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Abstract
Background: The Drosophila circadian oscillator is composed of transcriptional feedback loops in
which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per)
and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in
distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression
is established during development is not known. Since CLK is required to initiate feedback loop
function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator
neuron development.

Results: A novel CLK antiserum is used to show that CLK expression in the larval CNS and adult
brain is limited to circadian oscillator cells. CLK is initially expressed in presumptive small ventral
lateral neurons (s-LNvs), dorsal neurons 2 s (DN2s), and dorsal neuron 1 s (DN1s) at embryonic
stage (ES) 16, and this CLK expression pattern persists through larval development. PER then
accumulates in all CLK-expressing cells except presumptive DN2s during late ES 16 and ES 17,
consistent with the delayed accumulation of PER in adult oscillator neurons and antiphase cycling
of PER in larval DN2s. PER is also expressed in non-CLK-expressing cells in the embryonic CNS
starting at ES 12. Although PER expression in CLK-negative cells continues in ClkJrk embryos, PER
expression in cells that co-express PER and CLK is eliminated.

Conclusion: These data demonstrate that brain oscillator neurons begin development during
embryogenesis, that PER expression in non-oscillator cells is CLK-independent, and that oscillator
phase is an intrinsic characteristic of brain oscillator neurons. These results define the temporal
and spatial coordinates of factors that initiate Clk expression, imply that circadian photoreceptors
are not activated until the end of embryogenesis, and suggest that PER functions in a different
capacity before oscillator cell development is initiated.

Published: 18 December 2008

BMC Neuroscience 2008, 9:119 doi:10.1186/1471-2202-9-119

Received: 4 August 2008
Accepted: 18 December 2008

This article is available from: http://www.biomedcentral.com/1471-2202/9/119

© 2008 Houl et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19094242
http://www.biomedcentral.com/1471-2202/9/119
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Neuroscience 2008, 9:119 http://www.biomedcentral.com/1471-2202/9/119
Background
Most organisms exhibit daily rhythms in physiology,
metabolism, and behavior that persist in the absence of
environmental cues. In animals, these ~24 hr rhythms are
controlled by circadian oscillators that reside in the cen-
tral nervous system (CNS) and/or peripheral tissues.
These oscillators are comprised of interlocked transcrip-
tional feedback loops that regulate rhythmic gene expres-
sion within and downstream of the circadian timekeeping
mechanism.

In Drosophila, the per/tim and Clk feedback loops control
rhythmic transcription that peaks around dusk and dawn,
respectively (reviewed in [1-3]). The per/tim feedback loop
is initiated during mid-day, when CLK/CYC heterodimers
bind E-box sequences to activate per and tim transcription
[4,5]. Although per and tim mRNAs peak around dusk,
phosphorylation of PER and TIM delays their peak accu-
mulation to the late evening and promotes their nuclear
localization [6-10]. After entering the nucleus, PER or
PER-TIM heterodimers bind CLK to inhibit CLK-CYC-
dependent transcription [11-13]. In addition, clockwork
orange (cwo) is also thought to inhibit per and tim tran-
scription by competing for E-box binding with CLK-CYC
[14-17]. PER and TIM are then degraded after dawn, thus
relieving transcriptional inhibition. CLK-CYC initiates the
Clk feedback loop by binding E-boxes to activate vri tran-
scription [18]. VRI accumulates in parallel with vri mRNA
during early evening and binds to V/P-boxes to repress Clk
transcription [19,20]. Mutants that disrupt CLK-CYC tran-
scriptional activity (e.g. ClkJrk, cyc01) exhibit constitutive
high levels of Clk mRNA [21], indicating that Clk is acti-
vated independent of circadian oscillator function. Since
CLK-CYC is required to initiate circadian feedback loop
function, we hypothesize that the activation of Clk and cyc
during development determines oscillator cell identity.

Locomotor activity rhythms in adults can be synchronized
by light-dark cycles in L1 larvae, but not in embryos,
which indicates that the circadian oscillator is only func-
tional after hatching [22]. Circadian oscillator cells are
present in LNvs, DN1s and DN2s from L1 larval brains
based on rhythmic expression of PER and TIM [23]. Since
entrainment of oscillators to light is TIM dependent, and
TIM accumulates in concert with PER about 6–8 h after
their respective mRNAs (reviewed in [1-3]), per and tim
transcription are expected to be initiated during embryo-
genesis. Indeed, per mRNA is detected in the central nerv-
ous system (CNS) of embryos [24,25], which implies that
CLK and CYC accumulate in presumptive oscillator cells
during embryonic development. To understand oscillator
cell development in Drosophila, the spatial and temporal
expression of CLK and PER was determined during
embryogenesis.

In our previous studies, CLK GP47 antibody revealed CLK
expression in circadian oscillator and non-oscillator cell
nuclei from adult heads at all times of day [26]. Using a
newly generated CLK antibody we show here that CLK is
expressed exclusively in circadian oscillator cells, and that
detection of CLK in non-oscillator cells in a previous study
was due to cross-reactivity with DACHSHUND (DAC).
During embryonic development PER is first expressed in
the ventral nerve chord (VNC) at ES 12 and then the brain
at ES 14, whereas CLK is not detected until ES 16 in brain
cells that lack PER expression. These CLK-expressing brain
cells correspond to LNvs, DN1s and DN2s, and by the end
of ES 16 or early ES 17 PER is detected in LNvs and DN1s
but not DN2s. These results demonstrate that presumptive
brain oscillator cells are present before functional oscilla-
tors are detected around the transition to larval life, sug-
gest that the delayed appearance of PER accumulation in
presumptive embryonic DN2s gives rise to the antiphase
cycling of PER in larval DN2s compared to LNvs and DN1s,
and imply that PER has a clock-independent function in
the VNC and brain in non-oscillator cells of embryos.

Results
CLK expression is detected only in oscillator neurons
We previously demonstrated CLK immunostaining in all
circadian oscillator cells and some non-oscillator cells in
adults [26]. One group of non-oscillator cells that showed
CLK immunostaining was Kenyon Cells (KCs), which are
involved in olfactory learning and memory [27]. To char-
acterize CLK immunostaining during development, we
co-stained L3 larval CNSs with CLK, oscillator cell marker
PER, and the KC cell marker DAC [23,28-30]. As expected,
we observed CLK staining in every PER-expressing cell,
but also detected CLK in every DAC-expressing cell (Fig.
1). This surprising correspondence between CLK and DAC
expression in non-oscillator cells suggests a relationship
between Clk and dac activation: Clk and dac are activated
by the same activator, Clk activates dac, or dac activates
Clk. Alternately, CLK and DAC co-immunostaining could
also result from cross-reactivity of CLK antiserum to DAC,
though little, if any, sequence identity is evident between
these two proteins (data not shown). Because CLK and
DAC run at a similar apparent molecular weight of ~130
kDa on western blots [13,31], we tested whether our CLK
antiserum (GP47) cross-reacted with in vitro translated
DAC. As expected, GP47 detected CLK on western blots,
but this CLK antiserum also detected DAC (Fig. 2A). Com-
petition with purified DAC protein blocked GP47 detec-
tion of DAC on western blots (Fig. 2B), confirming DAC
cross-reactivity. Likewise, incubating L3 CNSs with puri-
fied DAC specifically blocks GP47 immunostaining in
DAC expressing non-oscillator cells (Fig. 2C). GP47
antiserum detects more than the canonical 4 to 5 LNvs, 2
DN2s, and 2 DN1s in L3 brains blocked with purified
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DAC. Although these additional cells could be due to
incomplete blocking by DAC, they may also represent
DN3s, LNds, and/or l-LNvs, which have been detected pre-
viously in L3 brains [23,32]. CLK immunostaining in
non-oscillator cells is also eliminated in the CNS of dac03

mutant larvae (Fig. 3), which lack DAC protein [33].
Taken together, these results demonstrate that CLK immu-
noreactivity (IR) in non-oscillator cells is due to cross-
reactivity with DAC, which implies that CLK expression is
limited to oscillator cells.

Additional CLK antisera that we had generated were tested
for cross-reactivity to DAC on western blots, and CLK

antiserum GP50 showed no cross-reactivity to DAC (Fig.
4A). Based on the lack of CLK IR in non-oscillator cells
from dac03 mutant larvae and L3 CNSs blocked with DAC
antigen, we expected GP50 to detect CLK IR only in oscil-
lator cells. Indeed, CLK and PER co-immunostained sev-
eral clusters of cells including sLNvs, DN2s and DN1s in
L3 larvae (Fig. 4B), but do not detect cells elsewhere in the
CNS (compare CLK GP50 immunostaining with GP47
immunostaining in Fig. 1B, E), showing that CLK GP50
antiserum specifically detects oscillator cells in L3 brains.
Four additional clusters of brain oscillator neurons are
present in adult brains: LNds, l-LNvs, LPNs and DN3s
[34,35]. Brains from adults collected at ZT23 were co-

DAC is co-expressed with CLK in the CNS of L3 larvaeFigure 1
DAC is co-expressed with CLK in the CNS of L3 larvae. L3 larval brains were dissected and fixed at ZT1, immunos-
tained with CLK and DAC antibodies, and imaged by confocal microscopy. (A-C) Projected Z-series images of the CNS, where 
dorsal is at the top. (A) DAC expression in the CNS. Arrows denote DAC immunoreactivity in Kenyon cells (KC) and the 
optic lobe (OL). (B) CLK expression in the same brain as panel A. Arrows denote CLK immunoreactivity in KCs and the OL. 
(C) Superimposed dual laser image of DAC and CLK immunostaining in the same larval CNS as panels A and B. Co-localization 
of DAC (green) and CLK (red) is seen as yellow. Arrowheads, CLK positive/DAC negative cells. (D-F) Magnified 1 μm optical 
section through the left hemisphere of an L3 larval brain. OL, optic lobe. (D) DAC immunostaining. (E) CLK immunostaining. 
(F) Superimposed dual laser image of DAC and CLK immunostaining. Arrowheads, CLK positive/DAC negative cells. Images 
are representative of three independent experiments. Six or more larval CNSs were examined in each experiment. Z-series 
images are projections over 32 optical sections at 2.5 μm per optical section.
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immunostained with GP50 and PER to determine if CLK
expression is limited to oscillator neurons. CLK IR is also
detected exclusively in oscillator cells from adult brains
and is reduced or eliminated in brains from ClkJrk adults
(Fig. 5), which express very low levels of truncated CLK
protein (Fig. 6). These results demonstrate that GP50 spe-
cifically detects CLK, and that CLK is expressed exclusively
in circadian oscillator cells in wild-type adult brains.
Given that CLK is detected specifically in brain oscillator
neurons in adults and L3 larvae, we used CLK GP50
antiserum to determine when brain oscillator neurons
first appear during development.

PER is expressed before CLK during embryogenesis
To determine whether CLK is expressed in presumptive
brain oscillator cells, embryos between 0 h and 24 h old
were collected at CT33 and co-immunostained with PER
and CLK. PER IR is detected in a segmented pattern along
VNC as early as ES 12 (Fig. 7A, B), consistent with previ-
ous in situ hybridization results in embryos [24,25]. PER
in the VNC encompasses more cells, increases in intensity,
and expands into the brain by ES 15 (Fig. 7C–H). Loss of
PER IR in per01 mutant confirms that this IR represents
true PER expression (Fig. 7I). Surprisingly, no CLK IR is
detected in PER-expressing cells, indicating that per is not

CLK GP47 antiserum cross-reacts with DACFigure 2
CLK GP47 antiserum cross-reacts with DAC. (A) Western blots containing 1.0 μl and 5.0 μl of in vitro transcribed and 
translated DAC (IVTT DAC), 0.1 μl and 1.0 u μl of in vitro transcribed and translated CLK (IVTT CLK), and 100 μg of head 
extract from flies collected at ZT14 probed with either DAC monoclonal antibody (DAC mAb) (left) or CLK GP47 antiserum 
(GP47) (right). (B) Western blots of samples as denoted in panel A probed with CLK GP47 and 10 μg of purified DAC (GP47 
+ DAC) (left) or CLK GP47 alone (GP47) (right). (C) Dissected CNSs from wild-type L3 larvae collected at ZT21 were incu-
bated with CLK GP47 antiserum, PER antiserum, DAC monoclonal antibody and 10 μg of purified DAC antigen. A 32 μm pro-
jected Z-series image of CLK GP47 IR alone (W.T. CLK), PER IR alone (W.T. PER), DAC IR alone (W.T. DAC), and merged 
CLK GP47, PER and DAC IR (W.T. merged). Arrows denote brain oscillator cells. s-LNv, small ventral lateral neurons; DN2, 
dorsal neuron 2 s; DN1*, dorsal neuron 1 s plus additional brain oscillator neurons that may include DN3s, l-LNvs and LNds.
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activated by CLK-CYC during these early developmental
stages. The CLK-CYC independent activation of per is sim-
ilar to the situation in ovaries, where PER expression is not
associated with circadian oscillator function [36]. To
ensure that CLK expression below detectable levels does

not activate PER at ES 12–15, ClkJrk embryos were immu-
nostained for PER. These ClkJrk embryos show PER stain-
ing in the brain and VNC identical to that in wild-type
embryos at ES 15 (Fig. 7J).

DAC is required for CLK cross-reactivity in non-oscillator cellsFigure 3
DAC is required for CLK cross-reactivity in non-oscillator cells. CNSs were dissected from dac03 mutant L3 larvae col-
lected at ZT21 and ZT9, immunostained with DAC, CLK GP47, and PER antibodies, and imaged by confocal microscopy. (A-D, 
E-H) Projected Z-series images of the CNS from L3 larvae are shown, where dorsal is at the top. (A-D') CNS from an L3 larva 
collected at ZT21 was imaged for DAC (A), CLK (B), PER (C) or DAC, CLK and PER (D) immunostaining. Boxed region in 
panels A-D is magnified in panels A'-D', respectively. (B'-C') Brackets denote CLK and/or PER IR in DN1* neurons, and arrow-
heads denote CLK and/or PER IR in s-LNv and DN2 neurons. DN1*, s-LNv, and DN2 neurons are as defined in the legend for 
Fig. 2. Co-localization of CLK (red) and PER (blue) appears as white. (E-H') CNS from an L3 larva collected at ZT9 was imaged 
for DAC (E), CLK (F), PER (G) or DAC, CLK, and PER (H) immunostaining. Boxed region in panels E-H is magnified in panels 
E'-H', respectively. (F'-H') Arrowheads denote CLK and/or PER IR in DN1*, s-LNv, and DN2 neurons. Images are representative 
of three independent experiments at each time point. At least three larval CNSs were examined for each experiment. Z-series 
images are projections over 33 optical sections at 2.5 μm per optical section.
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CLK expression preceeds PER expression in presumptive 
brain oscillator cells during embryogenesis
Early in ES 16, weak CLK immunoreactivity is first
detected in brain cells that do not express PER (Fig. 8A–
C). During mid to late ES 16, CLK expression becomes
stronger and expands to additional cells in the dorsal
brain (Fig. 8D–F). In addition, PER starts to be detected in
CLK positive cells in the ventral portion of the brain (Fig.
8F). By ES 17, CLK positive cells form three distinct clus-
ters in each brain hemisphere, with two dorsal cells, four
ventral cells, and two cells between and slightly posterior
to these dorsal and ventral clusters (Fig. 8G–I). The posi-
tions of these CLK positive cells are reminiscent of oscilla-
tor cells in larvae; a dorsal cluster of DN1s, a ventral cluster
of s-LNvs, and a medial cluster of DN2s [23,37].

Although PER is expressed in some CLK-positive dorsal
brain neurons, two cells situated between the most dorsal
and ventral CLK-expressing brain cells show little or no
PER expression (Fig. 8I). Based on their location, these

CLK positive/PER negative cells likely correspond to
DN2s. In larvae, PER cycling in DN2s is antiphase com-
pared to LNs and DN1s [23], which is consistent with the
absence of PER expression in the presumptive DN2s of
embryos during the late night and early morning. These
results suggest that CLK is expressed in LNvs, DN1s, and
DN2s starting at ES 16, followed by PER expression in
DN1s and LNvs during late ES 16 and ES 17. The timeline
for CLK and PER expression in embryos is the same
whether they are collected at CT49 (1 hour after subjective
dawn) or CT37 (1 hour after subjective dusk) (data not
shown), indicating that CLK and PER expression are con-
trolled developmentally and are not influenced by the
time at which embryos were laid during the circadian
cycle.

To confirm that CLK is expressed in larval LNvs, DN1s, and
DN2s, L1 larvae collected at ZT13 and ZT1 were immunos-
tained with CLK GP50 and PER antisera. As expected, CLK
is expressed in all PER-expressing cells at ZT21, which

CLK GP50 antibody does not cross-react with DAC and detects CLK IR only in oscillator cellsFigure 4
CLK GP50 antibody does not cross-react with DAC and detects CLK IR only in oscillator cells. (A) Western blots 
containing 1.0 μl and 5.0 μl of in vitro transcribed and translated DAC (IVTT DAC), 0.1 μl and 1.0 μl of in vitro transcribed and 
translated CLK (IVTT CLK), and 100 μg of head extract from flies collected at ZT14 probed with either DAC monoclonal anti-
body (mAbDAC) (left) or CLK GP50 antiserum (GP50) (right). (B) Wild-type L3 larval brains were dissected and fixed at 
ZT23, immunostained with CLK and PER antibodies, and imaged by confocal microscopy. Images show an 18 μm Z-series pro-
jection of the CNS, where dorsal is at the top. CLK GP50 (left panel), PER (Middle panel) or merged CLK GP50 + PER (right 
panel) immunostaining in DN1* neurons (brackets) and DN2 or s-LNv neurons (arrowheads) in both brain hemispheres. DN1*, 
s-LNv, and DN2 neurons are as defined in the legend for Fig. 2. Co-localization of CLK (red) and PER (green) is shown as yel-
low. All images are representative of three or more independent experiments.
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includes LNvs and DN1s (Fig. 9A–C). CLK is also
expressed in the presumed DN2s, which lack PER expres-
sion at this time. In contrast, PER is co-expressed with CLK
in DN2s at ZT9, but is absent in LNvs and DN1s (Fig. 9D–

F). In addition, little or no PER IR is detected at either time
point in the VNC. From these experiments, we conclude
that CLK is constantly expressed only in brain oscillator
cells from L1 larvae; whereas PER is rhythmically

CLK GP50 antibody only detects oscillator cells in adult brainsFigure 5
CLK GP50 antibody only detects oscillator cells in adult brains. Brains were dissected from adults collected at ZT21, 
immunostained with CLK GP50 and PER antisera, and imaged by confocal microscopy. (A-C) A 66 μm projected Z-series 
image of a wild-type adult fly brain, where lateral is left and dorsal is top. CLK (A), PER (B) and CLK + PER (C) IR is detected 
in dorsal neurons (DN1s, DN2s, DN3s), lateral posterior neurons (LPNs), and lateral neurons (s-LNvs + l-LNvs). Co-localiza-
tion of CLK (red) and PER (green) is shown as yellow. (D) A 64 μm projected Z-series image of a ClkJrk adult fly brain, where 
lateral is left and dorsal is top. No CLK or PER staining is detected. All images are representative of three or more independ-
ent experiments.
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Truncated CLKJrk protein accumulates to low levels. (A) Western blot containing 100 μg of head extract from ClkJrk or 
wild-type flies collected at ZT1 and probed with CLK GP50 antiserum. Full length CLK and truncated CLKJrk proteins are 
denoted in short (left) or long (right) exposures of the blot. (B) Brains from ClkJrk L3 larvae were dissected and fixed at ZT1, 
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expressed only in oscillator cells from L1 larval brains
with high levels at ZT21 in LNvs and DN1s and at ZT9 in
DN2s.

Discussion and conclusion
CLK is expressed exclusively in oscillator cells
CLK immunostaining was previously detected in all oscil-
lator cells and many non-oscillator cells from adult brains
[26]. CLK expression in non-oscillator cells was coinci-
dent with that of DAC, which is structurally related to the
winged helix/forked-head subfamily of helix-turn-helix
DNA binding proteins [38]. Here, we find that CLK IR in
non-oscillator cells is due to cross-reactivity between CLK
GP47 antiserum and DAC (Fig. 1A–F). We also character-
ized another CLK antiserum, GP50, and demonstrated
that it does not cross-react with DAC on westerns (Fig.
4A). Immunostaining of adult brains with GP50 confirms
that CLK is expressed only in oscillator neurons (Fig. 4B).
The oscillator cell-specific expression of Clk implies that
CLK is required for the development and/or function of
these cells.

This cell type specificity is consistent with the induction of
oscillator cell function, when Clk is expressed in ectopic
locations [39]. However, CLK expression cannot induce
ectopic oscillators in any cell type, suggesting that other
factors critical for oscillator function are not activated by
CLK or the CLK-dependent developmental programs are
incompatible with the development of many cell types. In
the loss-of-function ClkJrk mutant, expression of direct
CLK-CYC target genes, per, tim, vri, and Pdp1ε is abolished
[4,18,19], making it difficult to positively identify oscilla-
tor cells. Though peripheral oscillator tissues (e.g. eye,
Malpighian tubule, gut, antenna) apparently develop nor-
mally in ClkJrk flies, the loss of oscillator neuron markers
in ClkJrk flies makes it difficult to determine whether these
neurons are present. One exception to this is l-LNvs, which
continue to express PDF in ClkJrk flies [40]. Determining
whether CLK contributes to oscillator cell development
depends on the availability of oscillator cell markers that
are expressed independent of CLK-CYC or rescue of a loss-
of-function Clk mutant, upon CLK induction in adults.

PER and CLK expression in ES 12 – ES 15 embryosFigure 7
PER and CLK expression in ES 12 – ES 15 embryos. 0 h – 24 h wild-type (W.T.), per01, or ClkJrk embryos were collected 
at CT33, immunostained with CLK and PER antisera, and imaged by confocal microscopy. (A, B) 12 μm Z-series projection of 
PER (A) or CLK + PER (B) IR in the VNC of a W.T. embryo during ES 12. (C, D) 20 μm Z-series projection of PER (C) or CLK 
+ PER (D) IR in the VNC of a W.T. embryo during ES 13. (E, F) 18 μm Z-series projection of PER (E) or CLK + PER (F) IR in 
the brain (box) and VNC of a W.T. embryo during ES 14. (G, H) 30 μm Z-series projection of PER (G) or CLK + PER (H) IR in 
the brain (box) and VNC of a W.T. embryo during ES 15. (I) 42 μm Z-series projection of PER (E) or CLK + PER (F) IR of a 
per01 embryo during ES 15. (J) 22 μm Z-series projection of PER (E) or CLK + PER (F) IR in the brain (box) and VNC of a ClkJrk 

embryo during ES 15. Co-localization of CLK (red) and PER (green) is shown as yellow. All images are representative of three 
or more independent experiments.
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Oscillator cell development
In adults, CLK-dependent activation of the feedback regu-
lator per is required for oscillator function [4,5], thus we
expect that Clk would be expressed before per during
development. However, per mRNA and protein are
expressed in the VNC starting at ES 12 and in the brain at
ES 14 (Fig. 7A–F), well before CLK is detected in the brain
at ES 16. This early PER expression in the VNC and brain
is independent of Clk because it persists in the ClkJrk

mutant and does not overlap with CLK later in develop-
ment. The role of PER in CLK negative cells during embry-
ogenesis is unknown, but it is possible that PER
modulates transcription by targeting other bHLH-PAS
transcription factors (e.g. SINGLE-MINDED) expressed in
these cells [41]. Regardless of the role PER plays, the lack
of obvious developmental defects in per01 flies suggests
that per is not critical for embryonic development. In lar-
vae, the intensity of PER IR in CLK-negative brain cells and
the VNC decreases drastically (Figs. 3, 4, 9), consistent
with previous results [19].

CLK can be detected in 2–4 cells in each brain hemisphere
starting at early to mid ES 16, and expands during ES 17
to approximately eight CLK-positive cells in each brain
hemisphere (Fig. 8). These cells are spatially segregated
into three groups that correspond to larval LNvs, DN2s,

and DN1s (Fig. 8D–I). PER can be detected in some CLK-
positive brain cells starting as early as the end of ES 16
(Fig. 8D), or about 16 h post-fertilization. During ES 17,
PER IR increases in intensity and encompasses all four
LNvs and both DN1s (Fig. 8G–I). The 3–6 h delay between
CLK detection and PER detection in embryonic brain cells
is similar to the delay between the accumulation of per
mRNA and protein in adults [42,43], and suggests that
once CLK-CYC initiates per transcription in embryos, PER
accumulation is delayed by the same DBT-dependent PER
degradation mechanism described in adults. The initia-
tion of molecular oscillator function at ES 17 coincides
with the existence of light-entrainable oscillators that
mediate behavioral rhythms in adults; a 12 h light pulse
ending 6 h before larval hatching didn't synchronize
behavioral rhythms of adults, but a 12 h light pulse end-
ing at the time of larval hatching did synchronize behav-
ioral rhythms in adults [22]. The initiation of oscillator
function by CLK in embryos is also consistent with Clk's
unique ability to initiate oscillator function when
expressed in certain ectopic cells [39]. When combined
with these previous studies, our results support a model
whereby CLK expression initiates circadian oscillator
function in brain neurons at ES 16, and these brain neu-
rons go on to control rhythms in locomotor activity in
adults.

CLK and PER expression in embryos during ES 16 and ES 17Figure 8
CLK and PER expression in embryos during ES 16 and ES 17. 0 h – 24 h wild-type (W.T.) embryos were collected at 
CT33, immunostained with CLK and PER antisera, and imaged by confocal microscopy. Anterior is to the left and dorsal is on 
the top. (A-C) 58 μm Z-series projection of PER (A), CLK (B) or CLK + PER (C) IR in the brain (box) and VNC during early ES 
16. (A'-C') Magnified view of the boxed brain regions in panels A-C, respectively. (D-F) 18 μm Z-series projection of PER (D), 
CLK (E) or CLK + PER (F) IR in the brain (box) and VNC during late ES 16. (D'-F') Magnified view of the boxed brain regions 
in panels D-F, respectively. (G-I) 20 μm Z-series projection of PER (G), CLK (H) or CLK + PER (I) IR in the brain (box) and 
VNC during ES 17. (G'-I') Magnified view of the boxed brain regions in panels G-I, respectively. Co-localization of CLK (red) 
and PER (green) is shown as yellow. All images are representative of three or more independent experiments.
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CLK is expressed in all three groups of oscillator neurons
during ES 16 and ES 17, but PER is only detected in LNvs
and DN1s during this time. The delayed onset of PER accu-
mulation in DN2s is intriguing, considering that the DN2s
oscillator is antiphase compared to those in larval LNvs
and DN1s [23]. The antiphase cycling of oscillator in DN2s
can be brought into phase with oscillators in LNvs and
DN1s by expressing CRY in DN2s [44], demonstrating that
this antiphase cycling is CRY-dependent. Whether CRY
also acts to control antiphase cycling in embryonic DN2s
will be investigated. In any case, our results demonstrate
that antiphase cycling of oscillators in DN2s is develop-
mentally regulated and light independent.

The activation and maintenance of Clk transcription in
developing and adult Drosophila is not well understood.
The basic zipper protein PDP1ε is involved in maintain-
ing Clk activation in adults [19], but does not appear to be
the primary Clk activator [45]. One approach to defining
Clk activators in embryos is to first determine which cells
within the Drosophila embryonic brain express CLK base
on co-expression of marker genes [46,47]. Once CLK-
expressing cells have been identified, transcriptional acti-
vators expressed in these cells can be tested singly or in
combination for their ability to activate Clk. Identifying
factors that activate Clk in a cell-specific manner will ulti-
mately reveal determinants of oscillator cell fate.

Methods
In vitro translation
The full-length dac open reading frame was removed from
pUAS-dac [48] by digestion with EcoR1 and Xba1 and
inserted into the EcoR1 and Xba1 sites of pBluescript KS(-
). A plasmid containing the full-length Clk open reading
frame was described previously (Lee'98). In vitro transcrip-
tion/translation (IVTT) of plasmids containing the com-
plete dac or Clk open reading frames was carried out using
(Promega, L5010) as per manufacturer's instructions by
combining the following: 25 μl TNT reticulocyte lysate; 2
μl TNT reaction buffer; 1 μl RNA polymerase; 1 μl com-
plete amino acid mix; 1 μg DNA; to 50 μl with water. Sam-
ples were incubated at 30°C for 90 min.

Protein expression and purification
The complete dac open reading frame was removed from
pBluescript KS(-) by digestion with EcoR1 and Xho1 and
inserted into the EcoR1 and Xho1 sites of pET-28(b). The
resulting pET-dac plasmid was transformed into
BL21(DE3) pLysS cells for protein expression. Cell lysates
were purified over a His Trap FF Column (GE, 17-5319-
01), and eluants containing DAC were collected and con-
centrated using an Amicon 100 kDa Concentrator (Milli-
pore, UFC9 100 08). DAC concentration was determined
to be ~6.3 μg/μl by spectrophotometric analysis.

Antiphase cycling of PER expression in DN2s from L1 larvaeFigure 9
Antiphase cycling of PER expression in DN2s from L1 larvae. CNSs were dissected from wild-type (W.T.) L1 larvae 
collected at ZT21 and ZT9, immunostained with CLK and PER antibodies, and imaged by confocal microscopy. Dorsal is at the 
top. (A-C) A 21 μm projected Z-series image of CLK (A), PER (B), and merged CLK + PER (C) IR in W.T. L1 larvae collected 
at ZT21. CLK IR is present in DN1, DN2 and s-LNv cells (A, C) and PER IR is detected in DN1 and s-LNv cells (B, C). (D-F) A 
22 μm projected Z-series image of CLK (D), PER (E), and merged CLK + PER (F) IR in W.T. L1 larvae collected at ZT9. CLK is 
present in DN1, DN2 and s-LNv cells (D, F) and PER IR is detected in DN2 cells (E, F). Co-localization of CLK (red) and PER 
(green) is shown in yellow. All images are representative of three or more independent experiments.
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Western blotting
Flies having a normally functioning circadian clock
(white1118) and ClkJrk flies were entrained for at least 3 days
in 12 h light: 12 h dark cycles and collected at different
Zeitgeber Times (ZTs), where ZT0 is lights-on and ZT12 is
lights-off. Fly protein samples were prepared from heads
via RBS extraction [13]. Westerns blots were prepared by
electrophorescing fly head extract and IVTT DAC and CLK
on Criterion pre-cast gels (BioRad) and transferring the
gel to Hybond-P membranes (Amersham). Antibodies
were used at the following concentrations to probe west-
ern blots: GP47, 1:2,000; GP50, 1:5,000; anti-DAC,
1:300. For pre-absorption with DAC, GP47 was incubated
with the indicated amount of DAC at 4°C overnight with
shaking. Incubation with primary antibodies was done at
RT for 1 h for both anti-CLK antibodies and anti-DAC at
4°C overnight. Incubation with secondary antibodies was
done at RT for 1 hr at a concentration of 1:1,000 using
anti-Guinea pig HRP (Sigma, A7289) or anti-mouse HRP
(Sigma, A5278) for the anti-CLK and anti-DAC primary
antibodies, respectively. Immnuoblots were visualized
with ECL Plus (Amersham).

Embryo and Larva collection and staging
Wild-type (Canton S) flies were entrained to 12 h light: 12
h dark cycles at 25°C for at least 3 days in egg laying cages
containing grape agar plates with yeast paste. Lights were
turned off and embryos were collected on fresh plates
starting at CT9 and ending at CT33 (9 h after subjective
dawn). To determine if the circadian clock affected oscil-
lator cell development or phase, embryos were collected
on fresh plates from CT10 to CT37 (1 h after subjective
dusk) or from CT22 to CT49 (1 h after subjective dawn).
After collection, embryos were fixed and staged based on
their morphology [49]. L1 and L3 larvae were collected at
different times during LD cycles. Different larval stages
were identified based on morphology [50].

Immunostaining embryos
Wild-type (Canton S) embryos were collected and decho-
rionated as described [51]. Embryos were fixed with 3.7%
formaldehyde in PEM buffer with pH6.9 (0.1 M PIPES
pH6.9, 1 mM MgCl2, 1 mM EGTA) while shaking, washed
with methanol, and then re-hydrated with PBST (1 × PBS,
1% BSA, 0.05% Triton X-100). Primary antibody was
diluted in PBST and incubated at 4°C overnight. The pri-
mary antibodies and dilutions used were: anti-Guinea pig
polyclonal CLOCK GP50 antibody at a 1:200 dilution,
and anti-rabbit polyclonal PER (gift from J. Hall) that was
pre-absorbed against per01 embryos as described [52] at a
1:200 dilution. Following primary antibody incubation,
embryos were washed with PBST for 30 minutes at least 6
times at room temperature. Embryos were then incubated
with a fluorescently labeled secondary antibody at a 1:200
dilution at 4°C overnight. The following secondary anti-

bodies were used: goat anti-guinea pig Cy3 (Jackson
ImmunoResearch) for anti-CLOCK, and goat anti-rabbit
Alexa 488 (Molecular Probes) for anti-PER. After second-
ary antibody incubation, the embryos were washed with
PBST for 30 minutes at least 6 times at room temperature.
Mounting was done using Vectashield (Vector Labs). Six
or more embryos were examined at each stage. Each exper-
iment was repeated at least 3 times with similar results.
Each Z-series image is a projection of optical thickness at
2 μm per optical section.

Immunostaining larval CNSs and adult brains
Dissected adult brains were processed as previously
described [26]. CNSs from wild-type L3 larvae were dis-
sected in 1 × PBS with pH7.4. Dissected larval CNSs were
fixed with 3.7% formaldehyde, washed, and incubated in
the following primary antibodies at 4°C overnight:
mouse mAbdac2-3 (1:100 dilution), anti-Guinea pig pol-
yclonal CLK GP50 (1:3,000 dilution), and pre-absorbed
anti-rabbit polyclonal PER (1:30,000 dilution). More con-
centrated CLK GP50 antibody (1:1000 dilution) was used
to detect CLK in ClkJrk larve. After primary antibody was
removed, the samples were washed, then incubated with
fluorescently labeled secondary antibodies (diluted
1:200) at 4°C overnight. The following secondary anti-
bodies were used: goat anti-mouse Alexa 647 (Molecular
Probes) for mAbdac2-3, goat anti-guinea pig Cy-3 (Jack-
son ImmunoResearch Laboratories, Inc.) for anti-CLOCK,
and goat anti-rabbit Alexa 488 (Molecular Probes) for
PER.

Confocal microscopy
Embryos, larval CNSs, and adult brains were imaged using
a Zeiss LSM310 or an Olympus FV1000 confocal micro-
scope. Serial optical scans were obtained at 2 μm intervals
and organized using FV1000 confocal software to gener-
ate Z-stack images. Images were processed using Adobe
Photoshop.
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PER: PERIOD protein; CLK: CLOCK protein; CYC: CYCLE
protein; DAC: DACHSHUND protein; ES: embryonic
stage; ZT: Zeitgeber Time; CT: Circadian Time; IVTT: in
vitro transcription/translation; W.T.: wild-type; KCs:
Kenyon Cells; CNS: Central Nervous System; VNC: ventral
nerve chord; OL: optic lobe; L3: 3rd larval instar; L1: 1st lar-
val instar; LD: 12 h light: 12 h dark; s-LNvs: small ventral
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sal neuron 2s; DN3s: dorsal neuron 3s.
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