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ABSTRACT Testing for Hardy–Weinberg equilibrium (HWE) is an important component in almost all analyses of population genetic
data. Genetic markers that violate HWE are often treated as special cases; for example, they may be flagged as possible genotyping
errors, or they may be investigated more closely for evolutionary signatures of interest. The presence of population structure is one
reason why genetic markers may fail a test of HWE. This is problematic because almost all natural populations studied in the modern
setting show some degree of structure. Therefore, it is important to be able to detect deviations from HWE for reasons other than
structure. To this end, we extend statistical tests of HWE to allow for population structure, which we call a test of “structural HWE.”
Additionally, our new test allows one to automatically choose tuning parameters and identify accurate models of structure. We
demonstrate our approach on several important studies, provide theoretical justification for the test, and present empirical evidence
for its utility. We anticipate the proposed test will be useful in a broad range of analyses of genome-wide population genetic data.
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Hardy–Weinberg equilibrium (HWE) is a general and far-
reaching principle in population genetics that is incor-

porated into a wide range of applications. In evolutionary
terms, HWE says that for a population meeting certain con-
ditions, the genotype frequencies of a genetic locus can be
expressed in terms of the allele frequencies. The equilibrium
portion of HWE comes from the fact that even if this relation
does not hold in the initial state of a population, one gener-
ation of random mating guarantees that HWE will hold. An
equivalent way to frame HWE is in probabilistic terms, where
the relationship between genotype frequencies as a function
of the allele frequency is a result of a Binomial distribution
parameterized by the allele frequency for diallelic markers
(or the Multinomial for multiallelic markers). The genotype
of a randomly sampled individual is then determined by a

draw from the Binomial distribution. Tests for HWE in prac-
tice usually involve verifying the Binomial distribution of the
genotypes in terms of allele frequencies.

These simple statements about HWEmotivate why testing
for HWE is a common preliminary step in a variety of genomic
analyses—indeed, HWE serves as a data-quality check or
model-assumptions check since it is expected to approxi-
mately hold for most markers (Gillespie 2004). In studies
such as genome-wide association studies (GWAS), HWE is
treated as a baseline for quality control in outcrossing species,
where markers deviating strongly from HWE are filtered out
as likely genotyping errors (Yu et al. 2009; Anderson et al.
2010; Winkler et al. 2014). Further, the probabilistic state-
ment of HWE where genotypes can be modeled using the
Binomial distribution serves as the basis for many statistical
methods. For instance, HWE serves as an assumption in mod-
els of population structure (Pritchard et al. 2000; Patterson
et al. 2006), the calculation of genetic relationship matrices
(Yang et al. 2011), and tests for genetic association (Price
et al. 2006). Even when HWE is not explicitly stated to be
an assumption, many common statistical genetic operations
use the Binomial form of HWE, for example, scaling by the
standard deviation of the Binomial in terms of allele frequen-
cies before performing a principal components analysis
(PCA) or forming a genetic-relatedness matrix.
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While the broad importance of HWE to genetics is clear, it
is nonetheless the case that the conditions necessary for
HWE are restrictive, especially in its requirement that there
is no population structure present. Considering a probabi-
listic approach, HWE treats observations at a marker to
be independent and identically distributed, i.e., completely
homogeneous with no structure. Population structure is
ubiquitous in human populations (Novembre and Peter
2016) and therefore they are likely to violate the
no-structure assumption of HWE. This typically results in
the appearance that the large proportions of markers de-
viate from HWE, obfuscating the important deviations such
as those resulting from genotyping error or evolutionary
selection.

These limitations are evident in how practitioners apply
HWE to human genetic data. One approach is to test forHWE
separately within subsets of the samples where there is less
population structure. Test results are then aggregated at
each marker, and some criteria accounting for the separate
tests are applied to determinewhether HWE is violated. This
often appears in studies where there are known population
labels for the samples (for example, Li et al. 2008; Coop et al.
2009). Another approach is to reject HWE based on a very
conservative P-value threshold which can vary between
studies. For instance, in Gormley et al. (2016), a meta-anal-
ysis study of 22 separate GWAS, the HWE P-value threshold
used in each individual GWAS ranged from 10220 to 1023.
The goal of these approaches is to reduce the number of
markers violating HWE to ensure that genotyping errors
are removed.

A data-driven approach was proposed in Sha and Zhang
(2011), where they calculated principal components from
genotype data and then performed a logistic regression-
based, goodness-of-fit test with the principal components as
covariates. Although this has some basic conceptual connec-
tions to the approach proposed here, our work presents an
overall framework for HWE in structured populations and
addresses several technical issues: (i) the principal compo-
nents are calculated on the observed genotype scale, but the
logistic regression is on the canonical link scale, making this
model fit problematic (Hao et al. 2016); (ii) overfitting occurs
from estimating principal components and then testing a
model fit on the same data, leading to inflated levels of sta-
tistically significant departure from HWE (Chung and Storey
2015); and (iii) there is no method for identifying the num-
ber of principal components to be used (the authors suggest
using 10).

We propose a procedure for testing forHWE that allows for
population structure, called the “structural HWE” (sHWE)
test. We address the limitations of existing HWE methods
by extending the probabilistic model to allow for heteroge-
neity in the samples, i.e., by modeling the genotypes at a
marker using individual-specific allele frequencies that ac-
count for structure. Individual-specific allele frequencies are
themost general parameterization of structure in that there is
a unique allele frequency for each marker and individual

combination, and common models of population structure
can be formulated in this way, including the often-used ad-
mixture models. We discuss specific parameterizations of this
model inMethods. Like current methods for testing for HWE,
our proposed test of sHWE can be applied on a marker-to-
marker basis to determine which markers violate HWE, with
allowances for population structure. Further, the genome-
wide joint distribution of sHWE P-values can be used to assess
a global goodness of fit of the model of population structure.
This allows us to choose optimal values of tuning parameters
such as the latent dimensionality of a model or the number of
admixed ancestral populations. Lastly, the assumptions of the
sHWE test satisfy the conditions needed for association test-
ing while controlling for population structure (Song et al.
2015).

To illustrate the flexibility of and to motivate the sHWE
procedure, we analyzed single nucleotide polymorphism
(SNP) genotypes from the 1000 Genomes Project (TGP)
(1000 Genomes Project Consortium et al. 2010, 2015). The
TGP data exhibit population structure in two challenging
ways: first, samples were taken from populations on a global
scale (including samples originally in the HapMap project)
and, second, some samples such as the Hispanic Latin Amer-
ican populations are known to have undergone recent ad-
mixture (Bryc et al. 2010; Thornton et al. 2012; Moreno-
Estrada et al. 2014). To model population structure, we
used the logistic factor analysis (LFA) method (Hao et al.
2016), which uses K latent variables to account for struc-
ture. Increasing K captures progressively more of the pop-
ulation structure.

Figure 1 shows P-value histograms from this analysis,
where each histogram comprises P-values resulting from
testing for HWE or sHWE on all markers simultaneously. A
traditional test for HWE is heavily skewed toward zero,
indicating that the vast majority of SNPs would be found
to deviate from HWE due to the presence of popula-
tion structure. Fitting the LFA model with K ¼ 3 partially
accounts for the population structure, and the sHWE
P-values have a smaller peak at zero and skew less toward
zero than the uncorrected HWE P-values. We show in
Results that K ¼ 12 is the optimal value for the TGP data
set. For K ¼ 12, the vast majority of genome-wide P-values
are Uniform(0, 1) distributed. This is the distribution
ofP-values when sHWE holds, and it indicates that popu-
lation structure has been accounted for in our model,
with the exception of the small number of SNPs found
to be out of sHWE and thus also out of HWE. Since the
LFA fit with K ¼ 12 optimally accounts for population
structure and the sHWE test incorporates population
structure into the procedure, these deviations from sHWE
can be attributed to technology errors or evolutionary
effects.

The sHWE test is performed by fitting a model of pop-
ulation structure that parameterizes allele frequencies for
each individual and SNP pair. Then, we simulate null
genotyping data sets that preserve the observed population
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structure where sHWE holds. Finally, we calculate a test
statistic that measures deviation from sHWE for the ob-
served and null data sets, and P-values are computed. The
algorithm is shown in Figure 2. We demonstrate our method
on several publicly available global human data sets: the
Human Genome Diversity Project (HGDP) (Cann et al.
2002), the 1000 Genomes Project (TGP) (1000 Genomes
Project Consortium et al. 2010, 2015), and a data set geno-
typed using the Affymetrix Human Origins (HO) chip
(Lazaridis et al. 2014). We first analyze these data sets in-
dependently, showing how the sHWE procedure allows one
to choose the dimensionality of the population structure
model. Then, we compared SNPs that are misspecified with
respect to the population structure model between data sets
and technologies, showing that the sHWE procedure iden-
tifies SNPs affected by genotyping errors and that results are
replicable between data sets.

Methods

We first introduce the globally sampled, human genome-
wide genotyping data sets used in this analysis. Then, we
show how the probabilistic interpretation of HWE can be
extended to the sHWE test by incorporating themost general
representation of population structure. We discuss a few
ways to parameterize population structure and consider how
the sHWE test behaves when all parameters are known. In
addition, we show how to implement the sHWE test in
practice using simulated empirical null distributions based
on genome-wide genotyping data. Finally, we discuss how
the sHWEprocedure can be used to validate and tunemodels
of population structure in addition to the standard applica-
tion of marker quality control.

Data sets

We used genome-wide genotyping data from three publicly
available sources, each of which performs global sampling of
humans.

HGDP: This study sampled globally from 51 populations
(Cann et al. 2002). We filter for related individuals using
the “H952” subset from Rosenberg (2006). Genotypes were
filtered with minimum allele frequency of 0.05 andminimum
genotype completeness of 0.995. The dimensions of this data
set are 940 individuals and 550,303 SNPs. The data are avail-
able at http://www.hagsc.org/hgdp/files.html.

HO: This study sampled globally from 147 populations
(Lazaridis et al. 2014). These samples were genotyped on
the Affymetrix HO array, which was specially designed for
population genetics applications. We used the publicly
available portion of the data set. Genotypes were filtered
with minimum allele frequency of 0.05 and minimum geno-
type completeness of 0.99. After filtering the data set for
ancient and nonhuman samples, we are left with 372,446
SNPs and 2,251 individuals. The data are available from

the Reich laboratory Web site: http://genetics.med.harvard.
edu/reich/Reich_Lab/Datasets.html.

TGP: This study analyzed genome sequence diversity in
humans through whole-genome sequencing (1000
Genomes Project Consortium et al. 2010, 2015). They also
provide SNP chip genotyping on the Illumina Omni plat-
form for the phase-3 release. Genotypes were filtered
with minimum allele frequency of 0.05 and minimum geno-
type completeness of 0.99. After removing related individu-
als, the data set consists of 1815 individuals and 1,229,310
SNPs. The data are available at ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/.

Further, we generated two additional data sets from TGP
for the purpose of comparing individuals genotyped on dif-
ferent technologies: one from variants called from sequenc-
ing data (the TGP phase-3 variant calls available at ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/)
and the other a version of the genotyping chip data described
above. Both data sets were designed to maximally overlap.
We filtered both data sets to share the same unrelated
individuals (1683 individuals total). We used a subset of
1,224,056 of the SNPs from the genotyping chip data over-
lapping with the variant calls. The variant calls were
designed to include as many SNPs from the chip data as
possible, as well as additional SNPs that were least 5 kbp
apart. This resulted in a subset of 1,306,465 SNPs from the
variant calls.

Traditional HWE as a probability model

Typically, population genetic assumptions such as infinite
population size, random mating, no selection, no mutation,
and no migration (among others) are assumed as the start-
ing point for HWE. At a particular locus with alleles A and B
and allele frequencies p (corresponding to allele B) and
q ¼ 12 p (corresponding to allele A), HWE states that after
one generation of random mating, the genotype frequen-
cies of AA;AB; and BB are q2; 2pq; and p2; respectively. The
allele frequencies and genotype frequencies then remain
at these values for all further generations. HWE can be
viewed as a probabilistic model if we consider B to be the
reference allele and code the genotypes as 0, 1, and 2,
corresponding to AA;   AB, and BB, respectively. The geno-
type for each individual at this locus is modeled under HWE
as an independent draw from a Binomialð2; pÞ distribu-
tion. The relationship between genotype frequency and
allele frequency follows directly from this distributional
assumption.

Common tests for HWE such as Pearson x2 test for good-
ness of fit or Fisher’s exact test (Wigginton et al. 2005) check
for whether the observed genotype counts are compatible
with draws from a Binomial distribution using the observed
allele frequency as the probability of success. Many of the
population-genetics assumptions are related to the statistical
assumption that alleles and individuals can be treated as in-
dependent and identically distributed. In human data sets,
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the presence of population structure means this assumption
is violated, resulting in a deviation from HWE. We will di-
rectly account for population structure by parameterizing it
in a way that is compatible with a Binomial model of geno-
types so that this probabilistic model of HWE can be tested in
the presence of structure.

Models of population structure

Consider a data set consisting of m diallelic SNP genotypes
(coded as 0, 1, and 2 copies of the reference allele) and n
individuals. For current GWAS, m is often on the order of
millions while n is in the tens of thousands. Wewill aggregate
the data into a genotype matrix X with dimensions m by n,
and choose indices such that xij corresponds to the i-th SNP
and j-th individual in X.

For complete generality, let us allow each individual and
SNP pair to have its own reference allele frequency pij; this
permits a flexible parameterization so that it is possible that
each individual is effectively drawn from its individual-
specific population such as from an admixture model (Hao
et al. 2016). We can aggregate the pij into a m3 n matrix
F whose ði; jÞ element is pij and F ¼ 1

2 E½X�: This represents
the most general way to probabilistically represent popula-
tion structure, as there are as many parameters as there
are individual and SNP pairs. Models of population struc-
ture typically parameterize pij with constraints, so that
fewer parameters are needed. Using more sophisticated
parameterizations of pij will allow us to relax the statisti-
cal assumption that the individuals are all identically
distributed.

We will now summarize several special cases of the above
general parameterization, where there are constraints on
the pij values. In all cases, these models assume that
the genotypes are generated independently according to
xij � Binomialð2;pijÞ: The simplest parameterization of pij

is that of a population in HWE with no structure, where all
pij ¼ pi and pi is the observed allele frequency at SNP i. In a
model with nonoverlapping, independently evolving sub-
populations, there are K subpopulations and pij is the al-
lele frequency of SNP i for the subpopulation of which
individual j is a member. In an admixture model of popu-
lation structure (Pritchard et al. 2000; Alexander et al.
2009), there are K ancestral populations, and the relevant
model parameters are qj, the K-vector of admixture pro-
portions for individual j, and pi, the K-vector of allele fre-
quencies for SNP i. Then, pij is the weighted sum of these
parameters, pij ¼

PK
k¼1 pikqkj: In spatial models of popula-

tion structure (Wasser et al. 2004; Corander et al. 2008),
pij is explicitly a smooth function of the geographical co-
ordinates of each individual.

In this article, we focus on two approaches from Hao et al.
(2016): LFA and truncated PCA. Thesemethods are both com-
putationally efficient and were shown to outperform existing
methods for estimating F. They directly model pij using low-
dimensional factorizations, and are accurate and computa-
tional efficient on large data sets (Hao et al. 2016). We
primarily use the LFA method, which models pij using its
canonical parameterization, logitðpijÞ ¼ logðpij=ð12pijÞÞ:
Population structure is captured by factorizing the logit
transformation of F: logitðFÞ ¼ AH; where A is an m 3 K

Figure 1 A proof of concept of the sHWE procedure. We fit the LFA model of structure (Hao et al. 2016) to the TGP data set and varied K, which is the
number of latent factors to account for population structure. The left-most panel depicts a histogram of genome-wide P-values for a traditional test of
HWE, which is equivalent to using the sHWE test with a population structure model of dimensionality K ¼ 1. The histogram is heavily skewed toward
zero, showing that most SNPs would be identified as deviating from HWE. The middle panel depicts sHWE test P-values for K ¼ 3, which partially
accounts for the population structure. As a result, there is less skew toward zero, and the large P-values (i.e., .0.75) are Uniform distributed which
indicates that some SNPs are in sHWE. The right-most panel depicts sHWE test P-values for K ¼ 12, the empirically optimal value, which best accounts
for population structure in the data set. The SNPs concentrated at the peak near zero are found to be deviated from sHWE, indicating that they violate
HWE for reasons other than population structure.
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matrix and H is a K 3 n matrix. The columns of H
represent population structure for each individual, while the
rows of A are the way population structure is manifested in
each SNP. We also show results for the PCA approach to esti-
mating pij.

The truncated PCA approach uses the fact that, under the
Binomial model relating xij and pij; E½xij� ¼ 2pij: The esti-
mates of pij are formed by projecting X onto first K principal
components of X and scaling the projection by a factor of 1=2:
Some of the values for p̂ij may be outside of the interval ½0; 1�;
in which case they are replaced by 1=ð2nÞ or 12 1=ð2nÞ;
which corresponds to the allele frequency for having only
one copy of an allele. In addition to these two methods, we
also demonstrate our proposed test on the ADMIXTURE
(Alexander et al. 2009) method for modeling population
structure through the probabilistic admixture model de-
scribed above.

All of the models of population structure summarized here
involved a tuning parameter, such as the number of ancestral
populations K, a smoothing parameter in the spatial model,
or the number of latent factors K. Our proposed method will
introduce a way to automatically choose the value of these
tuning parameters by considering the goodness of fit of the
model of structure to the data.

A structural test for HWE

Using the individual-specific allele frequencies pij offers a
general framework for extending tests of HWE to allow for
structure. To this end, we will derive a test for sHWE
by extending the derivation of the standard Pearson x2

statistic.
The data for a single marker can be summarized using

the genotype counts for a SNP, where Nð0Þ;Nð1Þ;Nð2Þ are the
number of observed 0, 1, and 2 genotypes, respectively
(written as NðGÞ for G 2 f0; 1; 2g). We put the genotype
variable in parentheses and as a superscript to distinguish
it from the indices for matrices and vectors. We will in-
troduce a new test statistic that is to be calculated for each
SNP. Thus, consider a fixed SNP and drop the correspond-

ing subscript i. This leaves us with the vector of genotypes
x ¼ ðx1; x2; . . . ; xnÞ and a vector of allele frequencies
p ¼ ðp1;p2; . . . ;pnÞ: The test of sHWE performs a hypoth-
esis test on the distribution of the genotype data as
follows:

H0 : xj � Binomialð2;pjÞ "j 2 f1; 2; :::; ng ⇒sHWE  holds
H1 : not H0 ⇒sHWE  does  not  hold

This hypothesis test is performed for all markers simulta-
neously, with the goal of identifying which markers deviate
from the sHWE assumptions.

We can write the genotype counts as NðGÞ ¼Pn
j¼11ðxj ¼ GÞ; where 1ð�Þ is the indicator function. We can

define the quantity pðGÞj ¼ E½1ðxj ¼ GÞ�, which depends on the
genotype G in the following way when sHWE holds:

pðGÞj ¼ E½1ðxj ¼ GÞ� ¼
8<
:

ð12pjÞ2 if   G ¼ 0
2pjð1 2 pjÞ if   G ¼ 1
ðpjÞ2 if   G ¼ 2

: (1)

This notation will allow us to consider the distribution of NðGÞ

and to formulate a test where the null hypothesis is that
Equation 1 holds for all j and the alternative is that Equation
1 does not hold for at least one j. It follows that
E½NðGÞ� ¼Pj p

ðGÞ
j and Var½NðGÞ� ¼Pj p

ðGÞ
j ð12 pðGÞj Þ: We can

apply the Lindeberg version of the central limit theorem
(Billingsley 2012) to show that NðGÞ is asymptotically distrib-
uted as a Normal random variable with mean

P
j p

ðGÞ
j and

variance
P

j p
ðGÞ
j ð12 pðGÞj Þ:

Now consider just two of the genotype counts as a vec-
tor of length two called v ¼ ðNð0Þ;Nð1ÞÞ; since Nð2Þ ¼
n 2 Nð0Þ 2 Nð1Þ: It is distributed bivariate Normal with mean
vector m ¼

�P
j p

ð0Þ
j ;
P

j p
ð1Þ
j

�
and covariance matrix S,

where:

S ¼
 P

j
pð0Þj

�
12 pð0Þj

�
2
P

j p
ð0Þ
j pð1Þj

2
P

j
pð0Þj pð1Þj

P
j p

ð1Þ
j

�
12 pð1Þj

�
!
:

Figure 2 The sHWE testing procedure
as a schematic. Using the genotype ma-
trix X, we first fit a model of population
structure to estimate p̂ij : The values of
p̂ij are used to simulate null data sets
incorporating the sHWE assumptions.
We compute sHWE test statistics for
both observed and simulated null data
sets and compute P-values by compar-
ing the values of the observed test sta-
tistics and the pooled null test statistics.
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Thus, the quadratic form

T ¼ ðv2mÞTS21ðv2mÞ

¼ ðv2mÞT
 P

j
pð0Þj

�
12 pð0Þj

�
2
P

j p
ð0Þ
j pð1Þj

2
P

j
pð0Þj pð1Þj

P
j p

ð1Þ
j

�
12 pð1Þj

�
!21

ðv2mÞ

has asymptotic distribution x2 with 2 degrees of free-
dom. But to use T with a known null distribution, it
must be the case that the allele frequencies p for
each SNP are known—and therefore F is known. We
next show how to incorporate an estimated F into this
statistic and determine computationally its null distri-
bution. Note that when the null is true for unstruc-
tured HWE, the sums in the expression for S vanish, and
T simplifies to the usual Pearson x2 statistic, so our pro-
posed statistic is a generalization of the usual x2 test of
HWE.

Algorithm

In practice, the pij values are unknown and the act of
estimating them from the data being tested changes the
null distribution of T (Chung and Storey 2015). We
propose computing an empirical null distribution via the
parametric bootstrap (Efron and Tibshirani 1993) by sim-
ulating data from the model of population structure, com-
puting sHWE statistics for the simulated data set, and
treating those statistics as samples from a null distribu-
tion. There are two aspects of the sHWE statistic that
make the simulation of an empirical null attractive. First,

models of population structure seek to account for the de-
pendence present in data. Simulating an empirical null
allows us to compute the sHWE statistic for data where
the observed structure is preserved. Second, the statistic
derived earlier is a pivotal quantity, i.e., the null distribu-
tion is always x2 with 2 degrees of freedom regardless of
the values of pij:

Strictly speaking, each simulated data set serves as one
bootstrap sample for each SNP. It would be too compu-
tationally intensive to simulate the data sets needed to
have enough resolution to compute meaningful P-values.
However, since the sHWE statistic is a pivotal quantity
(so that each SNP has the same theoretical null distribu-
tion), pooling the simulated null data sets is an effec-
tive strategy. The pooling procedure is to simulate a
small number of null data sets, and then combine the
sHWE statistics for all of the simulated SNPs as observa-
tions from the null distribution. We validate the use of a
pooled empirical null by comparing the distribution of P-
values computed using the pooling routine and the distri-
bution of marginal P-values, where an empirical null
distribution is calculated for each SNP. We show quan-
tile–quantile plots in Supplementary Material, Figure S1,
between the P-values computed using the two types of
null distributions. Their joint distributions are nearly iden-
tical, thus validating the pooled empirical null procedure
(Leek and Storey 2011).

Our algorithm to test for sHWE in a data set of SNPs is
described in Algorithm 1, which requires the user to select
the number of null data sets B to generate to compute
P-values. A graphical depiction of the algorithm is shown
in Figure 2.

Figure 3 Histogram of sHWE test P-values for each data set at chosen K as determined by the entropy measure. The sHWE test is performed for
each SNP in the data set after fitting the LFA model of population structure. The aggregated P-values are mostly Uniform(0, 1) distributed,
except for a peak at 0. This indicates that most of the SNPs are in sHWE, given the fitted structure. The peak at 0 contains an enrichment of SNPs
that deviate from sHWE.
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Algorithm 1 Procedure for computing genome-wide sHWE
P-values

Input: A matrix of SNP genotypes X, integer B for number
of null data sets to generate.

Output: sHWE P-values.

Initialization: Form estimates p̂ij from the genotype data
X using a model and estimation method of population
structure, such as LFA (Hao et al. 2016), truncated PCA
(Hao et al. 2016), ADMIXTURE (Alexander et al. 2009), or
TeraStructure (Gopalan et al. 2016).

Observed statistics: Compute sHWE statistics Ti for each
SNP i 5 1; . . . ;m using X and p̂ij.
for b 5 1; . . . ;B do

Simulate null genotypes: Create a null genotype ma-
trix X0 while preserving the observed population struc-
ture by drawing matrix elements x0ij � Binomialð2; p̂ijÞ.
Refit model of population structure: Use the method
for estimating p̂ij on X0 to compute estimates p̂0

ij.
Null statistics: Compute null sHWE statistics T0

i for
each SNP i 5 1; . . . ;m using X0 and p̂0

ij.
end
Compute P-values: Pool the null statistics across all SNPs
and simulated data sets to form an empirical null distri-
bution. For each SNP i, compute P-values pi by

pi 5
PB

b51
Pm

k511ðT0
kb $TiÞ

mB

where 1ðÞ is an indicator function.

sHWE as empirical model tuning and validation

Since many models of population structure parameterize pij;

sHWE provides a framework for validating these models of
population structure. By testing each individual SNP for vio-
lation of a model’s assumptions, we can aggregate the tests to
determine if the overall population structure model accounts
for the variation in the data appropriately. When the model is
well formulated, the vast majority of SNPs should pass the
sHWE test. Thus, we can examine the joint distribution of the
P-values computed at every SNP in the data set. The expected
behavior of the distribution of P-values is that the they are
Uniform distributed across the interval ½0; 1�; except near
zero where a small portion of SNPs are shown to deviate from
sHWE by having significant P-values (e.g., Figure 3). Choos-
ing the significance threshold can be done with a variety of
methods, such as false discovery rates (FDRs) (Storey and
Tibshirani 2003). This provides a natural criterion for filter-
ing SNPs that violate the model assumptions and is an im-
portant part of any robust preliminary analysis.

This leads to a principled procedure for optimizing tuning
parameters in the model of population structure such as the
latent dimensionality K. If we compute sHWE P-values for a
range of K, we can choose the value of K that has the best null
properties. It is important to distinguish the characteristic of

having good null properties from an absolute measure like least
number of significant SNPs. Because our procedure is verifying a
model fit over the genome, we want to choose the parametri-
zation of pij where the P-values are most Uniform distributed
over the largest possible interval, excluding a possible peak near
zero. The algorithm is detailed in Algorithm 2. This algorithm
involves binning P-values into equal-sized bins to quantify how
Uniform distributed they are over a given range. The number of
bins is denoted by C in the algorithm; note that while we found
to C ¼ 150 to be sufficient for analyses with 105�,m�, 106, it
may be helpful to choose a higher value if there are many more
SNPs (or lower value for smaller data sets).

Algorithm 2 Entropy-based procedure for automatically
choosing the value of K

Input: Genome-wide sHWE P-values over a range of K.

Output: Value of K with the best null properties of the
P-values.

for each K do
Bin P-values: Divide the range of P-values into C
equal-sized bins.

Remove most significant bin: Drop the bin with the
lower bound of zero, since this bin should contain the
most significant P-values.

Compute proportions: For each of the remaining C2 1
bins, compute the proportion of P-values in each bin.
These proportions should sum to one.

Compute entropy: Using these proportions, compute

the entropy using the formula 2
PC
c52

fclog  fc where fc

is the proportion of P-values in the c-th bin.
end

Identify optimal K: Choose the value of K with the max-
imum entropy. In the event of a plateau where the entropy
is more or less the same over a large range of K, then we
suggest erring on the side of a smaller K, where the pla-
teau begins. The plateau indicates that there is a range of
K where the population structure model fits are similarly
informative.

Software

Our procedure is implemented in the lfa R package (Hao et al.
2016) (also available at http://github.com/StoreyLab/lfa) as
the function sHWE().

Data availability

The processed data sets are available at https://github.com/
StoreyLab/sHWE-manuscript. Supplemental material available
at Figshare: https://doi.org/10.25386/genetics.9876416.

Results

We demonstrate the sHWE procedure on the global data sets
detailed in Methods: Data sets. We also show that the sHWE
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procedure works with the truncated PCA method (Hao et al.
2016) and the ADMIXTURE method of fitting population
structure (Alexander et al. 2009). Then, we consider a few
ways to interpret the results of testing for sHWE. First, we
show that there are no systematic differences in sHWE
P-values when SNPs are separated by annotations or minor
allele frequency. Then, we consider the replicability of sHWE
results between the global data sets, as well as differences
between results for the TGP samples on two different geno-
typing technologies.

Analyzing global data sets

We demonstrate our proposed procedure where pij is esti-
mated using the LFA method (Hao et al. 2016) on three
highly structured and global data sets: the HGDP, HO, and
TGP (genotyping chip) data sets described in Methods:
Data sets. We used B ¼ 3 null simulations from Algorithm
1 in the calculations. We show the sHWE P-value distribu-
tions over a range of K, the latent dimensionality of the
LFA model of population structure, for the three data sets
in Figures S2, S3, and S4. The distributions of P-values
share the same general behavior between data sets. When
K is too small and the population structure is insufficiently
modeled, the sHWE test P-values are skewed heavily to-
ward zero. As additional latent factors are added to ac-
count for more structure across the genome, the P-value
distributions shift away from zero and become more Uni-
form. Eventually, the P-value distributions become skewed
toward one, as population structure model is overfit to the
data.

For each data set, we observe that there is a range of K
where we observe the desired distribution of P-values, i.e., a
peak near zero and Uniform elsewhere. Model fits in this
range of K have the highest confidence of being well formu-
lated and all serve equally well as a basis for future analysis.
We suggest choosing K following the entropy measure pre-

sented in Methods: sHWE as empirical model tuning and val-
idation.We show results in Figure 4, corresponding toK ¼ 12
for TGP, K ¼ 16 for HGDP, and K ¼ 25 for HO. At these
values of K, we estimate the proportion of SNPs that are in
sHWE, using the bootstrap method from the qvalue R pack-
age (Storey and Tibshirani 2003). We find these estimated
proportions to be 0.990 for TGP, 0.990 for HGDP, and
p0 ¼ 0:989 for HO; this suggests that the vast majority of
human SNPs are in HWE. SNPs in sHWE are also interpreted
to be well parameterized by the LFA population structure
model.

To demonstrate results using other parameterizations of
pij, we first analyze these three data sets for a range of K
using the truncated PCA method (Hao et al. 2016). The
resulting histograms (Figures S5, S6, and S7) are comparable
with those estimated using pij, except that there is a small
peak near one for larger values of K. This likely reflects noise
introduced by the truncation procedure.

We also tested parametric models of population struc-
ture. We used the ADMIXTURE method (Alexander et al.
2009), which is a widely used software for fitting the ad-
mixture model of population structure, before applying the
sHWE procedure. The resulting figures for the HO data set
are shown in Figures S8 and S9. The sHWE P-values exhibit
the expected behavior in terms of histogram shape over the
range of K. We note that the entropy measure plateaus at
K ¼ 30, which is a higher value of K than with the LFA
method on this data set. This is expected behavior, as the
admixture model is more constrained than the LFA model,
since the factors need to be valid probabilities. Thus, a
higher K is needed to achieve a similar fidelity in the mod-
eled population structure. Further, while the sHWE proce-
dure works with ADMIXTURE, it is a more arduous task
computationally, since the individual model fits are slower
than with LFA, and the sHWE procedure requires multiple
fits per value of K.

Figure 4 The entropy measure of uniformity of P-values for each data set as a function of K. For each model fit and value of K, the P-values for each
data set were summarized by counting the number in each of 150 equal-sized bins in the range ½0; 1�: The bin closest to zero was dropped, as the most
significant P-values will be in that bin. The proportion of counts in the 149 bins remaining are used to compute the entropy corresponding to K. Higher
entropy means more Uniform.
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The role of SNP annotation in deviations from sHWE

We compared the distributions of sHWE P-values in each data
set when separated by functional annotations of the SNPs
(Hinds 2005). We considered three nested levels of labels.
First, SNPs were separated into intragenic and intergenic
categories. Then, the intergenic SNPs were separated by
whether they were in an exon or an intron. Lastly, the exonic
SNPs were separated into synonymous and nonsynonymous
mutations. For each data set, we found no differences be-
tween the distributions of sHWE P-values for each of the
categories (Figures S10, S11, and S12). Further, we
found minimal differences in the distribution of P-values
when binned by minor allele frequency (Figures S13, S14,
and S16).

Replicability of sHWE between data sets

To demonstrate the robustness of our sHWE procedure, we
compared the results between data sets by analyzing the
overlapping SNPs. For each pair of data sets, we first
identified the SNPs shared by the two data sets. Between
HGDP and TGP there were 357,314 shared SNPs, between
HO and HGDP there were 130,572 shared SNPs, and be-
tween TGP and HO there were 163,443 shared SNPs.
Within each of the three pairs of data sets, we compared
the two sets of shared P-values by examining the most
significant tail of the distribution of P-values. We chose
the length of the tail by identifying how many SNPs are
significant within each of the six sets of P-values at a 20%
FDR threshold using the qvalue R package (Storey and
Tibshirani 2003). Then, for each pair, we chose the larger
number of significant SNPs. The goal of this approach was
to choose enough SNPs such that we capture a reasonable
number of significant and nonsignificant SNPs. We ob-
served concordance between the data sets because
SNPs that were significant in one data set showed sHWE
P-values in the other data set that are skewed toward zero

and stochastically less than the Uniform(0, 1) distribution.
If there were no concordance we would expect these rep-
lication P-values to be approximately Uniform(0, 1),
which they are not. This suggests that deviations from
sHWE show concordance between data sets, which in turn
suggests that some of the effects driving the violation of
sHWE are shared between data sets (i.e., biological) and
not unique to a data set (i.e., genotyping errors). The sim-
ilarity between data sets is strongest in the comparison
between the HGDP and HO data sets, which also share
many of the same individuals, albeit genotyped on differ-
ent technologies. These comparisons are shown in Figure 5.

Linkage disequilibrium

To assess the impact of linkage disequilibrium on our sHWE
procedure, we generated data sets based on the TGP genotyp-
ing array data set using varying thresholds for minimum
distance between SNPs. The original data set had no thresh-
old, so SNPs could be arbitrarily close.We generated two data
sets enforcing SNPs to be at least 1 kbp apart and10 kbp apart,
respectively, and then we carried out the sHWE analysis as
above on each data set. We compared the sHWE P-value
distributions of both of these data sets with the original data
set in Figure S15 by using a quantile–quantile plot of sHWE
P-values computed on all SNPs in each data set. We observed
no difference in distributions in either case. As with any anal-
ysis of genome-wide genotyping data, P-values of SNPs in
linkage disequilibrium will be dependent, so this should
be taken into account when assessing joint statistical
significance.

sHWE between genotyping technologies

The TGP provides a controlled setting to further investigate
sHWE in genome-wide data because samples have been
genotyped using different technologies. In addition to geno-
typing chip data, we also incorporated the integrated variant

Figure 5 Comparisons of significant sHWE P-values between the three data sets. For each pair of data sets, we choose the S most significant SNPs from
one data set, where S is the greater of the number of significant SNPs at FDR q-value # 20% for both data sets. We then test the corresponding S SNPs
for sHWE in the other data set. Quantile–quantile plots of the resulting P-values vs. the Uniform(0, 1) quantiles shows that the deviations from sHWE are
enriched in the other data set, verifying concordance of departures from sHWE between data sets.
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callset made by the TGP, which are derived primarily from
sequencing data. We created a subset of both the genotype
chip data and integrated callset that share the exact same
individuals while maintaining a maximal overlap in the SNPs
(see Methods). We then calculated sHWE P-values for both
data sets at K ¼ 12, which was determined earlier for the
TGP data set.

To compare the results between the technologies, we
employed two approaches. First, we analyzed the shared
SNPs between the data sets generated using an approach
identical to the between-data sets comparison earlier, using
maximum number of significant SNPs at FDR q-value #

20% (Figure 6). We observe that the majority of sHWE
P-values in one data set for SNPs that are significant in
the other are extremely small, although they are not nec-
essarily significant at this particular significance thresh-
old. This still represents concordance as the P-values in
the other data set are stochastically much smaller than
Uniform. The remaining P-values are linear, meaning that
the right tail of the P-values are approximately Uniform
away from zero. This shows that the majority of SNPs
(�75–80%) that deviated from sHWE exhibit this behavior
in both data sets.

Then, we compared the distributions of all sHWE
P-values between the two data sets for the shared and
unshared SNPs (Figure S17). While the distribution of
sHWE P-values for all shared SNPs is nearly identical, there

are proportionally many more significant SNPs deviated
from HWE in the integrated variant callset than in the gen-
otyping chip data. This suggests that SNPs called from the
sequencing data are less accurate than those genotyped
using chips.

Discussion

We extended the Pearson x2 test of HWE to allow for pop-
ulation structure, called the sHWE test. This allows one to
identify genetic markers that deviate from HWE for reasons
other than population structure. For example, SNP markers
can be identified in a GWAS with structure that potentially
have genotyping errors, or genetic loci that are subject to
evolutionary forces of interest other than structure can be
identified for further analysis.

Our proposed approach is flexible in terms of the exact
formulation of the model of structure. It only requires that
each SNP and individual pair is drawn from a Binomial
distribution, which is a condition satisfied by most common
models of population structure. We chose to employ the LFA
model here (Hao et al. 2016), which serves as a base model of
population structure for a test of association in GWAS (Song
et al. 2015). A caveat of our sHWE procedure is that simulat-
ing the empirical null distribution means that we are reliant
on computationally efficient methods for modeling popula-
tion structure.

Figure 6 Comparisons of sHWE P-values between
TGP genotyping array data and the TGP variant calls.
We identify significant SNPs at FDR q-value# 20% for
the two data sets, then plot quantile–quantile plots of
the SNPs shared in the other data set against the Uni-
form distribution. The labelings follow the convention
in Figure 5.
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We demonstrated the proposed sHWE test on three highly
structured global data sets. In each data set, we showed there
is a configuration of the population structure model that
captures the full range of genetic variation for �99% of the
SNPs and that the testing procedure provides a metric for
choosing the dimension.

Model validation is an important preliminary step
when applying probabilistic models to genome-wide gen-
otyping data. We have shown that our sHWE test is a
powerful tool for doing so. This approach to goodness of
fit is applicable to any high-dimensional latent structure
model for which it is possible to efficiently simulate data
from a given model fit. Further, our sHWE procedure yields
the ability to examine awider range of biological questions,
as our understanding of deviations from HWE in unstruc-
tured populations can now be applied to structured
populations.
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