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Mendelian randomization reveals
potential causal relationships between
cellular senescence-related genes and
multiple cancer risks

Check for updates

Xunan Qiu1,2,3,4, Rui Guo1,2,3,4, Yingying Wang1,2,3, Shuwen Zheng1,2,3, Bengang Wang 1,2,3 &
Yuehua Gong 1,2,3

Cellular senescence iswidely acknowledged as having strong associationswith cancer. However, the
intricate relationships between cellular senescence-related (CSR) genes and cancer risk remain poorly
explored, with insights on causality remaining elusive. In this study, Mendelian Randomization (MR)
analyses were used to draw causal inferences from 866 CSR genes as exposures and summary
statistics for 18 common cancers as outcomes. We focused on genetic variants affecting gene
expression, DNAmethylation, and protein expression quantitative trait loci (cis-eQTL, cis-mQTL, and
cis-pQTL, respectively), which were strongly linked to CSR genes alterations. Variants were selected
as instrumental variables (IVs) and analyzed for causalitywith cancer using both summary-data-based
MR (SMR) and two-sample MR (TSMR) approaches. Bayesian colocalization was used to unravel
potential regulatory mechanisms underpinning risk variants in cancer, and further validate the
robustness of MR results. We identified five CSR genes (CNOT6, DNMT3B, MAP2K1, TBPL1, and
SREBF1), 18DNAmethylation genes, andLAYNprotein expressionwhichwereall causally associated
with different cancer types. Beyond causality, a comprehensive analysis of gene function, pathways,
and druggability values was also conducted. These findings provide a robust foundation for
unravelling CSR genes molecular mechanisms and promoting clinical drug development for cancer.

Cellular senescence is a biological response to different external stimuli,
encompassing microenvironmental stress, nutrient deprivation, DNA
damage, cellular and organelle impairment, and cellular signaling network
abnormalities. The process manifests with four characteristics: cell cycle
arrest, a senescence-associated secretory phenotype (SASP), macro-
molecular damage, and metabolic disorder1,2. Cellular senescence is a
recently hypothesized molecular cancer hallmark and has important
implications for age-related illnesses, carcinogenesis, and tissue repair3,4. In
terms of carcinogenesis, cellular senescence functions as a “double-edged
sword”; on the one hand, senescence exerts inhibitory effects toward
tumorigenesis through cell-intrinsic mechanisms, fostering local anti-
tumor immunity, contributing to wound healing, and enhancing host
immunity5. Senescent cells, on the other hand, generate and secrete

cytokines that stimulate tumor cell growth, ultimately contributing to
tumorigenesis by facilitating chronic inflammation and associated degen-
erative and hyperplastic lesions6. Therefore, elucidating cellular senescence
roles in tumorigenesis is critical.

Currently, based on traditional observational studies, associations
between specific cellular senescence-related (CSR) genes and diverse tumor
risks have been identified. For example, EZH2 and TOP2A knockdown
inhibit hepatocarcinogenesis by inducing cellular senescence7. IL-1 is a key
SASP component and promotes the malignant transformation of oral
precursor lesions7. SOX6 suppresses cervical cell proliferation by inducing
cellular senescence8. Additionally, FBXW7 likely functions as a tumor
suppressor in esophageal squamous carcinoma by regulating cellular
senescence and DNA damage repair, among other mechanisms9.
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Nevertheless, current studies have only delineated the function of a
restricted set of CSR genes in tumors, which lacks comprehensiveness.
Furthermore, traditional observational studies only delineate associations
between genes and tumors; they do not identify potential causal links
between the two and fail to account for the impact of other confounding
factors, such as environmental influences, on tumor risk. Furthermore,
randomized controlled trials (RCTs) on CSR genes in different tumors are
challenging due to heavy workloads, time constraints, and cost considera-
tions. Therefore, a robust methodology is required to comprehensively
analyze the causal effects of CSR genes in multiple tumors.

Mendelian Randomization (MR), positioned at the intersection
between observational studies and RCTs, is gaining prominence in bol-
stering causal evidence in observational trials10,11. MR uses genetic variants
as IVs to investigate potential causal associations between lifetime exposures
and outcomes12. Compared to statistical methods in traditional observa-
tional studies, MR mitigates the impact of confounders and reverse causa-
tion, given the random assignment of genetic variants at birth (prior to
disease development)13. To the best of our knowledge, MR has been
extensively used to scrutinize causal connections between various traits and
diseases, such as fatty acids and schizophrenia, and lung function and car-
diovascular disease14,15. Both summary-data-based MR (SMR) and two-
sample MR (TSMR) enable to estimate pleiotropic or potentially causal
associations between genetically determined traits (e.g., gene expression,
DNA methylation and protein expression) and complex traits of interest
(disease phenotypes as outcomes, e.g., tumors)16–19. Additionally, hetero-
geneity independent instrument (HEIDI) tests have been used to differ-
entiate potential causal associations between extensive linkage
disequilibrium (LD) in the genome. Genome-wide association studies
(GWAS) also leverage genetic associations with traits by analyzing single
nucleotide polymorphisms (SNPs) and integrating GWAS data with gene
expression andmethylationdata.However,MRhas yet to beused to explore
potential causal relationships between CSR genes and the risk of some
common cancer types.

In this study, we first analyzed potential causal associations between
CSR genes expression, DNA methylation, and protein expression levels in
18 cancers using SMR or TSMR.We then gained insights into the potential
regulatorymechanismsunderpinning cancer risk variants throughBayesian
colocalization. Finally, we explored the druggability and functional roles of
identified CSR genes. We adhered to reporting guidelines outlined in the
Strengthening the Reporting of Observational Studies in Epidemiology
(Supplementary Table 1)20,21.

Results
Instrumental variables selection for MR analysis
We initially selected SNPs associated with the expression of 748 CSR genes
transcripts from cis-eQTL data in the eQTLGen database. Subsequently,
SNPs corresponding to 3515 CSR genes DNA methylation CpG sites were
chosen from cis-mQTL pooled data. Additionally, SNPs extracted from the
deCODE cis-pQTL database were closely linked to the expression of 147
CSR proteins. Genetic variants exhibiting strong associations with CSR
genes expression, DNA methylation, and protein expression were selected
for analyses (Fig. 1, SupplementaryTable 2). The studydesign andworkflow
are outlined (Fig. 1).

MR and colocalization analysis of cellular senescence genome-
wide cis-eQTL with multiple cancer risks
Associations between SNPs representing CSR genes expression and cancer
outcomes, as determined by SMR testing, are shown (Fig. 2, Supplementary
Table 3). Following the correction ofP-values (FDR < 0.05) andHEIDI tests
(PHEIDI > 0.01), we identified four association signals for four unique genetic
loci in breast cancer, two association signals for two unique genetic loci in
colorectal cancer, one association signal for one unique genetic locus in
endometrial cancer, two association signals for two unique genetic loci in
lung cancer, two association signals for two unique genetic loci in mela-
noma, and sixteen association signals for sixteen unique genetic loci in

prostate cancer. We did not find any significant genetic connections
between CSR genes expression and 12 other cancer types except men-
tioned above.

Subsequent Bayesian colocalization analysis revealed that the expression
of five genes exhibited shared causal variants with certain cancers. Specifi-
cally, those were CNOT6with lung cancer, andDNMT3B,MAP2K1, TBPL1,
and SREBF1with prostate cancer (Figs. 3 and 4, Supplementary Table 4). For
lung cancer, one SD increase in CNOT6 expression was associated with an
18% higher tumor risk (Odds Ratio (OR): 1.18, 95% Confidence Interval
(CI): 1.10–1.27, FDR= 3.46 × 10−2). For prostate cancer, one SD increase in
DNMT3B expression was associated with a 73% higher risk (OR: 1.73, 95%
CI: 1.48–1.97, FDR= 1.49 × 10−3), one SD decrease in MAP2K1 expression
was associated with a 24% lower risk (OR: 0.76, 95% CI: 0.66–0.86,
FDR= 5.82 × 10−6), one SD decrease in TBPL1 expression was associated
with a 16% lower risk (OR: 0.84, 95% CI: 0.76–0.92, FDR= 2.81 × 10−3), and
one SD decrease in SREBF1 expression was associated with a 11% lower risk
(OR: 0.89, 95% CI: 0.85–0.94, FDR= 4.82 × 10−4).

MR and colocalization analysis of cellular senescence genome-
wide cis-mQTL with multiple cancer risks
For causal relationships betweenCSR genesDNAmethylation andmultiple
cancer outcomes, after FDR corrections andHEIDI testing (Supplementary
Table 5), we identified three association signals for three unique genetic loci
in colorectal cancer, five association signals for five unique genetic loci in
endometrial cancer, ten association signals for ten unique genetic loci in
lung cancer, five association signals for three unique genetic loci in oral
cavity pharyngeal, 152 association signals for 115 unique genetic loci in
prostate cancer, four association signals for three unique loci in gastric
cancer, and one association signal in thyroid cancer. We did not find any
significant genetic associations between CSR genes DNA methylation and
other cancer types.

Bayesian colocalization analysis identified 18 genes exhibiting shared
causal variations between DNA methylation and cancer (Supplementary
Table 6). Furthermore, these analyses indicated that distinct genetic variants
regulating these genes exerted varying effects onmethylation levels, thereby
influencing observed outcomes.

In colorectal cancer, NTN4 and SMAD6 hypermethylation was asso-
ciatedwith an increased risk (OR: 1.25, 95%CI: 1.15–1.35, FDR = 1.77 × 10−2

and OR: 1.31, 95% CI: 1.18–1.44, FDR = 4.52 × 10−2, respectively). In
endometrial cancer,NF1hypermethylationwas associatedwith an increased
risk (OR: 1.34, 95% CI: 1.21–1.48, FDR = 2.62 × 10−2), whereas TERT
hypermethylation was linked to a decreased risk (OR: 0.78, 95% CI:
0.66–0.90, FDR = 4.16 × 10−2). For lung cancer, ATG12 hypermethylation
(OR: 0.92, 95% CI: 0.88–0.96, FDR = 7.43 × 10−3), DDAH2 hypermethyla-
tion (OR ranged from 0.65 to 0.75, FDR < 0.05), ENO1 hypermethylation
(OR: 0.89, 95% CI: 0.83–0.95, FDR = 1.62 × 10−2), and TP53BP1 hyper-
methylation (OR: 0.80, 95% CI: 0.70–0.90, FDR = 7.07 × 10−3) all decreased
tumor risk. For oral cavity pharyngeal, KCNJ12 hypermethylation was
associated with an increased risk (OR ranged from 1.17 to 1.23,
FDR = 4.38 × 10−2), whereas NOTCH1 hypermethylation decreased tumor
risk (OR: 0.51, 95% CI: 0.21–0.82, FDR = 4.38 × 10−2). In prostate cancer,
different methylation sites within the same gene potentially exerted distinct
effects. Methylation sites cg26553763 and cg13636640 in six CpG sites
associatedwith rs2424905, rs6087989, rs1883730, rs1003521, and rs4911106
in DNMT3B exhibited a negative link with tumor risk (OR: 0.83, 95% CI:
0.75–0.92, FDR = 3.47 × 10−3 and OR: 0.96, 95% CI: 0.94–0.97,
FDR = 1.41 × 10−4, respectively), while cg22052056, cg21235334,
cg13788819, and cg09149842 showed positive associations with tumor
risk (OR: 1.15, 95% CI: 1.09–1.22, FDR = 1.07 × 10−3; OR: 1.13, 95%
CI: 1.07–1.18, FDR = 1.03 × 10−3; OR: 1.12, 95% CI: 1.07–1.17,
FDR = 5.72 × 10−4; and OR: 1.14, 95% CI: 1.08–1.19, FDR = 7.78 × 10−4,
respectively). Similarly, the effects of different methylation sites in FERMT1
andMAD1L1 on prostate cancer risk were either positive or negative;MVK,
NEK6, NUDT5, and SMAD2 hypermethylation reduced tumor risk (OR:
0.91, 95% CI: 0.86–0.95, FDR = 3.47 × 10−3; OR: 0.96, 95% CI: 0.95–0.98,
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FDR= 6.28 × 10−4; OR: 0.96, 95% CI: 0.94–0.98, FDR = 1.40×10−3; and OR:
0.93, 95% CI: 0.90–0.96, FDR = 3.36 × 10−3, respectively), and SPI1 hyper-
methylation increased tumor risk (OR: 1.15, 95% CI: 1.08–1.21,
FDR = 3.30 × 10−3). Results are shown (SupplementaryTable 5). For thyroid
cancer, SMAD3 hypermethylation was associated with an increased tumor
risk (OR: 1.69, 95% CI: 1.47–1.92, FDR = 1.73 × 10−2).

Moreover, altered DNA methylation patterns in specific CSR genes
have a direct impact on their mRNA expression22. Similarly, we conducted

SMR analyses to investigate causal relationships between methylation and
CSR genes expression, aligning gene methylation to expression through
shared genetic variations. Following FDRcorrections andHEIDI testing, we
compiled a list of CSR genes whose expression levels were influenced by
DNA methylation at CpG sites (Supplementary Table 7). These findings
indicated that the DNA methylation of TERT, DDAH2, DNMT3B,
MAD1L1, NOTCH1, TP53BP1, MAP2K1, SMAD2, SMAD3, SMAD6, and
SREBF1 significantly impacted their gene expression levels.

Fig. 1 | Study design and the workflow showing
genetic variation selection and analysis methods.
IVs instrumental variables, SNPs single nucleotide
polymorphisms, SMR summary-data-based Men-
delian Randomization, TSMR two-sample Mende-
lian Randomization, GO Gene Ontology, KEGG
Kyoto Encyclopedia of Genes and Genomes.
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MR and colocalization analysis of cellular senescence genome-
wide cis-pQTL with multiple cancer risks
To investigate causal relationships between protein expression related
to CSR genes and various cancer outcomes, we used five MR analysis
methods (primarily the IVW method). Using heterogeneity,

pleiotropy tests, and Bayesian colocalization, we concluded that ele-
vated LAYN protein expression levels were linked to a reduced risk of
prostate cancer (OR: 0.51, 95% CI: 0.37–0.71, FDR = 1.36 × 10−2) and
shared a causal variant with this disease (Supplementary Fig. 2,
Supplementary Tables 8, 9).

Fig. 2 | MR results showing associations between CSR genes expression and cancer risks. Instrumental variant: top SNP that best represents a gene. OR: Odds Ratio. 95%
CI: 95% Confidence Interval. FDR: the false discovery rate.

Fig. 3 | Colocalization results of eQTLs and GWAS. PP.H0: posterior probability of H1. PP.H1: posterior probability of H1. PP.H2: posterior probability of H2. PP.H3:
posterior probability of H3. PP.H4: posterior probability of H4; PP.H4 > 0.8 as the cut-off for the evidence of colocalization of cancer GWAS and eQTL association.
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A phenome-wide scan of identified genetic variants
To rule out possible pleiotropy in selected cancers and to further ruled out
confounding factors related to SNPs,weperformed aphenome-wide scanof
variants using PhenoScanner (Supplementary Table 10). Some genes were
associated with known secondary traits: rs7497064 (SMAD6-methylation
associated) and rs731758 (NF1-methylation associated) were linked to
secondary traits such as height, weight, and body fat metabolic rate;
rs2736100 (TERT-methylation related) was associated with lung cancer,
glioma, and testicular germ cell tumors; rs1270942 and others (DDAH2-
methylation related) were associated with multiple traits such as asthma,
lung cancer, hyperthyroidism, systemic lupus erythematosus, diabetes, and
schizophrenia; rs12945438 and rs8078675 (KCNJ12-methylation related)
were associated with body mass index; rs6087989 (DNMT3B-methylation
related)was associatedwith immune cell counts; rs7783715 and rs11761270
(MAD1L1-methylation related) were associated with schizophrenia;
rs10744826 (MVK-methylation related) was associated with cholesterol,
low density lipoprotein (LDL), high density lipoprotein (HDL), etc.;
rs17293632 (SMAD3-methylation related) was associated with coronary
artery disease, asthma, and other allergic diseases; and rs4938784 and
rs4938792 (LAYN protein expression related) were associated with allergic
rhinitis, asthma, and other diseases. These observations suggested that
genetic variants associated with secondary traits may have potentially
introduced horizontal pleiotropy, necessitating further study to rule out
pleiotropy.

Evaluating druggability and molecular docking analysis
We used DrugBank and ChEMBL platforms to explore CSR genes with
causal relationships and successful colocalization identified to assess their
potential as drug targets. In total, 17 drugs targeting four genes or proteins
were identified, for example, hyaluronic acid (HA) for LAYN (Supple-
mentary Table 11). We also conducted molecular docking analyses to
illustrate receptor–ligand interactionsbetweenCSRgenesanddrugs (Fig. 5).
It is noteworthy that due to secondary structure unavailability for some
proteins and ligands, and the complex nature of fish oil, molecular docking
was not feasible for some predictive drugs. However, the remaining com-
pounds showed successful binding, with corresponding binding energies
shown (Supplementary Table 11). The magnitude of binding energy
reflected the likelihood of binding between a receptor and ligand. As the
binding energy decreased, affinity and stability between a ligand and
receptor increased.

Functional analysis
To explore the mechanisms of action of potentially causal genes asso-
ciated with tumors, we performed functional and pathway enrichment
analyses using GO (Fig. 6a–e) and KEGG (Supplementary Fig. 3a–e)
methods. The genes involved in enrichment analysis are listed (Sup-
plementary Table 12). In lung cancer, GO analysis revealed that the
molecular function of CNOT6 primarily revolved around ubiquitin-like
protein transferase activity. Concurrently, KEGG analysis indicated
significant enrichment in the spliceosome and the nucleoplasmic
transfer pathway. CancerSEA also demonstrated a positive association
between CNOT6 and DNA damage, DNA repair, and cell proliferation
and apoptosis at the single-cell level in lung cancer (Supplementary
Fig. 4a, b). In prostate cancer, GO analysis showed that the principal
molecular function of DNMT3B was in microtubule protein binding,
while KEGG analysis highlighted its substantial enrichment in cell cycle
pathways, among others. For MAP2K1, its primary molecular function
was ubiquitin-like protein transferase activity, while KEGG analysis
showed predominant enrichment in endocytosis and endoplasmic
reticulum protein processing pathways. CancerSEA showed a positive
relationship forMAP2K1 with aging and inflammation at the single-cell
level in prostate cancer (Supplementary Fig. 4c, d). For TBPL1, a major
molecular function was related to redox activity, while KEGG analysis
primarily emphasized the glutathione metabolic pathway. SREBF1 was
functionally characterized as being involved in oxidoreductase signaling

and demonstrated significant enrichment in AMP-activated protein
kinase (AMPK) signaling and fatty acid metabolism pathways in KEGG
analysis.

To explore possible protein expression roles causally related to tumors,
we identified protein molecules closely related to the LAYN protein using
the STRING database, includingmolecules such asMSN, TLN1, TLN2, etc.
(Supplementary Fig. 4e). GO analyses indicated a significant molecular
function enrichment for actin binding, while KEGG analyses showed sig-
nificant enrichment in the tight junction pathway (Fig. 6f, Supplemen-
tary Fig. 3f).

Discussion
We demonstrated that CSR genes, characterized by genetic susceptibility,
exerted causal effects in various tumors. We identified five gene expression
levels, eighteen geneDNAmethylationpatterns, and oneprotein expression
signature that were causally associated with cancer risk, with targeted drugs
already developed against four proteins. The remaining genes or methyla-
tion sites represented potential targets for future small-molecule drug
development studies against cancer. Our study linked genetic loci, gene
expression, DNAmethylation, and protein expression to different cancers,
i.e., genetic variants may have influenced tumorigenesis by affecting gene
expression, methylation levels, or protein expression. This provided robust
evidence and promising applications for exploring underlying tumorigen-
esis mechanisms and reversing therapies.

The expression of five CSR genes was causally identified as related to
cancer development, including CNOT6 in lung cancer, and DNMT3B,
MAP2K1, TBPL1, and SREBF1 in prostate cancer. CNOT6 is a dead-
enylating enzyme which degrades mRNA poly(A) tails and acts as a DNA
mismatch repair regulator23. Notably, reducedCNOT6 expression has been
linked to distantmetastasis in lung cancer24, and our colocalization analyses
revealed a potential regulatory role of the rs62405489 polymorphic site in
CNOT6. Specifically, a one SD increase in CNOT6 expression due to
rs62405489 was associated with an 18% higher risk of lung cancer. Pre-
viously, the CNOT6 rs2453176 SNP was identified as a potential functional
susceptibility locus for lung cancer risk25. Our data implied that CNOT6
rs62405489 may also serve as a susceptibility locus for lung cancer, pro-
viding insights on its regulatory expression mechanisms in this disease.
Additionally, our comprehensive scanning analysis demonstrated that a
causal relationship between CNOT6 and lung cancer was not influenced by
horizontal pleiotropy. Further functional enrichment analyses revealed that
CNOT6 exhibited ubiquitin-like protein transferase activity and was pri-
marily enriched in the spliceosome and the nucleoplasmic transfer pathway.
CNOT6 has previously been shown to target DNA-damaging proteins,
regulate transcriptional activation, cell cycle control, apoptosis, senescence,
and DNA repair processes23. Although no small molecule therapies tar-
geting CNOT6 was found in DrugBank, our information provides valuable
cues for future studies in designing targeted drugs against CNOT6, poten-
tially blocking lung carcinogenesis.

For prostate cancer, both MAP2K1 and SREBF1 were reportedly
associatedwith the disease and could potentially serve as therapeutic targets.
Inhibitors targeting MAP2K1 and SREBF1 induced apoptosis in prostate
cancer cells26,27. TBPL1 regulates transcriptional functions, is essential in
spermatogenesis, and has not been associated with prostate cancer before.
We observed that high TBPL1 expression reduced prostate cancer risks and
shared causal variants. Whole-phenome scanning analysis confirmed that
the causal relationship was not influenced by horizontal pleiotropy. KEGG
analyses highlighted the glutathione metabolism pathway as the main
pathway and suggested thatTBPL1’s activator in this pathway could be used
to design small-molecule drugs targeting prostate cancer.

We identified 18 CSR genes whose DNA methylation levels were
causally associated with cancer development. ENO1, DNMT3B, and
MAD1L1 methylation levels were shown to influence the develop-
ment or progression of lung and prostate cancers, respectively 28,29.
This underscored the significance of epigenetic regulatory mechan-
isms and highlighted epigenetically-driven therapeutic candidates,
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emphasizing their potential in future cancer therapeutic research.
However, the relationships between methylation levels of the
remaining 15 genes (NTN4, SMAD6, TERT, NF1, ATG12, DDAH2,
TP53BP1, KCNJ12, NOTCH1, FERMT1, MVK, NEK6, NUDT5,

SMAD2 and SMAD3) and tumor risks remain unclear. Colocalization
analyses further suggested that in aforementioned tumors, genetic
polymorphisms and methylation may have acted in a coordinated
manner to promote tumorigenesis.

Fig. 4 | SMR and colocalization analyses prioritized CSR genes and cancer risks.
Both sides of the arrow are shown SMR results between gene expression and cancer
GWAS (FDR < 0.05; PHEIDI > 0.01), loci comparisons between cis-eQTL andGWAS

from colocalization analyses (PP.H4 > 0.8). a–e represents CNOT6, DNMT3B,
MAP2K1, TBPL1, and SREBF1 genes, respectively.
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Additionally, SMR analysis indicated that SMAD6, TERT, DDAH2,
TP53BP1, NOTCH1, DNMT3B, MAD1L1, SMAD2, and SMAD3 methy-
lation levels may have influenced gene expression. Among genes, and as
previously stated, DNMT3B expression was causally related to prostate
cancer. DNMT3B is implicated in de novo methylation rather than
methylation maintenance. Previous research indicated that methylation of
the promoter region regulated its gene expression, and that DNMT3B
overexpressionwas related to resistance to the androgen receptor antagonist
enzalutamide, a prostate cancer therapy 30–33. Our analyses suggested that
DNMT3B CpG locus methylation modulated gene expression, which in
turn influencedprostate carcinogenesis. Epigenetic interventionsmayprove
beneficial for prostate cancer treatments, while targeted drug development

against DNMT3B expression and methylation may have promising
prospects.

Our study indicated that increased LAYNprotein expression level was
associated with a decreased risk of prostate cancer. Although not previously
reported in the prostate cancer literature, elevated LAYN expression was
positively correlatedwith tumor-associatedmacrophage infiltrationandM2
macrophage polarization in colorectal, hepatocellular, and gastric malig-
nancies. Moreover, its high expression signified an unfavorable
prognosis34,35. These findings suggested that LAYN may have assumed
diverse roles across different tumor types. KEGGpathway analyses revealed
significant enrichment in the tight junction pathway, which requires further
exploration. We also used DrugBank to predict HA as a potential target for

Fig. 5 | Three-dimensional structure diagram showing receptor and ligand
docking. Crystal structures of acceptor and ligand complexes. The protein skeleton
is a cartoon representation. Small molecular ligands are rod-like. a–d Three-
dimensional stereogram showing DNMT3B bound to DB01262, CHEMBL109912,

CHEMBL408017, and CHEMBL3916914 ligands. e Three-dimensional stereogram
showingMAP2K1 bound to theDB14904 ligand. f–jThree-dimensional stereogram
showing SREBF1 bound to DB11133, DB03756, CHEMBL278703,
CHEMBL497499, and CHEMBL1087984 ligands.
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LAYN. HA is a glycosaminoglycan known to regulate cell adhesion and
migration, and is currently used for joint pain relief, cancer treatment,
wound healing, ophthalmic treatment, and cosmetic applications, among
others. Notably, HA synthesis inhibitors (4-methylumbelliferone and sul-
fated HA) showed anti-tumor activity in prostate cancer36,37. Our study

indicated that HA anti-tumor mechanisms may promote LAYN protein
expression.

Additionally, in our study, we identified causal relationships between
omics related to cellular senescence measured in blood and the risks of
cancers in different organs. This raises the question: how can omics in blood

Fig. 6 | GO functional analysis of CSR genes. a–f represents CNOT6, DNMT3B, MAP2K1, TBPL1, SREBF1, and LAYN genes, respectively.
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reflect the pathological processes occurring in the organ where the tumor is
developing? We hypothesize that this may be related to the entry of circu-
lating tumor cells, circulating tumor DNA, and the secretion of tumor
markers into the bloodstream38–41. Furthermore, compared to tissue mar-
kers, blood markers offer several advantages, including convenient sample
collection, reduced trauma, and the ability to conduct dynamic follow-up
assessments. These factors render blood markers particularly suitable for
early tumor detection and therapeutic applications. In summary, our
findings provide valuable insights for the further exploration of potential
and noninvasive biomarkers that are closely associated with primary
tumors.

Our study had several strengths. Initially, we conducted a compre-
hensive and detailed MR analysis, incorporating genetic susceptibility data
for CSR genes and their causal relationships with cancer. Given that genetic
variations are randomly inherited, conditional on parental genotype, and
genotypes are typically fixed from conception, we effectively eliminated
selection bias and environmental confounders prevalent in previous
research13. Furthermore, our substantial sample size and the inclusion of
data from 18 different cancer outcomes, sourced from GWAS summary
statistics, provided the statistical power to elucidate causality and draw
conclusive estimates for various cancer types. We also used multiple MR
analysis methods, integrating SMR with TSMR analyses, alongside sensi-
tivity analyses, heterogeneity tests, and colocalization analyses. We com-
plemented these approaches by examining genes in conjunctionwithmulti-
omics data, spanning transcriptomics, epigenomics, and proteomics, to
reinforce the credibility of our findings.

Our study presented several limitations. Firstly, the sources of the
summary statistics data for eQTL, mQTL, and pQTL are heterogeneous,
and thus the statistical models used to generate these summary statistics
were not uniformly adjusted for the same confounding factors. While, our
study satisfied three core assumptions of MR as well as pleiotropy analyses
were performed to furtherly remove the confounding factors, this ensured
that the causal relationships between molecular traits and tumor risk were
not affected by the confounders. Secondly, despite utilizing a substantial
number of available data sources, the sample sizes for mQTL data, indivi-
dual tumorGWASdata, and the number of genetic variants associated with
protein expression in this study remain limited. Consequently, some genes
potentially causally linked to cancermayhave been overlooked. Thirdly, our
data lacked variants associated with genes and associated expression on X
and Y chromosomes.Moreover, the absence of GWAS datasets, specifically
reflective of cellular senescence, impeded the assessment of causality
directionality using bidirectional MR based on existing software resources.
Whether cellular senescence is causally related to cancer warrants further
investigations, particularly as more advanced GWAS methods become
available.

In conclusion, we identified potential causal effects from CSR genes
toward several cancers using MR analysis, which showed that cellular
senescence mechanisms have important roles in tumorigenesis. Further
exploration of the mechanisms underpinning these CSR genes in tumors
may help prevent cancer and accelerate therapies. Additionally, our study
has provided a robust theoretical foundation for the further exploration of
CSR genes-based clinical drugs against cancer.

Methods
Data sources
To characterize the genetic susceptibility to cellular senescence, we retrieved
866 well-established CSR genes from the Human CellAge database42. The
database is a manually curated database of human genes that drive cellular
senescence that has undergone various analyses including molecular
experiments, bioinformatics, and network biology.

Exposure data: Data for this MR study was sourced from several
GWAS databases. The eQTLGen consortium (https://www.eqtlgen.org/cis-
eqtls.html) provides information on thousands of SNPs associated with
10,317 traits from 31,684 individuals43. MR cis-mQTL instruments,
reflecting genetic variants closely associated with CSR genes methylation,

were derived from pooled data (https://yanglab.westlake.edu.cn/software/
smr/#mQTLsummarydata) in a meta-analysis of the two cohorts BSGS
(n = 614) and LBC (n = 1366)44. MR cis-pQTL instruments, representing
genetic variants associatedwith cellular senescence protein expression, were
selected from the Icelandic proteome dataset (https://download.decode.is/
form/folder/proteomics), which encompasses genome-wide association
data for 4907 proteins45. To construct eQTL,mQTL and pQTL instruments
forCSRgenes,we extracted genetic variants locatedwithin1000 kboneither
side of the coding sequence (in cis), which were closely associated with gene
expression, DNA methylation or protein expression.

Outcome data: GWAS cancer outcome summary statistics were
retrieved from publicly available databases, covering 18 cancer types. Sup-
plementary Table 2 shows all QTL and GWAS datasets used in this study.
Most of the exposure and outcome data were derived from European
populations.However, four outcome datasets, including those for colorectal
cancer, gastric cancer, pancreatic cancer, and thyroid cancer, included a
small proportion of individuals from East Asian populations (<30%). The
specific population composition is detailed (Supplementary Table 2).
Additionally, due to the different sources of data used for exposure and
outcomes in this study, sample overlap was avoided from the beginning.

SMR analysis
Linux version 1.3.1 SMR software was used to execute SMR using default
parameters from the command line (https://yanglab.westlake.edu.cn/
software/smr/#Overview). MR has to satisfy three core assumptions: (1)
the association assumption: there is a strong association between SNPs and
exposure; (2) the independence assumption: SNPs do not associate with the
outcome through the confounding pathway; and (3) the exclusivity
assumption: SNPs do not directly affect the outcome, only indirectly
through the exposure. To satisfy core assumptions, specific criteria for SNP
inclusion are listed: (1) cis-QTL; (2) at least a suggestive P < 5 × 10−8 value;
and (3) a minor allele frequency >0.01. And HEIDI tests were used to
distinguish causality linkages and exclude pleiotropy. A PHEIDI value ≤ 0.01
indicated that an observed association might be attributed to two distinct
genetic variants in high LD with each other. Further, SNPs satisfying the
above criteria were used as IVs, which ensured that the causal relationships
between gene expression or DNA methylation and tumor risk were not
affected by the confounders.

Due to the exploratory nature of our study, the false discovery rate
(FDR) was used to adjust for multiple testing, and the FDR-corrected P
threshold (FDR < 0.05) was applied to select significant probes.

TSMR analysis
In order to follow the core assumptions, SNPs need to fulfill the criteria: (1)
at least a suggestiveP < 5 × 10−8 value; (2) anF-statistic≥ 10; and (3) aminor
allele frequency>0.01. F-statisticwas calculated as (βSNP-cellage/SESNP-cellage)²
to represent the strength of each SNP. The βSNP-cellage denoted the estimated
effect size of the SNPon cellular senescence, representing the genetic variant
expression trait association. The SESNP-cellage signified standard error of the
sample. To eliminate the LD bias as much as possible, SNPs also fulfill a
distance threshold of 10,000 kb and r² < 0.001. Further, SNPs satisfying the
above criteria were used as IVs, which ensured that causal relationships
between protein expression and tumor risk were not affected by the con-
founders. pQTL data were analyzed against GWAS data using five MR
methods from the TwoSampleMR R package (https://mrcieu.github.io/
TwoSampleMR/, version 0.5.6), including MR Egger, weighted median,
inverse variance weighting (IVW), simple mode, and weighted mode
approaches46. The IVWmethod is applicable when all SNPs meet the core
assumption of being valid instrumental variables, and under these condi-
tions, IVWresults are themost reliable47.Whenmore than 50%of the SNPs
are valid instrumental variables, theweightedmedianmethodcanbeused to
estimate theOR.However, if there is amultiplicity of validityor ifmore than
50% of the SNPs violate the core assumptions, the MR Egger method is
preferred48. The other twomethodswere used as supplementary techniques.
For single SNPs, theWald ratiowas used. Pleiotropy and heterogeneity tests
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were conducted using MR Egger intercept tests and Cochran’s Q statistic
(P > 0.05 for all) to ensure robustness in our results. All analyses were
executed using R software (http://www.R-project.org/, version 4.3.0).

Bayesian colocalization analysis
Bayesian colocalization analyseswere used to assess the probability that two
traits shared the same causal variance. Analyseswere performed in the coloc
R package (https://chr1swallace.github.io/coloc/, version 5.2.2) with default
parameters49. Thismethod scrutinized individual genetic regions associated
with both phenotypes, exploring whether the same genetic variation pro-
pelled an association with both traits. By meticulously mapping causal
variations across two traits, the approach minimized the identification of
spurious pleiotropy and suggested the existence of a biological mechanism
linkingboth traits through sharedgenetic predictors.Colocalizationanalysis
encompassed five hypotheses (Supplementary Fig. 1): (1) H0: neither trait
has a causal genetic variant; (2) H1: only trait 1 has a causal genetic variant;
(3) H2: only trait 2 has a causal genetic variant; (4) H3: both traits have a
causal genetic variant, but not the same variant; and (5)H4: both traits share
the same causal variant. For the examined cancers in GWAS databases, for
each major SNP, all SNPs within 100 kb upstream and downstream of the
major SNP were retrieved for colocalization analysis to assess the posterior
probability of a common causal variant for H4 (PP.H4). If this probability
(PP.H4) between gene expression, DNAmethylation, or protein expression
and cancer exceeded 0.8, this suggested that robust evidence existed for
colocalization between cancer GWAS and QTL.

Phenotype scanning
Using phenotype scanning, we conducted a comprehensive search in pre-
vious GWAS to uncover associations between identified QTL and other
traits to the control of confounding factors. SNPs are deemed pleiotropic
under the following criteria: (1) the association has genome-wide sig-
nificance (P < 5 × 10−8); (2) the GWAS ismainly conducted in a population
of European origin; and (3) the SNPexhibits an associationwith any known
risk factor for the disease.

Druggability analysis
DrugBank (https://go.drugbank.com/) is a publicly available database of
drug formulations containing 8865 compounds, including 1806 approved
drugs and 7059 investigational or off-market drugs50. The database facil-
itates effective drug discovery and development by providing comprehen-
sive molecular information on current drugs and their mechanisms, as well
as easy access to interactions with targets. ChEMBL (https://www.ebi.ac.uk/
chembl/) is an openly accessible chemical database, furnishing compre-
hensive data on molecules, providing information on chemical structures,
identifiers, physicochemical properties, and biological activities51. It con-
tains data exceeding 20.3 million bioactivity assessments and a compilation
of 2.4 million distinct compounds. To explore interactions between CSR
genes and marketed drug targets, we identified all drugs in DrugBank and
ChEMBL with matching protein targets to understand their interactions.

Molecular docking analysis
For drugs with identified protein targets, the secondary structures of small
molecules were retrieved from the PubChem52 database (https://pubchem.
ncbi.nlm.nih.gov/), while the Protein Data Bank (PDB) (https://www.rcsb.
org/) was used to obtain three-dimensional protein structures53. Then, the
retrieved small molecules were processed using Chem3D 19.0. Auto-
DockTools 1.5.6 was employed to dehydrate and add hydrogen atoms to the
proteins, after which molecular docking simulations were conducted54.
Finally, the Protein-Ligand Interaction Profiler55 (PLIP) web tool (https://
plip-tool.biotec.tu-dresden.de/plip-web) and PyMOL 2.5.2 software were
used to visualize the receptor-ligand interactions.

Functional enrichment analysis
To further explore the function and possible molecular mechanism of
genes or proteins linking CSR causally related to tumorigenesis, we

investigated the biological functions of key genes using Gene Ontology
(GO) functional annotations and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses. The GEPIA database (http://gepia.cancer-
pku.cn/) facilitated the identification of genes across different cancer
types which exhibited similar mRNA expression patterns56. Selection of
the top 200 genes for each key gene was based on a descending order of
Pearson correlation coefficient values. Additionally, enrichment ana-
lysis process was executed using the cluster profiler package in R, with
a Q-value threshold of <0.05 used as a significance criterion57.
CancerSEA is a pioneering database used to analyze distinct functional
states in diverse cancer cells at the single-cell level. It scrutinizes
gene functions across 14 different functional states (including stemness,
invasion, metastasis, etc.) by leveraging single-cell data from
different cancers58.

Protein-protein interaction (PPI) analysis
To explore protein expression, the STRING database (https://www.string-
db.org) was used to analyze and construct PPI networks involving key
proteins59.

Statistics and reproducibility
The software used in this study includes Linux version 1.3.1 SMR software
and R 4.3.0 software. In addition to this, the application of R packages and
online websites is described in detail in the Methods section. In order to
correct for multiple testing in performing SMR and TSMR analyses, the
FDR method was used.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Supplementary Table 2
provides detailed information on the source, sample size and ethnic com-
position of all data used.

Code availability
The main R packages used for analysis in this study include the TwoSam-
pleMR R package (version 0.5.6) and the coloc R package (version 5.2.2),
and some software and online websites were also used, such as: the Linux
version 1.3.1 SMR software, AutoDockTools 1.5.6 software, the GEPIA
database, the STRING database, etc., as described in the Methods section.
No custom algorithms or code were used in this study. For more infor-
mation about the analysis scripts or any specific code used in our study,
please contact the corresponding author upon request.
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