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Mammalian-cell messenger RNAs (mRNAs) are generated 
in the nucleus from precursor RNAs (pre-mRNAs, which 
often contain one or more introns) that are complexed with 
an array of incompletely inventoried proteins. During their 
biogenesis, pre-mRNAs and their derivative mRNAs are 
subject to extensive cis-modifications. These modifica-
tions promote the binding of distinct polypeptides that 
mediate a diverse array of functions needed for mRNA 
metabolism, including nuclear export, inspection by the 
nonsense-mediated mRNA decay (NMD) quality-control 
machinery, and synthesis of the encoded protein product. 
Ribonucleoprotein complex (RNP) remodeling through the 
loss and gain of protein constituents before and after pre-
mRNA splicing, during mRNA export, and within the cytop-
lasm facilitates NMD, ensuring integrity of the transcrip-
tome. Here we review the mRNP rearrangements that cul-
minate in detection and elimination of faulty transcripts by 
mammalian-cell NMD.   
 
 
INTRODUCTION 
1 
All cellular processes are not without errors. Accordingly, the 
cell has evolved complex quality-control mechanisms aimed at 
dealing with its own mistakes. One particularly prevalent and 
deleterious error is the introduction of a premature termination 
codon (PTC) within a protein encoding exon. This could occur 
as a result of faulty gene transcription, non-productive somatic 
rearrangements of T-cell receptor (TCR) or B-cell receptor (BCR) 
genes that generate immune receptor diversity necessary to 
keep pathogens at bay, or faulty pre-mRNA splicing. In all cas-
es, the resulting PTC-containing transcripts must be recognized 
and eliminated before the truncated proteins that they encode 
accumulate in the cell. Failure to do so has pathological conse-
quences in humans, as evidenced by the ~33% of inherited 
and acquired diseases that are a result of PTC acquisition 
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(Frischmeyer and Dietz, 1999). For example, dominantly inhe-
rited forms of β-thalassemia are caused by PTCs in human β-
globin mRNA that escape NMD quality control, generating a 
truncated dominantly negative-acting polypeptide that disrupts 
hemoglobin structure and function (Kugler et al., 1995). A range 
of other pathologies are also caused by the failure of NMD to 
eliminate PTC-containing transcripts (Bhuvanagiri et al., 2010; 
Holbrook et al., 2006), illustrating the immediate relevance of 
this process to human health.   

The mechanism by which NMD exerts its protective effect is 
intertwined with the biogenesis of its targets, namely, mRNAs.  
mRNAs are bound by protein constituents as messenger ribo-
nucleoprotein complexes (mRNPs) as soon as they are pro-
duced and subsequently during their cellular lifetime. In a pro-
cess termed remodeling, the polypeptide components of these 
mRNPs are subject to constant rearrangements, with some 
components being expelled, new components joining, and 
others simply moving spatially on the mRNA. Here we review 
how these molecular gymnastics facilitate NMD, pointing out 
where gaps in our knowledge exist.  

 
mRNA BIOGENESIS 
 
Mammalian-cell mRNAs and the primary transcript from which 
they derive exist not as naked ribonucleic acids, but rather in 
complex with an assortment of proteins. These proteins begin 
associating with primary transcripts during their synthesis by 
RNA polymerase II (pol II) in a series of pre-mRNA processing 
steps. These steps ultimately impinge on the mechanism of 
NMD since they result in the addition of proteins and other RNA 
modifications that affect inspection and decay of the product 
mRNA by the NMD apparatus. We provide a thumbnail sketch 
of only the major nuclear pre-mRNA and/or mRNA cis-modi-
fications that take place in mammalian cells in order to set the 
stage for discussing how these modifications affect NMD (Fig. 
1).  
 
5′ capping 
As soon as the nascent transcript emerges from the surface of 
pol II, it is cotranscriptionally capped at its 5′ end with a 7-
methylguanosine residue. This cap is added in an unusual 5′-
to-5′ linkage to the first transcribed residue of the transcript. In 
vertebrates, the ribose moieties of the first and second residues 
are also methylated at their 2′ hydroxyl groups. Capping pro-
vides a protective function by counteracting nuclear 5′-to-3′ 
exoribonucleases, which are unable to hydrolyze the linkage  
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between a 7-methylguanosine and the first templated RNA 
residue. Capping also provides a binding platform for the cap- 
binding complex (CBC), which is composed of the cap-binding 
protein 80 (CBP80) and CBP20. Capping enhances pre-mRNA 
splicing, pre-mRNA 3′-end processing, mRNA export to the 
cytoplasm, and mRNA translation (Topisirovic et al., 2011). 
Capping enzymes associate with the phosphorylated C-termi-
nal domain (CTD) of pol II (McCracken et al., 1997). This do-
main, which is unique to pol II, is phosphorylated by transcrip-
tion factor II H (TFIIH) during transcription initiation, at once 
explaining how transcripts are capped cotranscriptionally and 
also why only pol II products (and not tRNAs, rRNAs, etc) are 
earmarked with this unique 5′ feature. 
 
Splicing 
Mammalian-gene exons are interrupted by stretches of inter-
vening material termed introns. These introns must be spliced 
out of the nascent pre-mRNA, and the resulting exons must be 
joined together to give rise to a mature mRNA that accurately 
transmits its encoded information to the protein synthesis ma-
chinery. Splicing, which is an extremely complex process, is the 
purview of macromolecular machines termed spliceosomes, 
themselves comprised of RNAs (small nuclear RNAs, snRNAs) 
as well as splicing factors and other proteins. While the exact 
details are beyond the scope of this review (the reader is re-
ferred to: (Braunschweig et al., 2013; Hoskins and Moore, 
2012; Kornblihtt et al., 2013), the spliceosome generally recog-
nizes short conserved sequences in pre-mRNAs and catalyzes 
a series of two transesterification reactions that result in precise 
phosphodiester bond formation between two exons. Pertinent 
to mammalian-cell NMD, a consequence of the splicing reac-
tion is the deposition of another large macromolecular complex, 
termed the exon-junction complex (EJC), ~24 nucleotides up-
stream of exon-exon borders (Le Hir et al., 2000a; 2000b; Singh 
et al., 2012). EJCs assist in both nuclear export of the mRNP 
via RNA Export Factor (REF) and, as discussed below, NMD. 
The core EJC consists of the DEAD-box RNA helicase euka-
ryotic translation initiation factor 4A3 (eIF4A3), which is not 
actually a translation initation factor. As part of the EJC, eIF4A3 
is bound tightly to the RNA, and its ATPase activity is inhibited 
by partner-binding proteins Y14 and Magoh so as to result in 
mRNA sequence-independent anchorage of the EJC (Ballut et 
al., 2005). MLN51 also stabilizes the complex, forming a plat-
form to which additional EJC factors (such as REF) can bind. 
An emerging theme is that the peripheral EJC constituents are 
heterogeneous and promote multiple downstream RNA meta-
bolic processes, including nuclear export, translation, and in-
spection by the NMD machinery (see below). The exon-exon 
junctions at which EJCs are deposited, too, are heterogeneous, 
and some junctions are devoid of EJCs despite having formed 
via a splicing reaction (Singh et al., 2012). 
 
3′ polyadenylation 
Like the 5′ end, the 3′ end of eukaryotic pre-mRNAs is modified, 
in this case first through a hydrolysis reaction followed by the 
addition of a series of non-templated A residues (Millevoi and 
Vagner, 2010; Shatkin and Manley, 2000). The signal for po-
lyadenylation is generally an AAUAAA sequence, located 
roughly 10-35 nucleotides upstream of the future poly(A) tail, 
followed by a G/U rich sequen-ce downstream of the cleavage 
and polyadenylation site. These sequences serve to recruit clea-
vage and specificity factor (CPSF) and the cleavage stimulatory 
factor (CStF), respectively. Among others, three additional po-
lypeptides, cleavage factor I (CFI) and cleavage factor II (CFII), 

as well as poly(A) polymerase (PAP) bind to this complex. 
Binding of PAP allows cleavage to proceed and also produces 
a high local concentration of the polymerase necessary for 
polyadenylation, ensuring that the reaction will be completed 
before exonucleases have the opportunity to act on the vulner-
able newly generated 3′ hydroxyl group. PAP slowly adds A 
residues to the new 3′ end until a length sufficient for poly(A)-
binding protein nuclear 1 (PABPN1) association is created. 
PABPN1 association with short poly(A) tails stimulates the rate 
of polyadenylation by PAP (Kuhn et al., 2009), culminating in a 
poly(A) tail of roughly 200-250 residues to which both PABPN1 
and its largely cytoplasmic counterpart PABPC1 are bound in 
the nucleus (Hosoda et al., 2006). 
 
mRNP EXPORT 
 
Once proper 5′ and 3′ modifications as well as splicing have 
been completed, the mRNA, assembled as an mRNP, must 
traverse the physical barrier between the nucleus and cytop-
lasm, so as to arrive at the location where functionally active 
ribosomes, translation initiation factors, and the rest of the pro-
tein production machinery reside (Burns and Wente, 2012; 
Cole and Scarcelli, 2006). The nucleus is a double membrane-
delimited compartment with proteinacious nuclear pore com-
plexes (NPCs) facilitating the movement of macromolecules 
between the nucleoplasm and cytoplasm (Burns and Wente, 
2012; Tran and Wente, 2006). As discussed above, passage of 
mRNPs through the NPC is facilitated by RNA cis-modifications 
and the proteins that bind them. In addition, the nuclear import 
of protein cargoes is facilitated by a group of proteins termed 
karyopherins. The karyopherin importin-α binds to the bipartite 
nuclear localization signals in the CBP80 constituent of CBC to 
promote the import of CBC into nuclei. In an unusual associa-
tion that does not result in dissociation of importin-α and CBP80, 
the CBC of newly synthesized nuclear mRNA remains bound 
by importin-α, which vectorially translocates with the mRNP 
through nuclear pores into the cytoplasm in a mechanism that 
uses a gradient of the monomeric G protein Ran, which is 
bound to the GTP nucleotide for directionality (Dias et al., 2010). 
An important consequence of mRNP export is mRNP remode-
ling. Some proteins bound to mRNP in the nucleus dissociate 
and are replaced by other proteins in the cytoplasm. This pro-
cess of remodeling involves replacement of 5′ cap-bound CBC 
by eIF4E via importin-β (Dias et al., 2009; Sato and Maquat, 
2009), removal of EJCs via ribosome-bound PYM (Gehring et 
al., 2009b), and replacement of PABPN1 by PABPC1 in an 
unknown but translation-promoted mechanism (Sato and Maquat, 
2009). Each remodeling event alters the efficiency of NMD (Fig. 
1; see below).  
  
CYTOPLASMIC EVENTS: NMD 
 
With the newly exported mRNP localized to the cytosol, the 
stage is set for the NMD surveillance machinery to inspect the 
transcript for an in-frame PTC and, in so doing, decide whether 
the mRNA should be spared for the production of full-length 
functional protein or earmarked for destruction because it en-
codes a truncated protein that is potentially deleterious to cellu-
lar metabolism. We shall first discuss a simplified current work-
ing model for the remodeling events that culminate in EJC-
dependent NMD. We follow this by a discussion of points where 
our knowledge is incomplete.  
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NMD: the parts list 
Recognition of a PTC as aberrant and the subsequent degra-
dation of a PTC-bearing mRNA are subjects of intense ongoing 
research (Hwang and Kim, 2013). Mammalian-cell NMD, which 
depends on translation for PTC recognition, is thought to occur 
rapidly after mRNP export. Indeed, the kinetics of NMD, as exa-
mined using single-RNA fluorescence in-situ hybridization (FISH) 
of PTC-containing transcripts, supports this notion (Trcek et al., 
2013). NMD is facilitated by a group of protein trans-effectors. 
Conserved in all organisms known to support NMD, the core 
group of NMD factors consists of up-frameshift proteins UPF1, 
UPF2 and UPF3 (Fig. 2). In mammals, UPF3 has been diversi-
fied to consist of two variants, UPF3 (UPF3a) and UPF3X 
(UPF3b), which derive from separate genes (Serin et al., 2011). 
Additional factors include the suppressor with morphological 
effects on genitalia proteins SMG1, SMG5, SMG6, SMG7, 
SMG8, and SMG9 (Isken and Maquat, 2007; Mühlemann and 
Lykke-Andersen, 2010; Rebbapragada and Lykke-Andersen, 
2009).    
 
NMD: mechanism 
In mammals, the EJC mark left behind on mRNA as a conse-
quence of pre-mRNA splicing seems to be a critical factor in the 
decision as to whether an mRNA is aberrant or not (Le Hir et al., 
2000a; 2000b). Most termination codons reside in the final exon. 
Thus a situation where a termination codon resides 5′ to an 
EJC results in an unusual configuration. NMD is a translation-
dependent process, and translation termination is used to relay 

the position of a PTC to the NMD apparatus. Termination re-
quires eukaryotic release factor 1 (eRF1) and eRF3. If termina-
tion occurs ≥ 50-55 nucleotides upstream of an EJC (the 50-
55 nucleotide rule; Nagy and Maquat, 1998), the size of the 
terminating ribosome is insufficient to physically remove the 
EJC. Thus this configuration is characteristic of PTC-containing 
mRNAs and not of most normal endogenous mRNAs (excep-
tions exist, of course), but how are these signals conveyed to 
the NMD surveillance apparatus?  

The key NMD factor, UPF1, is an ATP-dependent RNA heli-
case that associates with the terminating ribosome via an inte-
raction with eRF3 (Czaplinski et al., 1998; Kashima et al., 2006). 
A considerable amount of data indicate that this takes place 
shortly after mRNA export, while mRNA remains bound to CBC 
during what is termed a “pioneer” round of translation (Ishigaki 
et al., 2001; Maquat et al., 2010a; 2010b). Importantly the pio-
neer round of translation involves newly synthesized CBC-
bound mRNA prior to the cytoplasmic remodeling step that 
replaces cap-bound CBC by eIF4E and is compatible with the 
observed NMD kinetics (Trcek et al., 2013 and references 
therein). CBP80 has also been documented to “chaperone” 
UPF1 to the terminating ribosome (Hwang et al., 2010), located 
at the PTC, helping to form what is termed the “SURF” complex, 
which consists of the serine/threonine kinase SMG1 (whose 
activity is initially dampened by the presence of SMG8−SMG9), 
UPF1, and eRF1-eRF3 (Kashima et al., 2006). Meanwhile, the 
EJC is decorated with UPF3 or UPF3X which associates with 
UPF2. In a mechanism that may involve “reeling in” of the 

Fig. 1. Cis-modifications and Select Proteins
Bound to mRNAs in the Nucleus versus the Cyto-
plasm. During transcription in the nucleus, pre-mRNAs
are subject to 5′ capping with a 7-methylguanylate
residue in 5′-to-5′ linkage to the nascent transcript.
This facilitates binding by the cap-binding complex
(CBC), which is composed of cap-binding protein 80
(CBP80) and CBP20. Co- and post-transcriptionally,
introns are removed and exons are joined together in
a process called pre-mRNA splicing. A consequence
of splicing is deposition of an exon-junction complex
(EJC) ~24 nucleotides upstream of exon-exon bor-
ders. At their 3′ end, transcripts undergo cleavage
and polyadenylation, which allows poly(A)-binding
protein nuclear 1 (PABPN1) and poly(A)-binding pro-
tein cytoplasmic 1 (PABPC1) to bind. This assem-
bled mRNP is exported through the nuclear pore
complex into the cytoplasm. Immediately after ex-
port, the mRNP is subject to pioneer translation and,
during this process, inspection by NMD. The mRNP
is further remodeled in processes that either are or
are not augmented by translation. Select events
include replacement of CBC by eIF4E, which is the
cap-binding component of the eIF4F complex; re-
moval of EJCs via ribosome-associated PYM and early
rounds of translation; and replacement of PABPN1
by PABPC1, which is likewise augmented by early
rounds of translation. NMD takes place during these
dynamic events (see Fig. 2). Successful negotiation
of NMD spares the remodeled mRNA from degrada-
tion and allows it to template protein production.
Horizontal red lines, 5′- and 3′- untranslated re-
gions; horizontal red bar, coding region; vertical
purple bar, exon-exon junction. 
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Fig. 2. Protein rearrangements during mammalian-cell, EJC-mediated NMD. Immediately after nuclear export, CBC-bound templates are subject 
to pioneer round(s) of translation. If a premature termination codon (PTC) resides ≥ 50-55 nucleotides (nt) upstream of an exon-exon junction that 
is bound by an EJC, then CBC escorts UPF1−SMG1 to the eRF3 constituent of the eRF1−eRF3 heterodimer in the context of the terminating 
ribosome, forming the SURF complex (first, top). CBC also escorts UPF1−SMG1 to the EJC, to which UPF2 is bound via UPF3 or UPF3X 
(second) to form the DECID complex (which may also include eRF1 and eRF3; Kashima et al., 2006). In this configuration, SMG1 phosphorylates 
various serines and threonines near the N- and C-termini of UPF1 (third), producing hyperphosphorylated UPF1. UPF1 activation via phosphoryla-
tion has several functions (fourth, bottom). It induces translational repression, recruits SMG6 (which endonucleolytically cleaves PTC-bearing 
mRNAs between the PTC and EJC), and recruits SMG5−SMG7 or SMG5−PNRC2, which further recruit decapping and/or deadenylating en-
zymes, facilitating exonucleolytic degradation of the mRNA. See text for further details.
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mRNA spanning the PTC and the EJC (Shigeoka et al., 2012), 
UPF1 contacts UPF2 at the EJC, forming the decay-inducing 
complex (DECID) (Yamashita et al., 2009). Because both PTC-
bearing transcripts and their PTC-free counterparts associate to 
some degree with UPF1, albeit to different extents (Hogg and 
Goff, 2010; Kurosaki and Maquat, 2013), DECID formation (a 
consequence of EJC deposition) is critical in determining wheth-
er an mRNA is spared or sent for destruction. DECID formation 
leads to SMG1-mediated phosphorylation of UPF1 at multiple 
residues located within N- and C-terminal portions of UPF1. 
Hyperphosphorylation of UPF1 is prerequisite for destruction of 
PTC-bearing mRNAs. SMG1-induced phosphorylation of UPF1 
functions to recruit the additional SMG factors, SMG6 and 
SMG5−SMG7 (Okada-Katsuhata et al., 2012), as well as pro-
line-rich nuclear receptor co-regulatory protein 2 (PNRC2) (Cho 
et al., 2009). Recruitment of SMG6 to PTC-containing tem-
plates causes one or more endonucleolytic cleavages between 
the PTC and EJC. SMG6 mediates this cleavage itself, by vir-
tue of its PilT N-terminus (PIN) domain (Eberle et al., 2009; 
Huntzinger et al., 2008). Endonucleolytic cleavage constitutes 
an irreversible step towards destruction as it generates mRNA 
ends unprotected by the usual 5′ and 3′ modifications dis-
cussed above. SMG5−SMG7 or SMG5−PNRC2 complexes may 
also be recruited by hyperphosphorylated UPF1. These adap-
tor complexes further recruit decapping enzymes and deadeny-
lases that remove the crucial 5′ and 3′ modifications, allowing 
access to 5′-to-3′ and 3′-to-5′ RNA degradation enzymes, re-
spectively (Fukuhara et al., 2005; Lejeune et al., 2003; Unter-
holzner and Izaurralde, 2004).   

Binding of UPF2 to UPF1 (i.e. joining of all or part of SURF to 
the EJC to form the DECID complex) activates UPF1 helicase 
activity. This occurs when UPF2 binds the regulatory cysteine-
histidine rich (CH) domain of UPF1, causing a conformational 
change that has been documented by X-ray crystallography 
and that promotes UPF1 helicase activity (Chamieh et al., 
2008; Chakrabarti et al., 2011). This activity is needed to strip 
the 3′-cleavage product generated by SMG6 of its protein com-
ponents in order to provide access to the 5′-to-3′ exonuclease 
XRN1 (Franks et al., 2010) and also to recycle essential protein 
factors.     

Translational repression (through interference with translation 
initiation) has recently gained attention as a critical step towards 
microRNA-mediated mRNA degradation (Bazzini et al., 2012; 
Djuranovic et al., 2012; Meijer et al., 2013). In the context of 
NMD, translational repression has long been known to be a 
prerequisite for degradation (Isken et al., 2008). Hyperphospho-
rylated UPF1 functions to limit the amount of translation prod-
ucts that could arise from PTC-bearing mRNAs. It does so by 
interacting directly with eIF3 of a 43S (i.e. 40S/Met-tRNAi

Met/ 
mRNA) pre-initiation complex that is poised at the AUG transla-
tion initiation codon of an mRNA once it is recognized to harbor 
a PTC. This inhibits the conversion of the 43S complex to a 
translationally competent 80S form.      

Since NMD is a translation-dependent process, the fate of 
the encoded truncated polypeptide must be addressed by the 
cell. Truncated polypeptides may be toxic, exhibiting dominant-
negative effects that contribute to a number of human patholo-
gies. That NMD apparently evolved to safeguard against these 
types of insults raises the possibility that cells may be able to 
mediate destruction of a truncated polypeptide that results as a 
consequence of the pioneer round of translation, in addition to 
degrading the mRNA from which the truncated polypeptide 
derives. In yeast, several reports indicate that UPF1 is itself an 
E3 ubiquitin ligase that collaborates with an E2 enzyme (Kuro-

ha et al., 2009; Takahashi et al., 2008). E3 enzymes mediate 
attachment of the 76-amino acid ubiquitin moiety onto proteins 
that are destined for proteasome-mediated destruction. This 
could provide a mechanism for rapid degradation of the trun-
cated polypeptides that are byproducts of the pioneer round of 
translation of PTC-bearing mRNAs, although this notion bears 
much further investigation in mammalian cells since apparently 
not all truncated proteins are degraded (Anczukow et al., 2008). 

A final consideration is how active, hyperphosphorylated 
UPF1 is recycled for further rounds of NMD. SMG5−SMG7 
recruitment to phospho-UPF1 functions to further recruit protein 
phosphatase 2A (PP2A), which dephosphorylates UPF1, retur-
ning it to its inactive state (Anders et al., 2003; Chiu et al., 2003; 
Ohnishi et al., 2003). 
  
OTHER CYTOPLASMIC REMODELING EVENTS AND  
THEIR IMPACT ON NMD 
 
The events of NMD sketched above must be placed within their 
proper temporal framework. As mRNPs emerge from nuclear 
pores, they are remodeled to include cytoplasmic proteins, and 
the nuclear proteins that are stripped from the mRNPs are re-
turned to the nucleus.   
 
5′ remodeling 
At the mRNA 5′ end, the CBC is removed and replaced by 
eIF4E. Surprisingly, it is not the initial round(s) of pioneer trans-
lation that promotes this event. Rather it is binding of importin-β  
to CBP80-bound importin-α that facilitates replacement of CBC 
by eIF4E (Sato and Maquat, 2009). Two recent papers suggest 
that mammalian NMD may not be largely restricted to CBC-
bound templates (Durand and Lykke-Andersen, 2013; Rufener 
and Muhlemann, 2013), as suggested previously (Trcek et al., 
2013) and references therein. Thus it may be that in the cell, 
the kinetics of NMD-induced degradation merely correlates with 
the kinetics of CBC replacement by eIF4E. In other words, 
NMD may occur more rapidly [the half-life of an NMD substrate 
once it reached the cytoplasm was determined to be < 1 min by 
single-molecule FISH, (Trcek et al., 2013)] than the replace-
ment of CBC by eIF4E, blurring the distinction between cause-
and-correlation and seemingly confining NMD to CBC-bound 
templates. Such a situation leaves also the question of the 
disposition of EJC components on eIF4E-bound templates, 
which are presumably physically removed by the ribosome 
during the initial rounds of CBC-mediated translation (Dostie 
and Dreyfuss, 2002; Gehring et al., 2009a; Sato and Maquat, 
2009), yet are typically a requirement for NMD. Thus although 
eIF4E-bound templates can be targeted for NMD (see e.g. 
Hosoda et al., 2005), where tethering UPF1 downstream of a 
termination codon triggers the NMD of both CBC-bound and 
eIF4E-bound mRNA), it may simply be the case that most 
mRNAs are destroyed sufficiently swiftly after their biogenesis 
that the cap has yet to be remodeled. In support (but not proof) 
of this, CBP80 augments the efficiency of NMD (Hwang et al., 
2010). 
 
3′ remodeling 
Unlike the exchange of CBC by eIF4E, remodeling at the 3′ end 
of an NMD target is promoted by translation. After export, 
PABPN1 is replaced by its cytoplasmic counterpart PABPC1 
(Sato and Maquat, 2009). This exchange has important conse-
quences for the efficiency of NMD. Most eIF4E-bound mRNAs 
likely adopt a circular conformation by virtue of the association 
of eIF4G, which binds to eIF4E at the mRNA cap, with PABPC1; 
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this positions translation termination within the vicinity of transla-
tion initiation and facilitates further rounds of translation (Amrani 
et al., 2004; 2008; Kervestin and Jacobson, 2012). For CBC-
bound templates, circularization may be mediated either by PABPC1 
binding to eIF4G (Lejeune et al., 2004) or possibly to the eIF4G-like 
molecule CBP80/20-dependent translation initiation factor (CTIF) 
(Choe et al., 2012; Kim et al., 2009), which in turn binds the CBC. 
Although the CTIF lacks the PABP interaction region present in 
eIF4GI and eIF4GII, possible interactions between PABPC1 
with other portions of CTIF remain to be tested. PABPC1 has 
been hypothesized to antagonize NMD by competitively block-
ing the interaction of UPF1 with eRF3 on the terminating ribo-
some, thus halting NMD before SURF formation occurs (Ivanov 
et al., 2008; Singh et al., 2008). However, it should be noted 
that there is no stringent proof of this and, in fact, PABPC1 is 
apparently not required to obviate NMD in yeast (Kervestin et 
al., 2012; Meaux et al., 2008). In situations where the termina-
tion codon is distant from the poly(A) tail, as is the case with 
PTC-containing targets, the interaction of PABPC1 with eRF3 is 
proposed to be less efficient, allowing for NMD to proceed with 
possible stimulation from EJC components. This model also 
has been used to explain why AUG translation initiation codons 
that reside very close to PTCs fail to elicit efficient NMD, given 
that PABPC1 would be in close proximity to the PTC in a 
closed-loop conformation (Peixeiro et al., 2012). Notably, how-
ever, this effect has alternatively been attributed to translation 
reinitiation at a downstream AUG initiation codon (Neu-Yilik et 
al., 2011; Zhang and Maquat, 1997). 
  
CONCLUSION 
 
Open questions about the precise mechanism by which NMD 
destroys PTC-bearing transcripts remain. The picture that we 
have attempted to paint is one where NMD occurs on the 
backdrop of dynamic mRNP remodeling. Some of these events 
clearly play a causal role in NMD, but others may simply corre-
late with NMD kinetics. When viewed through this lens, the 
pressing issue of remodeling kinetics must be addressed. Ex-
change rates of CBC by eIF4E will be of interest, and the pos-
sibility that this rate may be heterogeneous for distinct tran-
scripts should be considered. As suggested by Izzauralde and 
Hentze (Hentze and Izaurralde, 2013), the dissociation rates of 
EJCs must also be investigated, and these may also likewise 
be heterogeneous.   

With respect to the players that choreograph NMD, it is un-
likely that the full complement of proteins impacting the efficien-
cy of NMD has been revealed. For example, recent studies 
have uncovered a role for the human spliceosomal protein 
CWC22 in EJC deposition and NMD (Alexandrov et al., 2012). 
Even the RNA cis-features that render some transcripts subject 
to NMD remain incompletely understood. Abnormally long 
3′UTRs, for example, may signal NMD-mediated destruction, 
but how this precisely fits within the better understood EJC-
mediated framework, aside from these abnormally long 3′UTRs 
binding unusually high levels of UPF1 (Hogg and Goff, 2010; 
Kurosaki and Maquat, 2013), remains to be determined. One 
possibility is a “unified” model (Singh et al., 2008) where NMD 
is a result of a competition between NMD antagonists (e.g. 
PABPC1) and agonists (e.g. the EJC). However, other tran-
scripts with abnormally long 3′UTRs evade NMD detection 
(Eberle et al., 2008). Is this accomplished in bona fide cellular 
transcripts by secondary structure in the 3′UTR physically 
shortening the distance between the PTC and PABPC1, or are 
other mechanisms at play?  

In addition to eliminating faulty transcripts, NMD has been 
implicated in regulating a large swath of the transcriptome, 
degrading many non-mutated transcripts [see e.g.(Mendell et 
al., 2004)]. Some of these transcripts bear structural features 
that would render them NMD targets but others do not. Which 
are direct NMD targets and which are indirectly targeted by 
NMD? What is the physiological purpose of endogenous tran-
script regulation via NMD, keeping in mind that transcripts en-
coding proteins with diverse functions seem to be targeted by 
NMD? For some classes of transcripts, such as RNA-binding 
proteins (in particular splicing factors) and the NMD factors 
themselves, NMD provides an autoregulatory loop that ensures 
homeostatic control of the genes encoding these transcripts 
(Huang et al., 2011; McGlincy and Smith, 2008; Ni et al., 2007; 
Saltzman et al., 2008; Yepiskoposyan et al., 2011). Although 
satisfying, this still leaves large groups of NMD-controlled tran-
scripts unexplored. Can this system be regulated to accomplish 
physiologically important outcomes, for example via post-tran-
slational modifications of the NMD machinery? Although the 
exact mechanism by which NMD activity is acutely modulated 
remains to be discovered, recent studies suggest that this is the 
case, at least in the context of tumorigenesis and cellular stress 
(Gardner, 2010; Wang et al., 2011). These and other open 
questions should provide much fodder for interesting future 
research.  
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