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Abstract: Background: In data analysis and machine learning, we often need to identify and quantify
the correlation between variables. Although Pearson’s correlation coefficient has been widely used,
its value is reliable only for linear relationships and Distance correlation was introduced to address this
shortcoming. Methods: Distance correlation can identify linear and nonlinear correlations. However,
its performance drops in noisy conditions. In this paper, we introduce the Association Factor (AF)
as a robust method for identification and quantification of linear and nonlinear associations in noisy
conditions. Results: To test the performance of the proposed Association Factor, we modeled several
simulations of linear and nonlinear relationships in different noise conditions and computed Pearson’s
correlation, Distance correlation, and the proposed Association Factor. Conclusion: Our results show
that the proposed method is robust in two ways. First, it can identify both linear and nonlinear
associations. Second, the proposed Association Factor is reliable in both noiseless and noisy conditions.

Keywords: association factor; Pearson’s correlation; distance correlation; maximal information
coefficient (MIC); detrended fluctuation analysis (DFA); nonlinear relation; noisy relationship

1. Introduction

Analyzing large datasets is becoming central in science, engineering, and technology. In data
mining and statistical analysis, it is essential to detect relationships between different variables [1].
Different correlation factors have been introduced to identify and quantify the relationship between
variables. Pearson’s correlation coefficient has been broadly used to identify and measure the strength
and direction of a linear relationship between two variables.

Pearson’s correlation can effectively detect linear relationships; however it is not reliable to identify
nonlinear relationships between two variables. To address this shortcoming of Pearson’s correlation,
Distance correlation was introduced by Gábor J. Székely [2,3] to find both linear and nonlinear relationships
between two variables. Regardless of the relationship type, Distance correlation quantifies the degree
of correlation by a value between zero and one. Values close to one represent strong correlation, while
values close to zero suggest weak correlation between two variables. It has been demonstrated that
Distance correlation is superior to Pearson’s correlation for identifying nonlinear relationships.

Several extensions of Distance correlation have been introduced such as Invariant Distance
correlation [4], Conditional Distance correlation [5], Distance Correlation of Lancaster distributions [6],
Distance Standard Deviation [7], Distance Correlation for locally stationary processes [8], Distance
correlation coefficient for multivariate functional data [9], Partial Distance correlation [10], and Distance
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correlation t-test [11]. Distance correlation has been broadly used for different applications such as
time series [12,13], clinical data analysis [14], genomics [15], and biomedical data analysis [16].

Although Distance correlation can identify and quantify nonlinear correlations, it does not
necessarily obtain the same or comparable values for different nonlinear relationships. For example,
the Distance correlation of an exponential relationship could be higher than a quadratic relationship.
Moreover, Distance correlation values drop in noisy conditions and may not robustly demonstrate
the strength of the correlation, where low correlation values may contribute to the wrong conclusion
about the strength of relationship between two variables.

To address these shortcomings and improve the performance of Distance correlation, in this
paper we propose the Association Factor (AF). The proposed AF performs robustly with regard to
identifying both linear and nonlinear relationships. Moreover, we show that AF performs robustly
in noisy conditions and outperforms Distance correlation in identifying noisy linear and nonlinear
relationships. An overview of Pearson’s correlation and Distance correlation is provided in the next
section. The proposed Association Factor is presented in Section 2. Simulation models, Results, and
Conclusions are presented in Sections 3–5 respectively.

2. Methods

2.1. Quick Review

2.1.1. Pearson’s Correlation

Pearson’s correlation is a measure of the strength and direction of the linear relationship between
two variables. Its score ranges between −1 and one, and it describes the degree to which one variable
is linearly related to another. Pearson’s correlation between two variables X and Y is defined by:

ρ =
cov(X, Y)

σXσY
(1)

where cov(X, Y) is the covariance between X and Y, σX is the standard deviation of X, and σY is the
standard deviation of Y. Pearson’s correlation is essentially the covariance of X and Y normalized by
the product of the standard deviations of X and Y [17].

2.1.2. Distance Correlation

Distance correlation is a measure of the correlation between two random vectors X and Y, and its value
ranges from zero to one. Analogous to product-moment correlation (Pearson’s correlation), Distance
correlation can identify linear and nonlinear correlations using Euclidean distance. The empirical
Distance correlation [2] is computed by:

R2(X, Y) =


ν2

n(X,Y)√
ν2

n(X)ν2
n(Y)

, ν2
n(X)ν2

n(Y) > 0,

0, ν2
n(X)ν2

n(Y) = 0
(2)

where R(X, Y) is empirical Distance correlation, νn(X, Y) is empirical Distance covariance of X and Y,
νn(X) and νn(Y) are empirical Distance variances of X and Y respectively, n is sample size, and νn(., .)
is a scalar. R(X, Y) is zero if and only if X and Y are independent.

2.2. Proposed Association Factor

In this paper, we introduce the Association Factor (AF), the Distance correlation of Optimal
Transformations of variables X and Y:

RAF(X, Y) = R(h1(X), h2(Y)) (3)
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where RAF(X, Y) is the proposed AF, and h1 : dom(X) → B and h2 : dom(Y) → C are measurable
mean zero transformations where B, C ⊆ R, and for ν2

n(h1(X))ν2
n(h2(Y)) > 0, we have:

R2
AF(X, Y) =

ν2
n(h1(X), h2(Y))√

ν2
n(h1(X))ν2

n(h2(Y))
(4)

where νn(h1(X), h2(Y)) is empirical Distance covariance of h1(X) and h2(Y), νn(h1(X)) and νn(h2(Y))
are empirical Distance variances of h1(X) and h2(Y) respectively, n is sample size, and νn(., .) is a scalar:

ν2
n(h1(X), h2(Y)) =

1
n2

n

∑
k,l=1

Akl,h1 Bkl,h2 (5)

ν2
n(h1(X)) = ν2

n(h1(X), h1(X)) =
1
n2

n

∑
k,l=1

A2
kl,h1

(6)

ν2
n(h2(Y)) = ν2

n(h2(Y), h2(Y)) =
1
n2

n

∑
k,l=1

B2
kl,h2

(7)

where:
Akl,h1 = akl,h1 − āk.,h1 − ā.l,h1 + ā..,h1 ,

akl,h1 = |h1(Xk)− h1(Xl)|p , āk.,h1 =
1
n

n

∑
l=1

akl,h1 ,

ā.l,h1 =
1
n

n

∑
k=1

akl,h1 , ā..,h1 =
1
n2

n

∑
k,l=1

akl,h1 ,

k, l = 1, ..., n

Similarly,
Bkl,h2 = bkl,h2 − b̄k.,h2 − b̄.l,h2 + b̄..,h2 ,

bkl,h2 = |h2(Yk)− h2(Yl)|q , b̄k.,h2 =
1
n

n

∑
l=1

bkl,h2 ,

b̄.l,h2 =
1
n

n

∑
k=1

bkl,h2 , b̄..,h2 =
1
n2

n

∑
k,l=1

bkl,h2 ,

k, l = 1, ..., n

To quantify the degree of association between X and Y, we discuss a bivariate case of a response
variable Y and a predictor X. Regardless of the relationship type between X and Y, we assume there
are transforming functions h1(X) and h2(Y) that can transform the relationship between X and Y to a
linear relation between h1(X) and h2(Y):

h2(Y) = β0 + h1(X) + ε (8)

where ε has a Gaussian distribution with zero mean and standard deviation σ. We can find h1(X) and
h2(Y) by minimizing the Sum of Squared Errors (SSE):

n

∑
i=1

ε̂2
i =

n

∑
i=1

(ĥ2(Yi)− ĥ1(Xi))
2 (9)

To minimize ∑n
i=1 ε̂2

i with regard to h1(X) and h2(Y), we use a simplified optimal transformation [18]
by an iterative estimation. Let E[h2(Y)] = 0, Var[h2(Y)] = E[(h2(Y))2] − E[h2(Y)]2 = 1, and as a
result, E[(h2(Y))2] = 1. We start with h2(Y) = Y

||Y|| . For a given h2(Y), to minimize ∑n
i=1 ε̂2

i , we have:
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h1(X) = E[h2(Y)|X] (10)

and for a given h1(X), in a similar way, we have:

h2(Y) =
E[h1(X)|Y]
||E[h1(X)|Y]|| (11)

In each iteration, h1(X) and h2(Y) will be estimated, and an iterative optimization continues
until the estimate of error ∑n

i=1 ε2
i (T) = ∑n

i=1(h2(Yi)(T)− h1(Xi)(T))2 does not decrease in iteration
T, where h2(Y)(T) and h1(X)(T) are optimal estimates with regard to unexplained variance.

Estimated transforming functions h1(X) and h2(Y) are optimal and linear for a joint normal
distribution [19], where marginal distributions of X and Y are normal. If joint distribution of X and Y
is not normal, estimated transforming functions h1(X) and h2(Y) are not optimal, but they are close to
optimal linear transformations [18]. AF has the following properties:

• Non-negativity,RAF(X, Y) ≥ 0.
• Disappears if and only if the two vectors are not associated,RAF(X, Y) = 0 for unassociated X

and Y.
• Symmetry,RAF(X, Y) = RAF(Y, X) for noiseless vectors X and Y.
• Triangular inequality,RAF(X, Y) ≤ RAF(X, Z) +RAF(Z, Y).

3. Simulation Models

To test the performance of the proposed AF, we modeled several simulations and computed
Pearson’s correlation, Distance correlation, and the proposed AF. Because Distance correlation and the
proposed AF take values between zero and one, we calculate the absolute value of Pearson’s correlation
to provide a fair comparison between these methods. The aforementioned correlation coefficients are
quantified for linear and nonlinear correlations. We have also obtained these correlation coefficients
for random relation (no relationship) as follows.

3.1. Linear and Nonlinear Relationships in Noiseless Conditions

We simulated the following relationships:

• Linear: Y = β0 + β1X, where β0 is intercept and β1 is slope.
• Fourth order polynomial: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 where β’s are coefficients.
• Exponential: Y = exp(λx), where λ is rate.
• Parabolic: Y = β0(X− β1)

2, where β0 and β1 are coefficients.

The simulation steps are summarized below.

1. Let ΩD be a set of D relationship types l1 to lD. Generate pairwise variables using relationships
in the relationship set ΩD so that D different datasets Γ1, Γ2, ..., ΓD representing the relationship
types l1 to lD are obtained.

2. For each generated dataset Γd, compute Pearson’s correlation (absolute value) ρd, distance
correlation Rd, and Association FactorRd

AF.

d = 1, 2, ..., D. (12)

3.2. Linear and Nonlinear Relationships in Noisy Conditions

To test the performance of the proposed AF in noisy conditions, we corrupt the true relationships
with low, medium, and high noise:

• Linear: Y = β0 + β1X + εσ.
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• Fourth order polynomial: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + εσ.
• Exponential: Y = exp(λx) + εσ.
• Parabolic: Y = β0(X− β1)

2 + εσ.

where εσ is White (Gaussian) noise and noise level is specified by standard deviation of the Gaussian
distribution (σ). We then quantify the linear and nonlinear correlations in noisy conditions using
Pearson’s correlation, Distance correlation, and Association Factor. In the noisy conditions, we calculate
the Monte Carlo average of each correlation coefficient over T = 100 instances (trials) of the same
noise level.

The simulation steps are summarized below.

1. Let ΩD be a set of D relationship types l1 to lD. Generate pairwise variables using relationships
in the relationship set ΩD so that D different datasets Γ1, Γ2, ..., ΓD representing the relationship
types l1 to lD are obtained.

2. Set t = 1 (trial one).
3. Generate noisy relationships Φ1

t , Φ2
t , ..., ΦD

t by adding Gaussian noise (with noise level εσ) to the
datasets Γd’s generated using the true relationships (ld’s).

4. Compute and save Pearson’s correlation (absolute value) ρd
t , distance correlation Rd

t , and association
factorRd

AF,t for each noisy dataset Φd
t .

5. Increase t by one (t = t + 1).
6. Repeat Steps 3 to 5 while t ≤ T.

7. Compute the Monte Carlo average of each correlation measure as follows: ρd = ∑T
t=1

ρd
t

T , Rd = ∑T
t=1

Rd
t

T ,

Rd
AF = ∑T

t=1
Rd

AF,t
T .

3.3. No Relationship

We also investigated whether functions h1 and h2 may introduce a spurious relationship into the
relationship between X and Y. To address this, we obtained Pearson’s correlation, Distance correlation,
and AF for no relationship (random noise).

3.4. Symmetry Regarding Sample Size, Missing Data, and Noise Level

Next, we study the symmetry of AF regarding the response and factor. The goal here is to investigate
whether the Association Factor quantifies the relationship between X and Y regardless of their order.
This means whetherR2

AF(X, Y) is equal toR2
AF(Y, X). For the true relationship without noise, we calculate

R2
AF(X, Y) assuming:

h2(Y) = β0,X + h1(X) (13)

and to computeR2
AF(Y, X), we have:

h2(X) = β0,Y + h1(Y) (14)

For the noisy relationship, to computeR2
AF(X, Y), we assume:

h2(Y) = β0,X + h1(X) + ε (15)

and similarly forR2
AF(Y, X), we have:

h2(X) = β0,Y + h1(Y) + ε (16)

We study the symmetry of AF with regard to the sample size and noise level for nonlinear relationships.
We will show that with a small sample size, the underlying relationship cannot be visually identified
even in the noiseless case due to the missing data.
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3.5. Entropic Distance

We also compute Entropic Distance (ED) and compare it with AF. Entropic Distance, also called “relative
entropy”, is the differences between entropies with and without a prior condition [20]. The conditional
entropy of two variables X and Y taking values x and y, respectively, is defined by:

RED(X|Y) = −∑
y

p(y)∑
x

p(x|y)logb p(x|y), (17)

where b is the logarithm base. ED has the following properties [21]:

1. ED is symmetric.
2. ED is zero for comparing a distribution with itself.
3. ED is positive for two different distributions.

AF values are bounded between zero and one, but ED does not have an upper bound and can
take any positive value. Therefore, the interpretation of ED is subjective, while AF can objectively
represent the strength of the underlying relationship. Therefore, rather than comparing the ED and AF
values, we computed the AF ratio and the ED ratio for different noise conditions. LetR2

AFL
andR2

AFH
be the AF for a relationship corrupted with different noise levels. The AF ratio, IAF, is computed by:

IAF =
R2

AFH

R2
AFL

∗ 100 (18)

Hence, the AF ratio can be interpreted as:

• IAF < 100% indicates a decrease in AF.
• IAF > 100% indicates an increase in AF.
• IAF = 100% indicates no change in AF.

3.6. Detrended Fluctuation Analysis (DFA)

Peng et al. introduced Detrended Fluctuation Analysis (DFA), which is commonly used in time
series analysis and stochastic processes [22]. It is an alternative method in comparison with the auto-
correlation function and is often used for determining the statistical self-similarity of a signal. It can
detect long-range correlations in a patchy signal. The computation of DFA [22,23] is summarized below.

For a time series of total length N:

• Integrate the time series:

y(k) =
k

∑
i=1

[Bi − Bave]

where Bi is the ith interval and Bavg is the average interval.
• Divide the integrated time series into boxes of equal length n.
• Fit a line to the data in each box of size n separately. The y coordinate of the straight line segment

in a box is denoted by yn(k).
• Remove the trend (detrend) from the integrated time series y(k) by subtracting the local trend

yn(k) in each box.
• Calculate the root-mean-squared fluctuation, F(n), of the obtained detrended time series by:

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]2

• Repeat this computation over all time scales (box size n) to provide a relationship between F(n)
and the box size (n).
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4. Simulation Results and Discussion

We compared the performance of Pearson’s correlation, Distance correlation, and the Association
Factor for the following relationships that were explained in detail in the previous section:

• Linear: Y = 1 + X + εσ.
• Fourth order polynomial: Y = X4 + εσ.
• Exponential: Y = exp(0.05x) + εσ.
• Parabolic: Y = 4(X− 0.5)2 + εσ.

Noiseless linear and nonlinear relationships are depicted in Figure 1. The noisy relationships with
low, moderate, and high noise are shown in Figures 2–4, respectively. The performance of Pearson’s
correlation, Distance correlation, and Association Factor in identifying these linear and nonlinear
relationships are depicted in Figures 5–8. The performance of these correlation factors at different
noise levels are discussed in the following section.

Figure 1. True (without noise) linear, polynomial, exponential, and parabolic relationship types.

Figure 2. Linear, polynomial, exponential, and parabolic relationship types corrupted with low noise.
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Figure 3. Linear, polynomial, exponential, and parabolic relationship types corrupted with medium noise.

Figure 4. Linear, polynomial, exponential, and parabolic relationship types corrupted with high noise.

Figure 5. Pearson’s correlation (blue), Distance correlation (orange), and Association Factor (gray)
scores for true linear relationship (with no noise), and linear relationship corrupted with low, moderate,
and high noise.
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Figure 6. Pearson’s correlation (blue), Distance correlation (orange), and Association Factor (gray)
scores for true polynomial relationship (with no noise), and polynomial relationship corrupted with
low, moderate, and high noise.

Figure 7. Pearson’s correlation (blue), Distance correlation (orange), and Association Factor (gray)
scores for true exponential relationship (with no noise), and exponential relationship corrupted with
low, moderate, and high noise.

Figure 8. Pearson’s correlation (blue), Distance correlation (orange), and Association Factor (gray)
scores for true parabolic relationship (with no noise), and parabolic relationship corrupted with low,
moderate, and high noise.

4.1. True Signal (No Noise)

Noiseless linear, exponential, parabolic, and fourth order polynomial are shown in Figure 1. Quantified
correlations by Pearson’s correlation, Distance correlation, and Association Factor are summarized in Table 1.
As we expect, Pearson’s correlation obtained a value of one for noiseless linear relationship, but its value
was not reliable for nonlinear relationships such as exponential and polynomial. Distance correlation
identified both linear and nonlinear relationships, but as we can see in Table 1, its performance was
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not robust with regard to the underlying relationship type between two variables. It scored one for a
noiseless linear relationship, while it scored 0.47 for the fourth order polynomial, 0.91 for exponential,
and 0.5 for parabolic. In contrast, the proposed AF could robustly identify the underlying relationship,
and its value was one regardless of the relationship type (linear, exponential, or polynomial).

Table 1. Pearson’s correlation, Distance correlation, and Association Factor for true relationships
(without noise).

Relationship
Type

Pearson’s
Correlation

Distance
Correlation

Association
Factor

Linear 1.00 1.00 1.00
Polynomial 0.06 0.47 1.00
Exponential 0.86 0.91 1.00
Parabolic 0.05 0.50 1.00

4.2. Noisy Relationships

Linear, exponential, parabolic, and fourth order polynomial relationships corrupted with low, moderate,
and high noise are shown in Figures 2–4 respectively. Pearson’s correlation, Distance correlation, and
Association Factor are summarized for low, moderate, and high noise in Tables 2–4 respectively.
The Pearson’s correlation absolute value dropped from one (noiseless) to 0.98, 0.82, and 0.58 for low,
moderate, and high noise in identifying linear relationship between two variables. We can observe that
its value is not reliable for nonlinear relationships. Its absolute value dropped from 0.86 (noiseless) to 0.58
(high noise) for exponential relationship. For fourth order polynomial, its absolute value increased from
noiseless (0.06) to low noise (0.23) and then dropped from low noise to high noise (0.14). For parabolic
relationship, the Pearson’s correlation absolute value increased from noiseless (0.05) to low noise (0.21)
and then dropped from low noise to high noise (0.16).

Table 2. Pearson’s correlation, Distance correlation, and Association Factor for relationships with low noise.

Relationship
Type

Pearson’s
Correlation

Distance
Correlation

Association
Factor

Linear 0.98 0.98 0.98
Polynomial −0.23 0.48 0.99
Exponential 0.85 0.89 0.99
Parabolic −0.21 0.51 0.99

Table 3. Pearson’s correlation, Distance correlation, and Association Factor for relationships with
moderate noise.

Relationship
Type

Pearson’s
Correlation

Distance
Correlation

Association
Factor

Linear 0.82 0.81 0.82
Polynomial −0.20 0.39 0.83
Exponential 0.75 0.76 0.90
Parabolic −0.21 0.49 0.95

Table 4. Pearson’s correlation, Distance correlation, and Association Factor for relationships with high noise.

Relationship
Type

Pearson’s
Correlation

Distance
Correlation

Association
Factor

Linear 0.58 0.56 0.58
Polynomial −0.14 0.29 0.59
Exponential 0.58 0.56 0.69
Parabolic −0.16 0.37 0.72
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Distance correlation had steady performance for linear relationship, and its value decreased from
one (noiseless) to 0.56 (high noise). However, its performance for nonlinear relationships was not
consistent. Its score in identifying exponential relationship was comparable with its score for linear
relationship. Its value for exponential relationship was 0.98 (for noiseless) and decreased to 0.56 (for
high noise). Its score for parabolic relationship was 0.50 (for noiseless) and dropped to 0.37 (for high
noise). In identifying the fourth order polynomial, Distance correlation scored 0.47 for noiseless and
decreased to 0.29 for high noise.

In contrast, as we can see, the proposed AF had robust performance regardless of the relationship
type (Figures 5–8). Moreover, it had robust performance in noiseless and noisy conditions. Its value
for noiseless relationships (linear, exponential, parabolic, and fourth order polynomial) was steady
and equal to one. Its value in low noise was still about one (0.99) regardless of the relationship type.
In moderate noise condition, AF consistently identified the underlying relationship with scores from
0.82 (linear) to 0.95 (parabolic). Even in high noise condition where the underlying relationship was
substantially corrupted with noise (Figure 4), AF was able to identify the underlying correlations with
scores from 0.58 (linear) to 0.72 (parabolic).

AF had comparable performance with Pearson’s correlation in identifying linear relationship.
It outperformed Distance correlation in identifying noiseless nonlinear relationships. Moreover,
it outperformed Distance correlation in identifying nonlinear relationships in noisy conditions. Its score
was up to twice (0.69) as high as Distance correlation (0.29) in identifying nonlinear correlations in
high noise.

4.3. No Relationship

We computed Pearson’s correlation, Distance correlation, and AF for no relationship (random noise).
The results are summarized in Table 5. As we can see, all correlation factors including Pearson’s correlation,
Distance correlation, and AF obtained values close to zero, indicating there was no relationship between
X and Y. This also clarifies that functions h1 and h2 did not introduce a spurious relationship into the
relationship between X and Y.

Table 5. Pearson’s correlation, Distance correlation, and Association Factor for no relationship.

Relationship
Type

Pearson’s
Correlation

Distance
Correlation

Association
Factor

No Relationship 0.03 0.06 0.07

4.4. Test of Symmetry, Sample Size, Missing Data, and Noise Level

To study the symmetry of AF quantifying the relationship between response Y and factor X regardless
of their order, we computed R2

AF(X, Y) and R2
AF(Y, X) and compared them. We computed AF with

regard to sample size and noise level for different relationships. Figure 9 from top to bottom shows
randomly sampled true (noiseless) circular relationship of size 100, 50, and 30, respectively. The second
and third columns of Figure 9 show h1 and h2 obtained by R2

AF(X, Y) and R2
AF(Y, X) respectively.

As we can observe, the transform functions regardless of the order of the response and factor were
symmetric and linear even for small sample size.

The first and second row of Figure 10 show two instances of the randomly sampled true (noiseless)
circular relationship of size 10. The third and fourth row of Figure 10 show two instances of the randomly
sampled true (noiseless) circular relationship of size 30. As we can observe in this figure, because
of small sample size, the true underlying relationship is not visible due to the missing data points.
The second and third columns of Figure 10 show h1 and h2 obtained by R2

AF(X, Y) and R2
AF(Y, X)

respectively. As we can observe, regardless of the order of the response and factor, and despite missing
data, transform functions h1 and h2 were symmetric and almost linear even for a dataset with very
small sample size.
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Distance correlation, Maximal Information Coefficient (MIC) [24],R2
AF(X, Y), andR2

AF(Y, X) are
obtained for the randomly sampled true circular relation of different sample sizes and are summarized
in Table 6. As we can see, regardless of the sample size, AF could quantify the relationship even for a
very small sample size of 10 (with missing data points). Moreover, AF was symmetric even for a small
sample size of 30 and was almost symmetric for a very small sample size of 10. AF slightly decreased by
reducing the sample size. AF outperformed MIC, and MIC performed better than Distance correlation.
MIC also decreased by reducing the sample size. Distance correlation was in a range between 0.22 and
0.25 for sample sizes from 30 to 100. Its performance for sample size of 10 was sporadic. For example it
scored 0.56 for a typical example of randomly sampled true circular relationship of size 10 depicted in
Figure 10, second row. This could be potentially due to the arrangement of data points in this random
sample of a circle that rather represents a linear relationship.

Figure 11 from top to bottom shows a randomly sampled circular relationship of size 10, 30, 50,
and 100 respectively corrupted with Gaussian noise. The second and third columns of Figure 11 show
h1 and h2 obtained by R2

AF(X, Y) and R2
AF(Y, X) respectively. As we can observe regardless of the

order of response and factor, the transform functions were symmetric and almost linear even for a very
small sample of size 10.

Distance correlation and the Maximal Information Coefficient (MIC),R2
AF(X, Y), andR2

AF(Y, X)

were obtained for the randomly sampled circular relation of different sample sizes corrupted with high
noise and are summarized in Table 7. As we can see regardless of the sample size, AF could quantify
the relationship even for a very small sample size of 10 (with missing data points). Moreover, AF was
symmetric for moderate sample size (from 50 to 100) and was almost symmetric for small and very
small sample size of 30 and 10 respectively. Similar to the noiseless scenario, AF slightly decreased by
reducing the sample size. AF outperformed MIC, and MIC performed better than Distance correlation.
MIC values were in a range from 0.28 to 0.31 for sample size from 30 to 100, but MIC was higher for
the noisy relationship with a sample size of 10. The Distance correlation values were in a range from
0.19 to 0.25 for sample size from 30 to 100; however it was 0.36 for a typical random sample of size 10
from circular relationship corrupted with noise (depicted in Figure 11).

Figure 9. Randomly sampled true (noiseless) circular relationship. (From top to bottom): sample size
of 100, 50, and 30 respectively; (From left to right): sampled true (noiseless) circular relationship; h1

and h2 obtained byR2
AF(X, Y); h1 and h2 obtained byR2

AF(Y, X).
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Figure 10. Randomly sampled true (noiseless) circular relationship with missing data (small sample
size). (First and second row): two instances of the randomly sampled true (noiseless) circular
relationship of size 10. (Third and fourth row): two instances of the randomly sampled true (noiseless)
circular relationship of size 30. (From left to right): sampled true (noiseless) circular relationship; h1

and h2 obtained byR2
AF(X, Y); h1 and h2 obtained byR2

AF(Y, X).

Figure 11. Randomly sampled circular relationship corrupted with high Gaussian noise. (From top to
bottom): sample size of 10, 30, 50, and 100, respectively; (From left to right): sampled noisy circular
relationship; h1 and h2 obtained byR2

AF(X, Y); h1 and h2 obtained byR2
AF(Y, X).
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Table 6. Distance correlation, Maximal Information Coefficient (MIC), Association Factor: R2
AF(X, Y)

andR2
AF(Y, X) for the true circular relationship.

Sample Size Distance
Correlation MIC AF(X,Y) AF(Y,X)

100 0.221 0.563 0.999 0.999
50 0.219 0.484 0.993 0.999
30 0.246 0.490 0.995 0.994
10 0.559 0.396 0.938 0.968

Table 7. Distance correlation, MIC, Association Factor: R2
AF(X, Y) andR2

AF(Y, X) for the noisy circular
relationship.

Sample Size Distance
Correlation MIC AF(X,Y) AF(Y,X)

100 0.205 0.282 0.579 0.579
50 0.186 0.314 0.666 0.667
30 0.249 0.304 0.573 0.536
10 0.359 0.396 0.542 0.534

4.5. Empirical Distribution of Distance Correlation, Maximal Information Coefficient,R2
AF(X, Y) and

R2
AF(Y, X)

Next, we investigated the distribution of Distance correlation, Maximal Information Coefficient
(MIC),R2

AF(X, Y), andR2
AF(Y, X). Figure 12 shows the Monte Carlo empirical distribution of these

correlation measures for randomly sampled true circular relationship of size 30. Distributions were
estimated by 1000 Monte Carlo samples. Distance correlation had a positively skewed distribution
with a mode at about 0.3. MIC had a multimodal distribution with modes at about 0.3, 0.4, 0.5, and 0.6
with the highest mode at about 0.4. AF was negatively skewed with a mode at about 0.9975. We can
also observe thatR2

AF(X, Y) andR2
AF(Y, X) have similar distributions.

Figure 12. Monte Carlo empirical PDF for the true circular relationship obtained using sample size
of 30. (Top row): Distance correlation (left); MIC (right). (Bottom row): Association Factor (AF) for
response Y (left); AF for response X (right).
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Figure 13 shows the Monte Carlo empirical distribution of these correlation measures for randomly
sampled circular relationship of size 30 corrupted with high Gaussian noise. Similar to the previous
simulation, distributions were estimated by 1000 Monte Carlo samples. Distance correlation had a
positively skewed distribution with a mode at about 0.27. MIC had a multimodal distribution with the
highest mode at about 0.25. AF was negatively skewed with a mode at about 0.7. Again here, we can
see thatR2

AF(X, Y) andR2
AF(Y, X) have similar distributions.

To study AF in a different noise condition, we corrupted the randomly sampled circular distribution
with exponential noise and obtained the values of Distance Correlation, Maximal Information Coefficient,
R2

AF(X, Y), andR2
AF(Y, X). Figure 14 shows the Monte Carlo empirical distribution of these correlation

measures for randomly sampled circular relationship of size 30 corrupted with high exponential noise.
Distributions were estimated by 1000 Monte Carlo samples. We see again that Distance correlation had
a positively skewed distribution with a mode at about 0.27. MIC had a multimodal distribution with
the highest mode at about 0.3. AF was negatively skewed with a mode at about 0.8. As we can see,
R2

AF(X, Y) andR2
AF(Y, X) have similar distributions.

Figure 13. Monte Carlo empirical PDF for the circular relationship obtained using sample size of
30 corrupted with high level of Gaussian noise. (Top row): Distance correlation (left); MIC (right).
(Bottom row): AF for response Y (left); AF for response X (right).

Figure 14. Monte Carlo empirical PDF for the circular relationship obtained using sample size of 30
corrupted with high exponential noise. (Top row): Distance correlation (left); MIC (right). (Bottom
row): AF for response Y (left); AF for response X (right).
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4.6. Entropic Distance

We compared the performance of Entropic Distance (ED) and the Association Factor (AF) for
linear, polynomial, exponential, and parabolic relationships. Their values for noiseless, low, moderate,
and high noise are summarized in Table 8. AF performed consistently with a value of one for true
relationships regardless of the relationship type. ED ranged from 1.1 to about two for different true
relationships. The highest value obtained by ED was for the true linear relationship. In low, moderate,
and high noise, the lowest value obtained by ED was for the parabolic relationship (0.848, 0.825,
and 0.812, respectively). ED did not have an upper bound and could take any positive value, while
the AF values were bounded between zero and one. Therefore, rather than comparing AF and ED,
we computed the AF ratio and the ED ratio in different noise conditions.

Table 9 shows the ratios as a percentage for both metrics where the noise level was increased from
(a) noiseless to low noise, (b) low noise to moderate noise, and (c) moderate noise to high noise. ED
ratios indicated that ED decreased by increasing the noise level. Similarly, the AF ratio decreased by
increasing the noise level (Table 9). For polynomial and parabolic relationships, ED had a substantial
decrease from noiseless to low noise, and it almost stabilized and had slight changes afterward by
increasing the noise level. In contrast, AF had a consistent response to noise, and it decreased gradually,
while its values for low noise were almost the same as the noiseless case. In comparison with ED: 1.
AF is bounded; 2. AF obtains the same value regardless of the relationship type in noiseless condition;
3. AF can better quantify the correlation in noisy conditions.

4.7. Detrended Fluctuation Analysis

Pearson’s correlation, AF, and Detrended Fluctuation Analysis (DFA) [22] are obtained for different
relationships and are summarized in Table 10. The Pearson’s correlation coefficient was computed
before and after detrending the data. As we can see in the Table 10, Pearson’s correlation could identify
a strong correlation even for nonlinear relationships after detrending the data. Interestingly, the DFA
values were almost identical to the Pearson’s correlation values obtained for detrended data. This could
be explained by visualizing the detrended data for a nonlinear relationship. As we can see in Figure
15, a polynomial relationship (Figure 15, left) was transformed to an approximately linear relationship
after detrending the data (Figure 15, right). Hence, after detrending the data, Pearson’s correlation
could detect the nonlinear relation. We can conclude that AF and DFA are both hybrid methods. Both
methods, transform the data first, and then quantify the relationship of the transformed data.

Table 8. Entropic Distance and Association Factor for true relationships with no noise and relationships
with low, moderate, and high noise.

No Noise Low Noise Moderate Noise High Noise

Relationship
Type

Entropic
Distance

Association
Factor

Entropic
Distance

Association
Factor

Entropic
Distance

Association
Factor

Entropic
Distance

Association
Factor

Linear 1.989 1.000 1.993 0.980 1.796 0.820 1.539 0.580
Polynomial 1.203 1.000 1.000 0.990 0.953 0.830 0.931 0.590
Exponential 1.845 1.000 1.847 0.990 1.749 0.900 1.512 0.690
Parabolic 1.106 1.000 0.848 0.990 0.825 0.950 0.812 0.720

Table 9. Changes of Entropic Distance and Association Factor in response to change of noise level.

Noiseless to
Low Noise

Low Noise to
Moderate Noise

Moderate Noise to
High Noise

Relationship
Types

Entropic
Distance

Association
Factor

Entropic
Distance

Association
Factor

Entropic
Distance

Association
Factor

Linear 100% 98% 90% 84% 86% 71%
Polynomial 83% 99% 95% 84% 98% 71%
Exponential 100% 99% 95% 91% 86% 77%
Parabolic 77% 99% 97% 96% 98% 76%
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Table 10. Pearson’s correlation obtained for the original and detrended data along with DFA.

Relationship
Type

Pearson’s Correlation
Original Data

Pearson’s Correlation
Detrended Data DFA

Linear 1 1 1
Polynomial 0.06 0.77 0.76
Exponential 0.86 0.99 0.99
Parabolic 0.05 0.88 0.88

Figure 15. Polynomial relationship (left) and corresponding detrended data (right).

5. Conclusions and Future Work

We introduced a new method to identify and quantify correlation between two variables. The proposed
coefficient, Association Factor (AF), is a robust method for the identification and quantification of both
linear and nonlinear associations. We applied the proposed method to several different relationships
including linear, exponential, parabolic, polynomial, and circular. The results demonstrated that AF
could identify both linear and nonlinear relationships. Its value was equal to one in noiseless conditions
regardless of the relationship type. Moreover, we tested AF in noisy conditions where the true relationships
were corrupted with noise. AF could successfully identify the correlations in low, moderate, and high noise
conditions. We also tested AF under different noise distributions, Gaussian and exponential. Regardless
of the noise distribution, AF could successfully quantify the correlation.

We studied the distribution of AF and compared it with the distributions of Distance correlation
and MIC. We also investigated the AF values for a very small sample size where the relationship
was severely under-sampled. Despite the fact that a substantial amount of data was missing due to
very small sample size, AF still could quantify the underlying correlation. We compared AF with
ED and discussed its advantages over ED. AF had similar performance to Pearson’s correlation in
identifying linear relationship in noiseless and noisy conditions, and its value was equal to one for
the noiseless linear relationship. AF outperformed Distance correlation and MIC in noiseless linear
and nonlinear relationships. It also outperformed Distance correlation and MIC in noisy linear and
nonlinear relationships. The results demonstrated that AF was robust with regard to the relationship
type, as well as the noise condition. Although, we studied the bivariate case in this work, AF could be
extended to quantify the relationship between several factors and a response, and our future work is
focused on implementing the Multivariate Association Factor (MAF). The potential iterative model for
a kx1 vector of factors Xk and response Y can be defined by:

ĥ1(Xk)
(t) = E(ĥ2(Y)(t−1) − ĥ1(Xk)

(t−1)|Xk) (19)

and:
ĥ2(Y)(t) = E(ĥ1(Xk)

(t−1)|Y) (20)

where ĥ1(Xk)
(t) and ĥ2(Y)(t) are estimates of h1(Xk) and h2(Y) at iteration t, respectively.
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