. 
The function of SH3RF3 is not well known, whereas MAN2C1 is related to glycosaminoglycan (GAG) metabo-
lism. The GAGs are heteropolysaccharides formed by a chain of repeating disaccharide units62. Changes in GAGs 
structure and function have been reported in the kidney, liver, arteries and retinal vessels of diabetics63.

Since methylation patterns of the 478 CpGs were able to cluster HOMA-IR individuals, we analysed the ability 
of the top four CpGs to differentiate between HOMA-IR ≤3 and >3 individuals. These top four CpGs distin-
guished HOMA-IR groups with a valuable AUC around 0.88 after an internal validation based on the optimistic 
correction model described by Harrell64, suggesting these CpGs as potential valuable biomarkers of IR.

This study was not devoid of limitations. Firstly, methylation is tissue-specific and the ideal tissue for this study 
would have been the pancreatic β-cells or cells from recognized insulin sensitive tissues such as skeletal muscle or 
white adipose tissue65. However, peripheral blood is the best non-invasive alternative tissue that reflects multiple 
metabolic and inflammatory pathways66, and relevant studies have demonstrated that epigenetic reprogramming 
may serve as a surrogate marker for metabolic disorders41. Interestingly, gene methylation parallelisms between 
peripheral blood cells and pancreatic islets have been recently reported, suggesting that blood may be used as a 
marker for islet DNA methylation67. Secondly, type I and type II error cannot be discarded, although multiple 
comparison tests and statistical adjustments for potential confounding factors such as sex, age, cohorts, DNA 
methylation chips, and cell composition heterogeneity have been performed. Thirdly, a validation sample would 
have been useful to corroborate the results in the selected genes. Unfortunately, this sample was not available. 
However, in order to resolve this issue and correct the overestimation of AUC, an internal validation using a 
bootstrap method64 was performed, obtaining similar results. Further studies are needed to verify the relationship 
between the selected CpGs and HOMA-IR. Finally, due to the cross-sectional feature of the study, methylation 
cannot be defined as a cause or consequence of cardiometabolic conditions. Remarkably, although there is an 
epigenetic programming during the first stages of human development68, Wahl et al. have described methylation 
alterations as a cause of higher BMI and adiposity20.

Epigenetic gene regulation, and specifically, DNA methylation, is playing a role in the pathogenesis of 
many complex disorders, including T2D, obesity or metabolic syndrome22. There is great interest to perform 

Figure 6.  ROC curves of the top four CpGs (cg23475244, cg06115835, cg16278828, and cg16639311). 
Optimism corrected value was calculated using the Tibshirani’s enhanced bootstrap method described by 
Harrell64.
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methylation profiling in peripheral blood to find potential methylation disease-related associations and use spe-
cific DNA methylated regions as biomarkers69. In summary, this study found associations between DNA methyl-
ation and IR, a hallmark of T2D, with a differential methylation pattern between individuals with HOMA-IR ≤ 3 
and > 3 in genes that are mainly involved in glucose and insulin-related pathways, and suggested four CpGs as 
biomarkers of IR. These results will hopefully contribute to the understanding of some epigenetic mechanisms 
that may regulate glycaemic traits, such as HOMA-IR, and the risk of T2D, as well as provide the basis for creating 
personalized strategies to predict, prevent and treat IR-associated diseases.

Subjects and Methods
Participants.  The MENA project was conducted in 523 adult participants from available cohorts at the 
University of Navarra (UNAV): DiOGenes-UNAV with n = 5870, OBEPALIP with n = 2971, Food4Me-UNAV with 
n = 4272, GEDYMET with n = 5773, ICTUS with n = 774, NUGENOB-UNAV with n = 4275, PREDIMED-UNAV 
with n = 12976,77, RESMENA with n = 4778, OBEKIT with n = 10079 and NormoP with n = 12. However, only 474 
final samples were available after the data processing explained in detail below.

Study designs, characteristics, inclusion and exclusion criteria were described for each study cohort, except for 
NormoP, whose design has not yet been described. All of them were approved by the Research Ethics Committee 
of the University of Navarra (CEI-UN, Pamplona, Spain), except for GEDYMET, which was approved by the 
Ethics committee of the School of Medicine, Pontificia Universidad Católica de Chile (Santiago, Chile), in com-
pliance with the Helsinki Declaration of ethical principles for medical research involving human subjects. All 
participants provided written informed consent.

The NormoP cohort participants recruitment started in 2016 in the University of Navarra (Pamplona, Spain). 
Eligible participants were self-declared healthy individuals, >18 years old, and had a BMI of between 18.5 and 
24.9 kg/m2. Exclusion criteria included pregnancy, type I diabetes, severe renal and digestive diseases, hydroelec-
trolitic disorders, acute CVD, cardiac arrhythmias, ictus, neoplasia, anaemia, eating disorders, pharmacological 
treatment, and dietary supplements that may affect the results.

Study variables.  Anthropometric measurements and the metabolic profile were obtained from databases of 
the aforementioned cohorts, which followed validated protocols. Data of some characteristics were not available 
for all the 474 participants. IR was estimated using the validated HOMA-IR index method10.

DNA extraction and DNA methylation analysis.  Venous blood samples were drawn on EDTA tubes. 
Genomic DNA was extracted from PWBCs using the MasterPureTM DNA Purification kit (Epicenter, Madison, 
WI), whose quality was assessed with the Pico Green dsDNA Quantitation Reagent (Invitrogen, Carlsbad, CA). 
High-quality DNA samples (500 ng) were treated with bisulfite using the EZ-96 DNA Methylation Kit (Zymo 
Research Corporation, Irvine, CA) according to the manufacturer’s instructions, converting cytosine into ura-
cil. DNA methylation levels were measured by microarray with the Infinium Human Methylation 450 K bead 
chip technology (Illumina, San Diego, CA, USA) in all the cohorts, except OBEKIT, which was performed with 
Infinium MethylationEPIC beadchip (Illumina). This analysis was conducted in the Unidad de Genotipado y 
Diagnóstico Genético from Fundación Investigación Clínico de Valencia, as detailed elsewhere80.

Treatment of methylation raw data.  Beta-values have been used as metrics to measure methylation 
levels. Beta-value in methylation experiments is the estimate of the methylation level using the ratio of the meth-
ylation probe intensity and the overall intensity, corresponding to the percentage of methylation on a specific 
site81. After obtaining intensity data using ChAMP package for R v.1.11.082 as described elsewhere83, the filtering 
process was performed in probes with a detection p-value above 0.01 in one or more samples, probes with a bead-
count <3 in at least 5% of samples, non-CpG probes, probes with SNPs84, probes that align to multiple locations84 
and probes located on the X or Y chromosomes.

From the 523 initial participants, samples with a failed CpG fraction above 0.01 were eliminated (n = 20), leav-
ing 503 individuals. After filtering probes, intra-cell type normalization was done using Subset-quantile Within 
Array Normalization (SWAN) method to avoid the bias introduced by the Infinium type 2 probe design85. In 
order to assess the similarity of normalized methylation samples in both batches and the pooled data, multidi-
mensional scaling plots based on top of 1000 most variable probes were performed. A total of 29 samples failed to 
fulfil this requisite, which left 474 participants for the subsequent analyses.

After SWAN normalization, magnitude of batch effects were assessed and corrected using the ComBat nor-
malization method, which is an empirical Bayes based method to correct for technical variation related to the 
slide86,87. Furthermore, differences in methylation resulting from differences in cellular heterogeneity were cor-
rected using the Houseman procedure88.

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus89 and are 
accessible through GEO Series accession number GSE115278 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE115278).

Statistical analysis.  After pre-processing, LIMMA package from the R statistical software82 was used to 
compute a linear regression between DNA methylation values and HOMA-IR. A total of 332 subjects from the 
MENA project showed data for both variables (Table 1). This analysis was adjusted by the effect of confounding 
factors such as sex, age, study and bead chip. Raw p-values were corrected using the Benjamini-Hochberg proce-
dure for multiple comparisons, and a FDR cut-off of 0.05 and a slope ≥ |0.1| were used as statistically significant 
thresholds. The top 10 CpGs were analysed for robustness with Spearman correlations and then, linear regres-
sions between HOMA-IR and methylation adjusted for study, sex, age, and BMI were also performed for the six 
selected CpGs.

https://doi.org/10.1038/s41598-019-38980-2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115278
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115278


8Scientific Reports |          (2019) 9:2445  | https://doi.org/10.1038/s41598-019-38980-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

The cut-off for HOMA-IR differs for different races, ages, genders, diseases, complications, etc.90 and no ref-
erence value has been established91. Since there is no consensus for the HOMA-IR cut point and in order to 
facilitate the analysis of this metabolically heterogeneous group, a cut-off of HOMA-IR = 3 was chosen, corre-
sponding to a value between the 75th and 80th percentiles, which are established as cut points by International 
Diabetes Federation (IDF) and Adult Treatment Panel III (ATPIII) for metabolic syndrome92. No influences in 
terms of races were considered, since more than 92% of the individuals were Caucasian in the MENA project and 
additionally, the study has been considered as a covariate in the analyses. Moreover, some studies have previously 
used this cut-off for HOMA-IR93,94. Differentially methylated CpGs between individuals with HOMA-IR > 3 and 
HOMA-IR ≤ 3 were explored using two-tailed Student’s t-test with Bonferroni correction. A p-value < 6.26·10−5 
was considered significant. Adjusted (for study, sex, age, and BMI) ROC curves were performed to determine the 
AUC of the top selected CpGs distinguishing individuals between HOMA-IR ≤ 3 or > 3. Furthermore, an internal 
validation using a correction for optimistic prediction was performed according to Tibshirani’s enhanced boot-
strap method described by Harrell64 in order to evaluate the overestimation of the model.

Statistical calculations were performed with STATA version 12.0 (Stata Corp, College Station, TX, USA), 
unless otherwise indicated. Manhattan plots, correlation graphs and box plots were produced using GraphPad 
Prism 6 (Graph-Pad Software, CA, USA). The heat map was created with the R software82 using library gplots and 
the heatmap.2 function.

Ingenuity Pathway Analysis.  Differentially methylated CpGs between individuals with HOMA-IR > 3 
and HOMA-IR ≤ 3 were analysed by IPA software (Qiagen Redwood City, CA, USA, www.ingenuity.com) as 
defined in the package. Predefined pathways and functional categories of the Ingenuity Knowledge Base were 
used in order to detect associated pathways and relevant gene regulatory networks95. Pathway analyses were per-
formed with IPA’s Core Analysis module. Canonical pathways with a p < 0.05 after Fisher’s test were defined as a 
statistically significant overrepresentation of input genes in a given process.

Data Availability
The data have been deposited in NCBI’s Gene Expression Omnibus89 and are accessible through GEO Series ac-
cession number GSE115278 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115278).
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