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The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the
present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca
(strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple.
After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were
retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed
to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly
responsible for bZIP sequence-specific DNA binding.The analysis of orthologous pairs between chromosomes indicates that these
orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative
analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they
diverged from strawberry.

1. Introduction

Many of the biological processes in cell or organism, such as
responses to the environment and progression through the
cell cycle, metabolic and physiological balance are influenced
or controlled by regulation of gene expression at the level of
transcription. Development is based on the cellular capacity
for differential gene expression and is controlled by tran-
scription factors acting as switches of regulatory cascades [1].
Alterations in the expression of genes coding for transcription
factors (TFs) are emerging as a major source of the diversity
and change that underlie evolution [2]. Presently, at least 64
families of transcription factors have been identified in the
plant kingdom [3].The bZIP proteins represent a large family
of TFs with a DNA-binding domain rich in basic amino acid
residues, which is adjacent to a leucine zipper dimerization
domain (N-x7-R/K-x9) for sequence-specific DNA binding,
and a leucine zipper, which is composed of several heptad

repeats of Leu or other bulky hydrophobic amino acids, such
as Ile, Val, Phe, or Met, for dimerization specificity [4–7]. In
addition, the majority of characterized plant bZIP genes to
date have been associated with enhancing plant tolerance to
diverse types of abiotic stress [8–14].

Recent bZIP gene sequence analyses in Arabidopsis [5],
rice [6], castor bean [15], maize [16], sorghum [17], cucumber
[18], and grape [19], further indicated illegitimate recombina-
tion (IR) as a major source of duplications and deletions [20].
The evidence obtained from these analyses suggests that gene
duplications in a common ancestor of those plants gave rise
to bZIP genes. Therefore, the very earliest origins of the bZIP
gene family are associated with a series of gene duplications.
A total of 75 and 89 bZIP genes have been identified in
Arabidopsis [5] and rice (Oryza sativa) [6], respectively. The
bZIP genes in these two genera have been classified into 10
groups and 11 groups, respectively, based on DNA binding
specificity and sequence similarity.
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TheRosaceae is one of themost economical plant families
[21] composed by some 90 genera with over 3000 distinct
species which have 𝑥 = 7 to 𝑥 = 17 chromosomes
[22]. According to a phylogenetic treatment based on DNA
sequence, data of nuclear and chloroplast genomic regions in
Rosaceae reclassified the genus into Dryadoideae, Rosoideae,
and Spiraeoideae, each containing a number of distinct
supertribes [22]. Prunus and Malus are included in the
Spiraeoideae, supertribe Amygdaleae, and Pyrodae (tribe
Pyrinae), respectively, whilst Fragaria is included in the
Rosoideae, supertribe Rosodae (tribe Fragariinae) [23]. After
the rapid evolution of Rosaceae, members of the family
display remarkable phenotypic diversity, plant habit, chromo-
some number, and fruit typewhich evolved independently on
more than one opportunity [24, 25]. A better understanding
of how the bZIP genes within the Rosaceae arose would
provide an insight into how evolution can lead rapidly to
diversification. The genomes of three Rosaceous species,
woodland strawberry [26], domesticated apple [27], and
peach [28], have been recently sequenced, providing an
opportunity to conduct a high-resolution comparison of their
genomes. In this study,we identified 50, 116, and 47 bZIP tran-
scription factors based on the complete genome sequences of
strawberry, apple, and peach. Further, through phylogenetic
analysis, Ka/Ks ratios of genes and bZIP domains, and
orthologous relationships among chromosomes, we explain
the evolutionary history of bZIP genes in detail.

2. Methods

2.1. Data Resources and the Identification of bZIP Genes. Fra-
garia vesca (strawberry, v1.1), Malus domestica (apple, v1.0),
andPrunus persica (peach, v1.0) genomic and annotation data
were downloaded from the Genome Database for Rosaceae
(GDR, http://www.Rosaceae.org/) [26–28]. The genome
sequences of Brassica rapa (v1.3), Solanum lycopersicum
(iTAG2.3), Chlamydomonas reinhardtii (v5.5), Theobroma
cacao (v1.1), Selaginella moellendorffii (v1.0), Populus tricho-
carpa (v3.0), Medicago truncatula (Mt4.0v1), Cucumis
sativus (v1.0), Carica papaya (ASGPBv0.4), and Physcomi-
trella patens (v3.0) were downloaded from Phytozome
(http://www.phytozome.net/) [29]. Genomic data on M.
acuminate (v1) (http://banana-genome.cirad.fr/), Saccha-
romyces cerevisiae (v1) (http://www.yeastgenome.org/), and
Cyanidioschyzon merolae (http://merolae.biol.s.u-tokyo.ac
.jp/) were also downloaded for inclusion in the analyses. The
bZIP genes in the genomes of Vitis vinifera [19], Arabidopsis
thaliana [5], and rice (Oryza sativa) [6] were previously
identified.

The Hidden Markov Model (HMM) profiles of the bZIP
domain (PF00170) were retrieved from Pfam 27.0 [30] and
used for identifying the bZIP genes from the downloaded
database of genomes using HMMER3.0 [31]. All output
genes with a default 𝐸-value (<1.0) were collected and the
online software SMART (http://smart.embl-heidelberg.de/)
was used to confirm the integrity of the bZIP domain using
an 𝐸-value of <0.1 [32]. Incorrectly predicted genes were
removed. Finally, the sequences of nonredundant genes with
high confidence were collected and assigned as bZIP genes.

2.2. Alignment and Phylogenetic Analysis of bZIP Genes.
Based on the location (Table S2 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/536943)
predicted in the Pfam 27.0 [30] of conserved domains in
complete predicted bZIP protein sequences, the conserved
domain sequences of bZIP proteins were extracted and
aligned using ClustalX (version 1.83) [33]. The phylogenetic
treeswere generatedwithMEGA5.0 [34] using theNeighbor-
Joining (NJ) method and number of difference model [35].
1,000 bootstraps were used to evaluate the significance of the
phylogenetic trees.

2.3.SyntenyAnalysis of Strawberry, Apple, andPeachGenomes.
For synteny analysis, syntenic genes within the strawberry,
apple, and peach genomes, as well as between strawberry and
apple, strawberry and peach, peach and apple genomes, were
downloaded from the Plant Genome Duplication Database
[36] (PGDD, http://chibba.agtec.uga.edu/duplication/) and
those containing bZIP geneswere identified and analyzed.We
identified the syntenic gene pairs from the same and different
species within the same clade from phylogenetic analysis as
paralogous and orthologous genes.

2.4. Estimation of Nonsynonymous Substitutions and Syn-
onymous Substitutions. The nucleotide sequences of bZIP
gene and bZIP domain in each clade except for UN were
aligned by using Clustalw 2.0 [37]. The nonsynonymous
substitutions (Ka) and synonymous substitutions (Ks) and
nonsynonymous to synonymous substitution ratios (Ka/Ks)
were estimated in each gene family according to the align-
ments inMEGA 5.0 [38]. In order to detect selection pressure
of different clades of bZIPs in phylogenetic tree (A, B, C, D, E,
F, G, H, I, and S), Ka/Ks ratio greater than 1, less than 1, and
equal to 1 represents positive selection, negative or stabilizing
selection, and neutral selection, respectively. The software
in SPSS version 19.0 (SPSS, Chicago, IL, USA) was used for
statistical analysis. The statistical significance of Ka/Ks was
defined based on Duncan’s multiple range test and 𝑃 value of
< 0.05 as statistically significant.

3. Results

3.1. Identification and Comparative Analyses of bZIP Genes in
Nineteen Species. The sequences of 1441 bZIP sequences in 19
genomes, ranging from fungi to Plantae, including the three
Rosaceous species, were used to analyze the evolution of this
gene family (Figure 1 and Table S1). In the genome assemblies
of strawberry, apple, and peach, 50, 116, and 47 bZIP genes
were identified, respectively, using the HMMprofile from the
Pfam database [39] (Table S2). The number of bZIP genes
varies from 4 (C. merolae) to 212 (P. trichocarpa) in 19 species
with the genome size from 12.2 Mb (S. cerevisiae) to 881.3 Mb
(M. domestica). Furthermore, we found that the number of
bZIP genes in six higher plant species was more than 100.

The total number of bZIP genes in strawberry and peach
was very similar. However, it is important to note that the
number of bZIP genes in these two species was much less
than the number in apple (116). The number of bZIP genes
in strawberry (50) and peach (47) was also much smaller
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Species Number of bZIP Genome size (Mb) Number (Mb)
Malus domestica 116 881.3 0.13/72.06

Prunus persica 47 227.3 0.21/122.59

Fragaria vesca 50 240 0.21/136.8

Cucumis sativus 118 203 0.58/105.87

Medicago truncatula 66 257.6 0.26/197.57

Populus trichocarpa 212 422.9 0.50/97.74

Arabidopsis thaliana 75 135 0.56/198.86

Brassica rapa 130 283.8 0.46/152.82

Carica papaya 45 135 0.33/202.46

Theobroma cacao 106 346 0.31/85.12

Vitis vinifera 55 487 0.11/61.54

Solanum lycopersicum 69 760 0.09/45.69

Oryza sativa 89 372 0.24/150.5

Musa acuminata 134 331.8 0.40/110.15

Selaginella moellendorffii 23 212.5 0.11/104.81

Physcomitrella patens 64 480 0.13/55.44

Chlamydomonas reinhardtii 24 111 0.22/159.83

Cyanidioschyzon merolae 4 16.5 0.24/406.12

Saccharomyces cerevisiae 14 12.2 1.15/551.31

Figure 1: Phylogenetic relationships, number of bZIP genes, genome size, bZIP density, and overall gene density of the nineteen species
analyzed. The bZIP density and overall gene density of the nineteen species analyzed were separated by parenthesis. The bZIP density was
followed by overall gene density.

than the number in most of the 19 species (Figure 1), which
may infer that only a small number of gene duplication
events contributed to the bZIPmembers in these two species.
The number of apple bZIP genes (116) was similar to the
number in C. sativus (118) but less than the number found
in P. trichocarpa (212), B. rapa (130), andM. acuminate (134)
(Figure 1). In contrast, the density of bZIP genes in the three
Rosaceous species was very distinct and not related to the
number of bZIP genes present. The bZIP density in the apple
genome (0.13) was lower than that in strawberry (0.21) and
peach (0.21) and only exceeded the density observed in V.
vinifera (0.11), S. moellendorffii (0.11), and S. lycopersicum
(0.09) (Figure 1). By contrast, the apple genome also had
a lower overall gene density (72.06), which is probably the
reason for low bZIP density in the apple genome.

3.2. Phylogenetic Analysis of bZIP Genes in Three Rosaceous
Species. A phylogenetic analysis was performed for the bZIP
genes in the three Rosaceous species using the bZIP domains
in strawberry, apple, and peach, as well as Arabidopsis [5], in
order to further elucidate the evolution of this gene family
(Figure S1). Since the bZIP genes of Arabidopsis have already
been clustered, we were able to compare the clustering of
the bZIP genes of Rosaceous species with the clustering from
Arabidopsis. Surprisingly, AtbZIP31, AtbZIP33, and AtbZIP74
were different from other bZIP genes in that they formed
individual clades containing only bZIP genes of Arabidopsis,

suggesting that these individual clades may be specific to
Arabidopsis (Figure S1).

The results indicated that the ten clades (A, B, C, D, E,
F, G, H, I, and S) obtained in our phylogenetic tree were in
agreementwith the clustering and classification of bZIP genes
in Arabidopsis [5] (Figure 2). However, a few genes formed
three small unique clades (UC, Figure 2) in the phylogenetic
tree produced from our analyses. This observation supports
the hypothesis that these three unique clades may have had
independent evolutionary trajectories from the other clades.

All of the clades from Figure 2 include genes from all
of the three species. The number of strawberry, apple, and
peach bZIP genes, respectively, in each of the clades were A
(9, 18, 8); B (1, 5, 1); C (3, 6, 4); D (7, 12, 6); E (2, 8, 3); F
(2, 6, 2); G (6, 10, 4); H (2, 5, 2); I (6, 17, 6); and S (9, 21,
9). Moreover, the phylogenetic tree of the three Rosaceous
species indicated that the bZIP genes in strawberry and peach
have few paralogs with “one-to-one” topology (two paralogs
clustered together in a clade), suggesting that most of them
were generated before speciation of strawberry. In contrast,
there were many clades with “one-to-one” or “one-to-many”
topologies (more than two paralogs clustered together in a
clade) in apple, indicating that species-specific duplication
events contributed greatly to the large number of apple bZIPs.

3.3. Nonsynonymous and Synonymous Substitution of bZIP
Genes. Our result indicates that most clades (A, B, C, D, E, F,
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Figure 2: Phylogenetic analysis of bZIP members in strawberry, apple, and peach. Phylogenetic analysis of bZIP proteins in strawberry
(mrna), apple (MDP), and peach (ppa). Only bootstrap values larger than 50% are indicated. Different colors can be used to distinguish the
different subgroups. The names of each subgroup are listed on the right. UC represented “unique clades.”
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Figure 3: Ka/Ks ratios of bZIP genes. (a) Ka/Ks ratios of genes in clades A–S. (b) Ka/Ks ratios of paralogous and orthologous gene pairs in
clades A–S. (c) Ka/Ks ratios of paralogs (FV FV, MD MD, and PP PP) and orthologs (FV MD, FV PP, and MD PP) in clade S. The Ka/Ks
ratios are located in the top of the graph.

G,H, and I) hadKa/Ks ratios less than 1 (Figure 3(a)), demon-
strating that most genes of those clades were undergoing a
purifying selection in the three species. Among all the gene
pairs in the clades, 25 (7.99% of clade A), 1 (2.13% of clade E),
16 (9.58%of cladeG), and 12 (5.33%of clade I) pairs hadKa/Ks
ratio approximately equal to 1 (Ka/Ks ratio = 0.8∼1.0) for bZIP
genes in strawberry, apple, and peach (Table S3). However,
52 (16.61% of clade A), 15 (8.98% of clade G), 1 (4.55% of
clade H), and 15 (6.67% of clade I) gene pairs had Ka/Ks
ratios greater than 1 for bZIP genes (Table S3), which indicates
that some of bZIP genes were under positive selection or
relaxed selection for gene pairs with Ka/Ks approximately
equal to 1. It is worth noting that Ka/Ks ratio of gene pairs
in clade S is significantly greater than other clades (𝑃 < 0.05),
which illustrated that bZIP geneswere under strongly positive
selection (Figure 3(a)).

In order to explain Ka/Ks ratio distribution of gene pairs
in each clade, we compared Ka/Ks ratio of the orthologous
and paralogous gene pairs in strawberry, apple, and peach
(Table S4). It is indicated that the Ka/Ks ratio of paralogs is
bigger than orthologs in each clade except for clades C, H,
and S (Figure 3(b)). Most of orthologs and paralogs exhibit
a low level Ka/Ks ratio (Ka/Ks ratio = 0.16∼0.80) in different
clades (A, B, C, D, E, F, G, H, and I) analyzed (Figure 3(b)).
However, the ones of orthologs (Ka/Ks ratio = 2.00) and
paralogs (Ka/Ks ratio = 1.31) in clade S are obviously greater
than 1 and significantly higher than orthologs and paralogs
in other clades (𝑃 < 0.05). Orthologs and paralogs in clade

S could be further divided into three subgroups separately,
FV PP (between strawberry and peach)/MD FV (between
apple and strawberry)/MD PP (apple and peach) and FV FV
(within strawberry)/MD MD (within apple)/PP PP (within
peach). Orthologs in the MD PP have a highest Ka/Ks ratio
(2.22) and paralogs in the FV FV have a lowest Ka/Ks ratio
(1.27) (Figure 3(c)).

3.4. Nonsynonymous and Synonymous Substitution of bZIP
Domains. For getting a more in-depth exploration in selec-
tion pressure of bZIP genes in different clades during their
evolution, we compared the Ka/Ks ratio of bZIP domains in
each clade (Table S5). We found that all clades with Ka/Ks
ratios ranging from 0.04 (clade D) to 0.32 (clade G) were less
than 0.4 (Figure 4(a)). It is suggested that a strong negative
selection plays the leading roles in the evolution of bZIP
domains.

Basic leucine zipper (bZIP) proteins, one of the largest
families of transcription factors in plants, are characterized
by a basic region (BR) responsible for sequence-specific DNA
binding, an adjacent heptad leucine repeat, and the leucine
zipper (LZ) [40]. It is concluded that all BR domains ranging
from 0.02 (BR of clade C) to 0.24 (BR of clade I) and LZ
domains ranging from 0.1 (LZ of clade I) to 0.61 (LZ of clade
B) were undergoing negative selection (Figure 4(b),Table S5).
Interestingly, Ka/Ks ratio of BR domain is less than the
ones of LZ domain in each clade except for clades H and I
(Figure 4(b)).
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Figure 4: Ka/Ks ratios of bZIP domains. (a) Ka/Ks ratios of domains in clades A–S. (b) Ka/Ks ratios of BR and LZ domains in clades A–S.
The Ka/Ks ratios are located in the top of the graph.

3.5. Evaluation of Orthologous bZIP Genes between Straw-
berry, Apple, and Peach. In order to trace the evolution-
ary history of bZIP genes among the three Rosaceous
species, orthologous regions of bZIP genes in the three
Rosaceous species were subjected to a comparative analysis
in order to ascertain the evolutionary history of bZIP genes
in the Rosaceae. Using Circos software [41], 57 ortholo-
gous gene pairs were identified between strawberry and
apple (FV MD) (Figure 5(a)), 64 between apple and peach
(MD PP) (Figure 5(b)), and 50 between strawberry and
peach (FV PP) (Figure 5(c)). Collectively, these data are
presented in Table S6 and Figure 5.

Out of the 57 gene pairs present in the strawberry and
apple genomes (Figure 5(a)), 20 strawberry bZIP genes corre-
spond to one copy (Type 1), 17 genes correspond to two copies
(Type 2), and one gene corresponds to three copies (Type
3) in apple. Therefore, 56 bZIP genes in the apple genome
have 38 corresponding genes in the strawberry genome. In
all three types, some genes have preserved and exhibit the
same number of exons (Table S6). Out of 50 gene pairs
present in the strawberry and peach genomes (Figure 5(c)),
26 strawberry bZIP genes correspond to one copy (Type 1),
9 genes to two copies (Type 2), and 2 genes to three copies
(Type 3) in peach. Collectively, 37 strawberry bZIP genes
corresponded to 38 bZIP genes in the peach genome.Genes of
all three types in strawberry and peach have preserved similar
exon configurations (Table S6). Based on the 30 overlapping
bZIP strawberry genes, the data collectively indicate that
45 bZIP genes, representing 90% of the total number of
bZIP genes in the strawberry genome, were ancestral and
underwent different duplication events after the divergent
speciation of apple and peach. Additionally, 56 bZIP genes,
representing 48.3% of the total number of bZIP genes in
the apple genome, were retained on duplicated regions. In
addition, 38 bZIP genes, representing 80.9% of the total
number of bZIP genes in the peach genome, were retained on
syntenic blocks. These data further indicate that most of the
bZIP genes in strawberry and peach experienced a low level
of duplication events compared to the number of duplication
events in the apple genome.These findings are consistentwith

the results of a previous study which reported that a recent
whole genome duplication (WGD) event occurred in apple
60–65 million years ago [27].

3.6.Orthologous Relationships amongChromosomes. In order
to understand the influence of the WGD in apple on the
bZIP gene family in the Rosaceae, the major distribution
of orthologous chromosomes was identified and compared
between paired combinations of strawberry, apple, and peach
according to the classification reported by Jung et al. [42]
(Table S6, Table S7). The orthologous relationship between
chromosomes of peach and strawberry made it evident that
themajority of bZIP genes on peach chromosomes PC2, PC3,
PC5, and PC8 were located on a single homologous FC7,
FC6, FC5, and FC2 chromosome in strawberry, respectively.
The majority of genes on PC6 and PC7 were also located
on strawberry chromosomes, FC1 and FC6. Additionally,
35.71% of the bZIP genes on strawberry chromosome FC2
had an orthologous relationship to the PC1. Both ppa016271m
and ppa022385m of PC4, however, were located on the FC6
chromosome of strawberry.

The relationship between peach and apple at the chro-
mosome level was more complex than the relationship
between peach and strawberry. 66.67%, 66.67%, 50%,
50%, and 50% of bZIP genes on five apple chromosomes
sets, MC2/MC7, MC9/MC17, MC3/MC11, MC14/MC6, and
MC2/MC15, respectively, have their orthologous genes cor-
responding to the chromosomes PC2, PC3, PC4, PC5, and
PC7 of peach. Orthologous genes on PC6 corresponded to
major genes on four apple chromosomes, MC3, MC4, MC11,
and MC12 (Table S6, Table S7).

4. Discussion

4.1. Evolutionary History of bZIP Family inThree Species of the
Rosaceae. The bZIP transcription factor family is one of the
largest andmost diverse families of transcriptional regulators
in eukaryotic organisms [15]. In the present study, the bZIP
transcription factor family in 16 species, including 13 higher
plants, 2 lower plants, and one fungus, was analyzed, in an
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Figure 5: Evaluation of orthologous bZIP genes between strawberry, apple, and peach. (a) Seven strawberry (FC1 to FC7) and seventeen apple
chromosome (MC1 to MC17) maps are based on the orthologous pair position and demonstrate a highly conserved syntenic relationship. (b)
Seventeen apple chromosome (MC1 to MC17) and peach (PC1 to PC8) maps are based on the orthologous pair positions and demonstrate
highly conserved synteny. (c) Seven strawberry (FC1 to FC7) and peach (PC1 to PC8) maps are based on the orthologous pair positions, and
demonstrate highly conserved synteny.

effort to better understand the evolution of this gene family
in the Rosaceae. It has been suggested that the bZIP gene
family existed before the divergence of higher and lower plant
species, even in the fungi, which consists with foundation in
Wang et al. (2011) research [17]. An uneven distribution of
bZIP copies among the 19 species was identified, suggesting
that the bZIP genes within each species had undergone
different levels of gene duplicationwith larger expansion after
the divergence of higher and lower plants. For example, the
numbers of copies of bZIP genes were as follows: O. sativa
(89), Cucumis sativus (118), and Populus trichocarpa (212).

These observations suggest that specific functional expansion
may have resulted from environmental selection pressure
or specialization in processes of growth and development,
including stress responses [14, 43–46] and abscisic acid
(ABA) signaling [10, 11, 47]. As a result of evolutionary
pressure and/or environmental selection, critical genes or
components of genes were retained, whereas others were
deleted or lost [48].

We identified 50 and 47 bZIP genes in the genomes of
strawberry and peach, respectively. This number is similar
with those of previous genome-wide studies on some other
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species, indicating the presence of 64 bZIP homologs in
cucumber [18], 55 in grapevine [19], and 49 in castor bean
[15]. The bZIP homologs in apple (116) were consistent with
the numbers in maize (120) [16] and sorghum (92) [17].
bZIP genes in strawberry and peach are much lower than
that in apple which has a much larger genome size. These
observations support the hypothesis that theWGD [27] event
which occurred in apple resulted in significant amplification
in the number of apple bZIP genes. On the other hand, a low
level of gene duplication events may have contributed to the
number of bZIP genes in strawberry and peach.

4.2. bZIPGenes Expansion in the Rosaceae. Thephylogenetic
tree of the bZIP gene family generated in this study for
Rosaceous species is supported by Liu et al. [19], Nijhawan et
al. [6], andWei et al. [16]. Each of the clades included at least 7
bZIP genes from the 39 bZIP genes identified in the 3 species
examined, indicating that many of the bZIP genes originated
through a process of gene duplication. The widespread
existence of paralogs and orthologs with “one-to-one” or
“one-to-many” topologies in the Rosaceous species examined
suggests that species-specific duplication was the main con-
tributor to the large number of bZIPs observed in apple. The
number of bZIP genes in each of the three species was highly
variable, indicating that most of the gene duplication events
occurred after evolutionary divergence of each lineage. It is
also likely that both WGD and a series of rearrangements
occurred during the evolution of certain species.

Extensive genome and EST sequencing of plant species
has revealed a substantial history of WGD events [49, 50].
In the Rosaceae, an evolutionary trend toward fruit devel-
opment and specialization may have been partially based on
gene duplication. For example, WGD in apple has resulted
in the creation of large families of paralogous genes [27]. In
our analysis of the apple genome, 56 (48.3%) bZIP genes were
retained on duplicated regions. Therefore, the involvement
of WGD in the expansion of the bZIP gene family in apple
is quite evident. Polyploidy provides an excellent genomic
resource to study retention and loss of multicopy genes
[48, 51]. Following WGD, genes can suffer a variety of
fates ranging from massive gene loss to the development
of a central role in an essential aspect of the plant [52].
A comparative analysis of bZIP genes in strawberry, apple,
and peach led us to hypothesize that, after WGD in an
apple ancestor, orthologous bZIP genes corresponding to
strawberry on duplicated regions in apple genome were
retained. On the other hand, in the peach ancestor, these
syntenic regions were quickly lost or deleted, perhaps due to
issues associated with an imbalance in gene dosage [53, 54].

4.3. Selection Pressure of bZIP Genes and bZIP Domains in All
Clades. Furthermore, Ka/Ks ratios were estimated to detect
the diversifying selection pressure on different clades (except
for UN clades). The results showed that the Ka/Ks ratios for
gene pairs in nine clades (A, B, C, D, E, F, G, H, and I) were<1,
with most of them being even less than 0.6, suggesting strong
purifying selection (Figure 3(a)). However, the other pairs in
clade S seemed to be under positive selection, as their Ka/Ks
ratios were >1. Also, in the phylogenic tree of Rosaceae, we

found the biggest clade (S) containing 39 genes (21, 9, and 9
for apple, peach, and strawberry, resp.).Much interest focuses
on positive selection (adaptive molecular evolution) associ-
ated with adaptation and evolution of new forms or functions
in that nonsynonymous mutations offer fitness advantages to
the protein [55, 56]. Zhao et al. have concluded that functional
gain and divergence of transcription factors were driven by
distinct positive selection on their transcription activation
domains [57]. Based on the derivative data from monocot
and dicot species imply that homologues of S bZIPs are also
transcriptionally activated after stress treatment [58], such as
drought, cold, and wounding, or are specifically expressed in
defined parts of the flower [59, 60].Thepositive selectionmay
have contributed to the expansion of clade S to adapt to the
development and environment stresses.

The bZIP transcription factors contain a highly conserved
bZIP domain composed of two structural features: a basic
region (N-X

7
-R/K-X

9
) for sequence-specific DNA binding

and a leucine zipper composed of several heptad repeats of
Leu or other bulky hydrophobic amino acids, such as Ile, Val,
Phe, or Met, for dimerization specificity [5–7]. Additionally,
bZIP domains of all clades also appeared as stronger purifying
selection. A purifying selection may aid in the detection
of regions or residues of functional importance [55]. These
results suggested that functions of genes in major clades did
not diverge much along with the genome evolution after the
duplication events. Possibly because of the rapid evolution,
members of the Rosaceae display remarkable phenotypic
diversity, with common morphological synapomorphies not
readily identifiable [23]. It is worth noting that paralogs
were undergoing stronger purifying selection than orthologs
in each clade except for clades C, H, and S (Figure 3(b)),
which probably accelerates the process of morphological
diversity, plant habit, and fruit type within the Rosaceae.
From Figure 4(b), we conclude that BR domains were under
stronger purifying selection than LZ domains in each clade
except for clades H and I, suggesting that purifying selection
was mainly responsible for bZIP sequence-specific DNA
binding.

4.4. Orthologous Pairs between Chromosomes. Peach, at both
the macro- and microsyntenic levels, has the most conserved
karyotype in relation to the ancestral genome configuration
for the Rosaceae [42]. Dirlewanger et al. [61] comparedMalus
and Prunus and found strong evidence that single linkage
groups in the diploidPrunuswere homologous to two distinct
homologous linkage groups in the amphitetraploid genome
ofMalus. According to orthologous bZIP gene pairs analysis,
the conserved and syntenic blocks were common to all three
genomes analyzed, with a single syntenic block in peach
corresponding to one or two syntenic regions in strawberry
and two or four syntenic regions in apple. Vilanova et al. [62]
compared the diploid reference linkage maps for Prunus and
Fragaria and they identified numerous chromosomal translo-
cations and rearrangements that occurred in the 29 million
years since the genera diverged from a common ancestor.
Notably, bZIP genes on the PC4 peach chromosome corre-
sponded orthologously not to FC6, but rather to FC3. The
data indicated that two genes (ppa016271m and ppa022385m)
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located on a nonorthologous chromosome region that had
originated from a common ancestor went through some
intrachromosomal rearrangements. This interpretation is
consistent with the fact that a greater number of small-scale
rearrangements occurred in strawberry in comparison to
either apple or peach [42]. Whilst an early hypothesis as
to the origin of Malus implied wide hybridization between
ancestral amygdaloid (𝑥 = 8) and ancestral spiraeoid (𝑥 =
9) [63], other data suggest that Malus may have arisen due
to polyploidization of a spiraeoid species [64]. Illa et al.
[23] reconstructed a hypothetical ancestral genome for the
Rosaceae containing nine chromosomes (𝑥 = 9), consistent
with the report of Vilanova et al. [62]. Based on the analysis of
orthologous pairs between chromosomes, we could propose
a hypothesis that these orthologs became after one gene
duplication located on one of the nine ancient chromosomes
in the Rosaceae. An evaluation of the conservation of synteny
between Fragaria,Malus, andPrunus based onwhole genome
sequence data may reveal much about sequence evolution in
this closely related family.
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[3] P. Pérez-Rodŕıguez, D. M. Riaño-Pachón, L. G. G. Corrêa,
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