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Abstract

DNA methylation is a fundamental epigenetic modification that regulates gene expression and maintains genomic
stability. Consequently, DNA methylation remains a key biomarker in cancer research, playing a vital role in diagnosis,
prognosis, and tailored treatment strategies. Aberrant methylation patterns enable early cancer detection and thera-
peutic stratification; however, their complex patterns necessitates advanced analytical tools. Recent advances in arti-
ficial intelligence (Al) and machine learning (ML), including deep learning networks and graph-based models, have
revolutionized cancer epigenomics by enabling rapid, high-resolution analysis of DNA methylation profiles. Moreover,
these technologies are accelerating the development of Multi-Cancer Early Detection (MCED) tests, such as GRAILs
Galleri and CancerSEEK, which improve diagnostic accuracy across diverse cancer types. In this review, we explore
the synergy between Al and DNA methylation profiling to advance precision oncology. We first examine the role

of DNA methylation as a biomarker in cancer, followed by an overview of DNA profiling technologies. We then assess
how Al-driven approaches transform clinical practice by enabling early detection and accurate classification. Despite
their promise, challenges remain, including limited sensitivity for early-stage cancers, the black-box nature of many

Al algorithms, and the need for validation across diverse populations to ensure equitable implementation. Future
directions include integrating multi-omics data, developing explainable Al frameworks, and addressing ethical con-
cerns, such as data privacy and algorithmic bias. By overcoming these gaps, Al-powered epigenetic diagnostics can
enable earlier detection, more effective treatments, and improved patient outcomes, globally. In summary, this review
synthesizes current advancements in the field and envisions a future where Al and epigenomics converge to redefine
cancer diagnostics and therapy.
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Introduction

Cancer remains the second leading cause of mortal-
ity worldwide and is responsible for nearly 10 million
deaths annually [1]. Despite substantial advancements
in oncology, early detection and personalized treatment
continue to pose major challenges. Traditional diagnostic
methods, including histopathology, imaging, and tissue
biopsies, often detect cancer only at advanced stages, lim-
iting therapeutic options and reducing survival rates [2].
Moreover, the inherent heterogeneity of cancer within
and between patients further complicates the develop-
ment of universal diagnostic and therapeutic strategies
[3]. Epigenetic modifications, particularly DNA methyla-
tion, have emerged as stable and highly sensitive tumor-
type-specific biomarkers with potential applications
across all stages of clinical disease management, includ-
ing risk assessment, early diagnosis, treatment manage-
ment, and post-treatment monitoring. These biomarkers
play a crucial role in prognosis prediction and therapy
monitoring, making them valuable tools for precision
medicine [4, 5]. DNA methylation involves the addition
of a methyl group to cytosine residues (5-methylcytosine,
5mC) at CpG dinucleotides, serving as a fundamental
epigenetic mechanism that controls gene expression and
maintains genomic stability [6]. In healthy cells, DNA
methylation patterns are tightly regulated by DNA meth-
yltransferases (DNMTs), which add methyl groups, and
ten-eleven translocation (TET) enzymes, which remove
them. These patterns are essential for normal cellular
functions, including differentiation, development, and
X-chromosome inactivation. However, in cancer, global
hypomethylation and locus-specific hypermethylation
disrupt these gene regulatory mechanisms, leading to the
silencing of tumor suppressor genes (e.g., VHL, p16) and
the activation of oncogenes (e.g., MYC, RAS) [7]. These
aberrant methylation patterns are not only hallmarks of
tumorigenesis but also stable and detectable in circulat-
ing tumor DNA (ctDNA), making them ideal biomarkers
for non-invasive, liquid biopsy-based cancer diagnostics
(8, 9].

The advent of high-throughput sequencing tech-
nologies has revolutionized DNA methylation profil-
ing, enabling single-base resolution across the genome.
Techniques such as whole-genome bisulfite sequencing
(WGBS) and methylation arrays (e.g., Illumina Infinium)
have generated vast datasets, revealing methylation sig-
natures linked to specific cancer types, stages, and thera-
peutic responses [10]. However, the sheer volume and
complexity of these datasets pose significant challenges
for conventional analytical methods. To address this, arti-
ficial intelligence (AI) and machine learning (ML) have
emerged as transformative powerful tools for analyzing
the epigenetic landscape of tumors with unprecedented
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precision and efficiency. Advanced cutting-edge AI algo-
rithms, including convolutional neural networks (CNN5s)
and gradient boosting machines (GBMs), enhance the
ability to recognize cancer-specific methylation patterns,
paving the way for pan-cancer screening and tumor tis-
sue-of-origin (TOO) prediction [11, 12].

Al-powered methylation analysis has led to the devel-
opment of multi-cancer early detection (MCED) tests,
which analyze circulating tumor DNA (ctDNA) methyla-
tion patterns to detect multiple cancer types from a sin-
gle blood test. Notable advancements include, GRAIL’s
Galleri test employs targeted methylation sequencing and
ML algorithms to detect over 50 types of cancer and their
TOO with high specificity and accuracy [13]. Similarly,
CancerSEEK integrates gene mutational data and pro-
tein biomarkers to improve diagnostic sensitivity across
eight cancer type [14]. These groundbreaking innovations
represent a paradigm shift in cancer diagnostics, offer-
ing earlier detection, improved patient outcomes, and
reduced healthcare costs. Despite these advancements,
several challenges hinder widespread clinical adoption.
The interpretability of AI models, often called the "black-
box" problem, limits their clinical adoption [15]. It is also
important to address ethical issues like data privacy and
algorithmic bias to ensure fair and equitable access to
these technologies.

Furthermore, population-specific methylation vari-
ations and dynamic nature of the tumor epigenome
complicate the development of universal biomarkers.
Future research must prioritize explainable AI (XAI),
integrate multi-omics data (genomics, transcriptomics,
proteomics), and validate findings across large, multi-
ethnic cohorts to enhance accuracy, equity, and clinical
implementation.

This review is organized as follows: Section "DNA
methylation in cancer: mechanisms, biomarker poten-
tial, and clinical applications” provides an overview of
DNA methylation mechanisms and their role in cancer,
discussing epigenetic alterations, biomarker potential,
and clinical applications. Section "Methods for DNA
methylation profiling:" outlines methodologies for DNA
methylation profiling, covering sequencing-based and
array-based techniques, along with their advantages and
limitations. Section "AI Techniques for cancer prediction
using DNA methylation" explores Al-driven approaches
for methylation-based cancer detection, including
machine learning (ML) and deep learning (DL) models
tailored for pan-cancer classification and TOO predic-
tion using DNA methylation. Section "Multi-cancer early
detection (MCED): pipelines, technologies and industry
advancement" examines MCED pipelines, technologies,
and industry advancements, focusing on clinical valida-
tion efforts, emerging liquid biopsy frameworks, and
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commercial AI-powered diagnostic tests. Section "Future
directions, limitation and concluding remarks" discusses
key challenges and future directions, including strategies
for improving sensitivity, integrating multi-omics data,
and addressing ethical and regulatory considerations. It
also provides concluding remarks on the impact of AI-
driven DNA methylation analysis in advancing precision
oncology and outlines future research priorities for clini-
cal translation. Figure 1 gives a schematic representation
of the review design.

DNA methylation in cancer: mechanisms,
biomarker potential, and clinical applications

DNA Methylation as a Diagnostic and Prognostic Bio-
marker: To shed light on the potential of Al-driven
methylation diagnostics, it is crucial to understand the
fundamental mechanisms of DNA methylation and how
these epigenetic modifications contribute to cancer pro-
gression. A prognostic biomarker indicates the likely
progression of a patient’s cancer, independent of treat-
ment. On the other hand, a predictive biomarker pro-
vides insight into the potential effectiveness of a specific
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therapy and may also serve as a therapeutic target [17].
Strikingly, DNA methylation patterns alone can serve
as both prognostic and diagnostic biomarker for several
diseases, including cancer within an individual’s genome.
These biomarkers offer several advantages in disease
diagnosis due to their stability, cost-effective amplifica-
tion, and specificity to localized regions of DNA meth-
ylation [16]. Moreover, FDA-approved diagnostic tests
utilizing methylation biomarkers have demonstrated high
sensitivity and specificity, enabling non-invasive detec-
tion of early-stage cancers. For instance, SEPT9 meth-
ylation serves as a biomarker for colorectal cancer, while
BMP3/NDRG4 methylation has shown high efficacy in
pancreatic cancer detection [18-20]. Additionally, sev-
eral methylation markers are undergoing clinical evalu-
ation, including SHOX2 for lung cancer and RASSFIA,
RARB2, and GSTPI for lung, breast, genitourinary, and
colorectal cancers [21].

DNA Methylation and Tumorigenesis: Aberrant DNA
methylation contributes to tumorigenesis by disrupting
gene expression and genomic stability. Hypermethylation
in CpQG islands of tumor suppressor genes (TSGs) leads
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Fig. 1 Schematic flow diagram of the review design. The schema depicts five main phases of the review process, including DNA methylation
and its significance, Profiling methods, Al-driven cancer detection, MCED pipelines and technologies, and Challenges and future directions



Sahoo et al. Epigenetics & Chromatin (2025) 18:35

to gene silencing, while global hypomethylation activates
oncogenes and promotes chromosomal instability. These
alternations often involve the functioning of DNMT
and demethylase (MBD2), whose elevated expression
can induce hypermethylation for silencing TSGs in CpG
islands [22]. In the early-stage neoplasia, global hypo-
methylation in intergenic and intronic regions can occur
passively through DNMT1 loss or actively via the oxi-
dation of methylcytosine mediated by TET enzymes,
followed by base excision repair [23]. The consequent
genomic instability and chromosomal abnormalities pro-
mote carcinogenesis and contribute to immune infiltra-
tion [24]. Moreover, promoter region hypermethylation
often silences tumor-suppressor genes, leading to tumor
progression, treatment resistance, and reduced survival
rates [25]. Figure 2 illustrates the key mechanisms of
aberrant DNA methylation dynamics in normal and can-
cer cells, emphasizing its role in tumor proliferation and
clinical implications.

In addition to early diagnosis, aberrant DNA methyla-
tion patterns also serve as biomarkers for disease staging,
prognosis, and therapy response monitoring [16]. For
instance, Gu X et al. 2022 developed a prognostic model
using distinct methylated gene profiles in circulating
tumor cells of lung adenocarcinoma, uncovering nota-
ble disparities in biological processes, tumor microenvi-
ronment, genetic alterations, and clinical outcomes [26].
DNA methylation patterns offer valuable insights into
patient responses to specific treatments and can serve as
predictive biomarkers, providing guidance on expected
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efficacy of therapeutic interventions. In this regard, Lee et
al. 2022 reported that DNMT1I overexpression correlates
with radioresistance in head and neck squamous cell car-
cinoma (HNSCC), suggesting its potential as a biomarker
for predicting the effectiveness of CD47 antibody-based
therapy in recurrent HNSCC following radiotherapy [27].

DNA Methylation in Metastasis and Epithelial-to-
Mesenchymal Transition (EMT): In exploring the
role of DNA methylation in tumor progression, which
predominantly results in transcriptional silencing,
several studies have suggested DNA hypermethylation-
induced silencing of TSGs such as VHL and metasta-
sis-suppressing genes such as E-cadherin in lung and
metastatic breast cancer, respectively [28, 29]. Recent
studies have linked elevated DNA methylation levels
in genes associated with EMT to an increased likeli-
hood of metastasis. For example, Luo et al. 2022 identi-
fied significant differences in the promoter methylation
patterns, including hypermethylation of RASGRF2,
AKR1B1, CRMPI1, and hypomethylation of RHOF genes
in breast cancer tissues with positive lymph nodes com-
pared to those with negative lymph nodes [30]. Addi-
tionally, aberrant methylation patterns in the AKRIBI,
RASGRF2, CRMPI, BNIP3, GSTP1, HOXAS, and PAX6
genes have been observed in estrogen receptor (ER)-
positive and HER2-negative breast cancer with axil-
lary lymph node metastasis (ALNM), suggesting their
potential as therapeutic targets [30]. Similarly, analy-
sis of sequencing data from hepatocellular carcinoma
(HCC) patients suggested the pivotal role of gene body
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Fig. 2 Mechanism of aberrant DNA methylation and its impact on Cancer Cell proliferation: In healthy cells, promoter hypomethylation
activates tumor suppressor genes, while hypermethylation inactivates oncogenes. Conversely, in cancerous cells, hypermethylation silences
tumor-suppressing genes, and hypomethylation activates cancer-promoting genes. These epigenetic alterations contribute to cancer-related
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hypermethylation-activated EMX1-FL (the full-length
protein isoform of EMX1) in promoting tumorigenesis
and metastasis through EGFR-ERK signaling pathway
[31]. Table 1 summarizes the key DNA methylation
alterations associated with tumor progression and
metastasis across various cancer types. It highlights
specific genes, their methylation status (hypermethyla-
tion or hypomethylation), and their functional roles in
tumor development.

DNA Methylation and the Tumor Immune Micro-
environment (TIME): Targeting the DNA methylation
status within the tumor immune microenvironment
(TIME) has emerged as a powerful analytical tool aim-
ing to enhance immune cytotoxicity and reduce immu-
nosuppression by regulating immune cell infiltration,
functions, and responses [32]. However, the dynamic
remodeling of DNA methylation and subsequent TIME
alteration can be considered potential predictors of
tumor response to tumor immunotherapy, chemo-
therapy, and radiotherapy[33]. The analysis of the cor-
relation between the TIMEscore and immune cell
infiltrations indicates that patients with high TIMEs-
core may exhibit increased sensitivity to immunother-
apy [34]. In another study by Yu R et al. 2023, immune
cell infiltration scores, DNA mutation, and copy num-
ber variation (CNV) patterns in different subgroups
of lung adenocarcinoma (LUAD), based on immune-
related methylation sites, provide valuable insights
into clinical features, survival outcomes, immune cell
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infiltration, genomic variations and stem cell character-
istics [35].

Methods for DNA methylation profiling

DNA methylation profiling has significantly enhanced
precision in cancer diagnostics and epigenetic research.
Genome-wide analysis of DNA methylation patterns,
combined with ML techniques, has led to clinical-grade
classifiers for early cancer detection [36]. Two primary
technologies are used for methylation signals detection:
sequencing-based and array-based methods. Prior to
the advent of high-throughput sequencing, methylation
arrays like Illumina Infinijum were the most commonly
used method for detecting these signals [37, 38].

Sequencing-based methods

A range of experimental methods are utilized to analyze
DNA methylation in genomic DNA, including whole-
genome bisulfite sequencing, pyrosequencing, Nanopore
DNA sequencing, methylated DNA immunoprecipita-
tion (MeDIP), Illumina Infinium DNA methylation, tar-
geted bisulfite sequencing with TruSeq Methyl Capture,
and ultra-high-performance liquid chromatography
combined with mass spectrometry (UHPLC-MS/MS)
[39-41].

Bisulfite sequencing based methods

Bisulfite Sequencing (BS-Seq) is the gold standard for
methylation profiling, as it converts unmethylated
cytosines to uracils while leaving methylated cytosines

Table 1 DNA Methylation Alterations in Tumor Progression and Metastasis: Table summarizes key genes exhibiting altered
methylation patterns, their roles in tumor progression, and their clinical significance across cancer types

Gene Methylation status Cancer type Role in tumor progression References

VHL Promoter Hypermethylation ~ Lung Cancer Tumor suppressor silencing, promotes [28]
tumorigenesis.

E-cadherin (CDHT) Promoter Hypermethylation Metastatic Breast Cancer Loss of cell adhesion, enhances metas- [28]
tasis

RASGRF2 Promoter Hypermethylation  Breast Cancer (Lymph Node+) Associated with EMT and metastasis [30]

AKRIB1 Promoter Hypermethylation ~ Breast Cancer (Lymph Node+, ER+/ Linked to ALNM and EMT progression [30]

HER2-)

CRMPT Promoter Hypermethylation  Breast Cancer (Lymph Node+) EMT-associated, metastasis regulator [30]

RHOF Promoter Hypomethylation Breast Cancer (Lymph Node+) Potential driver of EMT and metastasis [30]

BNIP3 Promoter Hypermethylation  Breast Cancer (ER+/HER2—, ALNM) Apoptosis regulation, metastasis-linked ~ [30]

GSTP1 Promote Hypermethylation Breast Cancer (ER+/HER2—, ALNM) Detoxification enzyme, methylation [30]
linked to tumor progression

HOXAS Promoter Hypermethylation Breast Cancer (ER+/HER2—, ALNM) Transcription factor, EMT-associated [30]

PAX6 Promoter Hypermethylation Breast Cancer (ER+/HER2—, ALNM) Regulates cell differentiation, linked [30]
to metastasis

EMX1-FL Gene-body Hypermethylation Hepatocellular Carcinoma (HCC) Activates EGFR-ERK signaling pathway, [31]

promotes tumorigenesis and metastasis

** a, EMT: Epithelial-Mesenchymal Transition; b. ALNM: Axillary Lymph Node Metastasis; c. EGFR-ERK signaling pathway: Epidermal Growth Factor Receptor (EGFR)
activated Extracellular-signal Regulated Kinase (ERK); d. ER+: Estrogen Receptor Positive; e. HER2—: Human Epidermal Growth Factor Receptor 2 Negative



Sahoo et al. Epigenetics & Chromatin (2025) 18:35

unchanged, enabling single-base resolution detec-
tion. WGBS offers comprehensive genome wide cov-
erage (~28 million CpGs) but is limited by high costs,
requires high DNA input, limiting its scalability and
potential DNA degradation challenges [42]. Another
such targeted sequencing method is TruSeq EPIC
sequencing providing targeted coverage of 3.34 mil-
lion CpG sites, outperforming EPIC-array capabilities
by demonstrating significant improvement in genomic
resolution and coverage [43]. Reduced Representation
Bisulfite Sequencing (RRBS): Selectively enriches CpG-
dense regions using methylation-insensitive enzymes
(e.g., Mspl), covering 85% of CpG islands, making it
cost-effective but biased toward promoter regions [44].

Affinity Enrichment-Based Methods: Methylated DNA
Immunoprecipitation (MeDIP): Enriches methylated DNA
using anti-5mC antibodies or anti-methylcytosine binding
proteins (MBD), ideal for low-input samples. It covers about
10% of the genome. Notably, RRBS covers 85% of CGIs,
especially in promoter regions [45].

Methylation-Sensitive Restriction Enzyme (MSRE)
Digestion: Selectively digests unmethylated CpG sites,
allowing for comparative methylation analysis, as seen
in IMPRESS, a novel multi-cancer detection assay [46].
Some notable limitations of the MSRE method include
its ease of use but reduced effectiveness for intermedi-
ate methylation levels and relatively high cost. Despite
its high specificity, its dependency on specific restric-
tion sites limits its ability to provide comprehensive
methylation profiling [47, 48].

Emerging  Technologies: Nanopore-Based DNA
Sequencing: Directly detects 5mC and 5hmC modifica-
tions without bisulfite conversion, reducing DNA deg-
radation issues [49]. Ultra-High Performance Liquid
Chromatography—Mass Spectrometry (UHPLC-MS/MS):
Provides quantitative methylation analysis at high sensitiv-
ity but is unsuitable for genome-wide applications [50].

Array-based methods

DNA hybridization microarrays offer a cost-effective, rapid
analysis, and extensive coverage of predetermined CpG
sites. It is widely applied in large-scale population studies
such as The Cancer Genome Atlas Consortium (TCGA)
[51] and The Genotype-Tissue Expression (GTEx) [52].

lllumina infinium beadchip

Array-based method typically uses bisulfite-conver-
sion of DNA to distinguish unmethylated cytosines,
appearing as thymines, while 5-methylcytosines
remain unchanged, in the amplified sense strand
sequence at the single nucleotide level. Originally, the
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HumanMethylation27 BeadChip array (25,578 probes)
interrogated CpG sites within promoter regions and
cancer-associated genes, specifically targeting regu-
latory CpG islands [53]. Next, the HumanMethyla-
tion450 array (485,577 probes) interrogated 94% of the
27K canonical CpG sites, spanning diverse regulatory
regions including shores, RefSeq genes, FANTOM4
promoters, the MHC region, and enhancers [54]. The
latest advancement, the HumanMethylationEPIC v2.0
(EPICv2) BeadChip array, further interrogates over
935,000 CpG sites across biologically relevant regions
of the human methylome [55]. The family of Illumina
Infinium Methylation BeadChip is widely used across
population-based studies for cost-effective, high-
throughput, and comprehensive methylation analysis.
This technology has been extensively applied in large-
scale cancer studies, including TCGA (~8000 profiled
samples) and studies within GEO (~ 9000 profiled sam-
ples)[41, 56]. Numerous bioinformatics methods and
pipelines, such as minfi [57], EpiScanpy [58], EpiMO-
LAS [59], COHCAP [60], SeSAMe [61], RnBeads [62],
and watermelon [63], and Bicycle [64], have been devel-
oped to analyze high-throughput methylation data
generated by various platforms for epigenome-wide
association studies (EWAS).

IMPRESS

IMPRESS, a novel multi-cancer detection assay capable
of detecting eight cancer types, integrates single-molecule
Molecular Inversion Probes (smMIPs) with methylation-
sensitive restriction enzyme (MSRE) digestion [46]. MSREs
are a class of restriction enzymes that detects and cleave
unmethylated CpG sites while leaving methylated sites
intact, enabling precise methylation profiling [65]. This tech-
nique is built upon earlier restriction enzyme-based meth-
ods, such as those using MSREs and methylation-dependent
restriction enzymes (MDREs), traditionally used to examine
local CpG dinucleotide methylation.

HELP assay
The HELP assay is a restriction enzyme-based, high-
throughput method that uses ligation-mediated PCR
to analyze cytosine methylation by directly represent-
ing hypomethylated DNA. Unlike conventional assays,
it compares Hpall and Mspl digestion profiles to distin-
guish hypomethylated (Hpall and Mspl) from methylated
(Mspl-only) loci, enabling the precise identification of
functionally significant hypomethylated regions, includ-
ing transcription start sites [66].

A comparative analysis of the profiling methods dis-
cussed in the following subsections is presented in
Table 2, which summarizes key factors such as genome
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coverage, cost, advantages, disadvantages, and common
procedures for DNA methylation profiling assays.

Single-cell methylation assays

Single-cell bisulfite sequencing (scBS-seq) and single-cell
reduced representation bisulfite sequencing (scRRBS)
provide high-resolution insights into DNA methylation
heterogeneity at the individual cell level. These tech-
niques are valuable for studying intra-tumor heteroge-
neity, enabling the identification of epigenetic variations
that contribute to cancer progression and treatment
resistance [74].

High-throughput single-cell methylome profiling is
advancing through combinatorial indexing, such as the
sci-MET (single-cell combinatorial indexing for meth-
ylation analysis) method, which employs FANS (fluo-
rescence-activated nuclei sorting) for nuclei isolation,
followed by Tn5 tagmentation, PCR for indexing and
NGS [75]. Moreover, Chatterton et al. 2023 introduced
sciEM the first non-bisulfite and enzyme-based single-
cell DNA methylation sequencing approach, extend-
ing the method of single-cell combinatorial indexing
approach (sci) using sodium bisulfite (sciMET) [76]. To
address limitations in scalability for large cohorts, blood
sample input, and cost-effectiveness, researchers used
high-resolution tissue-specific single-cell RNA-sequenc-
ing datasets. A scalable DNA methylation atlas for 13
tissues and 40 cell types was validated using bulk and
single-nucleus datasets, offering a valuable resource for
cancer diagnosis, biomarker discovery, and methylome
study interpretation [77]. However, single-cell sequenc-
ing faces challenges of high technical noise due to low
input material and complex protocols, adversely impact-
ing data reproducibility and reliability, limiting its use for
large-scale MCED test applications [78].

Al Techniques for cancer prediction using DNA
methylation

Al significantly advances cancer diagnosis and prog-
nosis by enabling high-resolution analysis of imaging,
molecular, and clinical datasets. DL and natural lan-
guage processing (NLP) facilitate early detection, risk
stratification, and personalized care. Despite outper-
forming traditional methods, AI faces challenges in
interpretability, data quality, and clinical integration,
necessitating multidisciplinary collaboration [79, 80].
Notably, it has been demonstrated that deep neural
networks (DNNs) marginally outperformed classical
machine learning models in survival prediction achiev-
ing 88.58% accuracy compared to 88.51%, underscoring
the promise of DNNs in data-driven clinical outcome
predictions [81]. Moreover, DL offers a powerful
approach for predicting anti-tumor drug combinations
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by modeling complex biological interactions, address-
ing drug resistance, and overcoming the limitations of
single-agent cancer therapies [82]. Thus, Al algorithms
remain integral for developing cutting-edge MCED
tests by integrating DNA methylation data with ML
and DL algorithms. These Al models enable pan-cancer
classification, TOO prediction, and risk stratification,
significantly improving the accuracy and efficiency of
cancer diagnostics. Supervised and unsupervised learn-
ing are fundamental methodologies in ML. Supervised
learning relies on labeled datasets, where each input
is associated with a known output. In contrast, unsu-
pervised learning deals with unlabeled data, focusing
on identifying patterns, structures, or relationships
without predefined outcomes. The following section
provides a concise overview of the steps involved in
pan-cancer classification using ML models, followed by
a description of ML methodologies, emphasizing nota-
ble research that utilizes these techniques The pan-can-
cer classification process using ML involves a cyclical
workflow consisting of six crucial phases, as illustrated
in Fig. 3:

1. Data collection and processing: The first step involves
acquiring the DNA methylation datasets. Subsequent
steps include, data processing procedures such as
normalization, imputation of missing values, adjust-
ing the background, and converting the data for fur-
ther analysis.

2. Data splitting, data imbalance, and feature selection:
This step involves dividing the dataset into training
and testing sets while addressing class imbalance
issues. The aim is to mitigate bias toward the pre-
dominant class and maintain the model’s predictive
performance. The subsequent step involves select-
ing the most informative CpG sites using statistical
and ML-based feature selection methods (e.g., Lasso,
LightGBM).

3 Development of ML models: This step focuses on
training multiple models, including tree-based clas-
sifiers, deep learning architectures, and probabilistic
models to identify and categorize cancer subtypes.

4 Hyperparameter tuning: This step optimizes model
parameters through methods like grid search, Bayes-
ian optimization, or genetic algorithms to enhance
predictive accuracy.

5 Cross-validation and performance evaluation: This
phase ensures models’ generalizability using k-fold
cross-validation and evaluates sensitivity, specificity,
and area under the receiver operating characteristic
curve (AUC-ROCQC).

6 Model selection and deployment: This final phase
involves selecting the best-performing model and
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Fig. 3 lllustration of the machine learning (ML) lifecycle: The figure depicts key stages of ML lifecycle, represented as interconnected
gears to emphasize the iterative nature of the process. It represents the continuous cycle of model development training, assessment,

and implementation, illustrating the transition from one phase to the next

deploying it for real-world clinical applications,
including MCED tests.

Several ML models have shown outstanding perfor-
mance in pan-cancer classification using DNA methyla-
tion signatures, each employing distinct computational
strategies. The following section explores various Al
algorithms, focusing on their clinical implications, as
illustrated in Fig. 4.

Machine learning algorithms for DNA methylation-based
cancer classification

The characteristics of DNA methylation as a biomarker,
when combined with extensive data repositories, ena-
ble machine learning algorithms to enhance cancer

classification. In this context, ML algorithms, includ-
ing LASSO regression, logistic regression, and gener-
alized linear models (GLMs), are widely used in DNA
methylation-based cancer classification for their abil-
ity to detect complex patterns and improve predictive
accuracy. Though derived from traditional statistics,
these methods meet key criteria for classification as ML
algorithms.

i. Data Requirements — ML models, including
LASSO and logistic regression, necessitate large
datasets to identify intricate DNA methylation pat-
terns and generate accurate predictions [83].

il. Model Complexity — LASSO regression integrates
regularization techniques to effectively manage
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and classify signals from multiple cancers, highlighting the essential components of the machine and deep learning algorithms implemented

in these processes

high-dimensional data and mitigate overfitting
[84].

ili. Interpretability — Logistic regression and GLMs
offer greater interpretability, with LASSO enhanc-
ing this by selecting the most relevant features [85].

iv. Handling Non-Linearity — Logistic regression
employs the sigmoid function to model complex
input-output relationships, while LASSO and
GLMs address multicollinearity by selecting a sin-
gle variable from highly correlated predictors [86,
87].

Conventional machine learning algorithms commonly
applied in multi-cancer early detection (MCED)

Support vector machine (SYM)

SVM is a supervised ML algorithm for classification and
regression tasks, designed to construct an optimal hyper-
plane to separate data points in high-dimensional spaces.
Its performance is governed by the hinge loss function,
which maximizes the margin between multiple classes
[88]. The hyperplane is oriented in the far vicinity from
the closest points belonging to each of the classes, known
to be as support vectors [89]. The hyperplane equation
can be stated as:

wlix+b=0

where w is the normal vector, x represents the input fea-
ture and, b is the bias term. Its effectiveness in handling
the high dimensional genome-wide methylation data,
making them suitable for genome-wide methylation stud-
ies and MCED tests. In GRAIL’ First Circulating Cell-
free Genome Atlas (CCGA) Sub-Study, the MCED test
was validated on a large-scale population using ML mod-
els, including SVM, to analyze cell-free DNA (cfDNA)
patterns and classify participants [90].

Gradient boosting machines (GBM)

GBMs are ensemble learning algorithms that enhance
predictive accuracy by sequentially optimizing weak
base learners, typically decision trees, through gradi-
ent descent to minimize a specified loss function [91].
The key components include: (i) a loss function to quan-
tify prediction error, (ii) base learners (typically decision
trees) built sequentially to address prior errors, and (iii)
an additive framework that combines outputs from all
learners.

Fo(x) =y (1)
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Where y are the predicted values, y;,; is the sum of all val-
ues, Rj,; denotes terminal node, o representing the learning
rate, and F,,(x) giving the output of the final model. GBMs
offer interpretability through tree-based structures and are
effective in handling missing data, making them well-suited
for complex predictive tasks. In the first CCGA Sub-study,
eXtreme Gradient Boosting (XGBoost) was employed as
a pan-feature classifier to integrate scores from individual
models, with hyperparameters optimized via random search
on training data [90]. Nguyen et al. 2023 demonstrated that
XGBoost’s effectiveness in multimodal plasma cfDNA,
integrating methylomics and fragmentomics to distinguish
between patients with cancer from healthy individuals and
predict TOO. In the concatenated model combining nine
features, XGBoost achieved an AUC of 88%, highlighting its
robustness in handling complex, high-dimensional data and
its strong applicability to MCED testing [92].

LASSO regression

LASSO (Least Absolute Shrinkage and Selection Opera-
tor) is a supervised regression analysis method that per-
forms regularization and variable selection to improve
the prediction accuracy, for both linear and generalized
linear models [93]. LASSO demonstrates superior per-
formance due to its lower vulnerability to random errors
by setting the coefficients of less important features to
zero and eliminating redundant covariates. The regres-
sion coefficients in LASSO are estimated using the sparse
penalized approaches by optimizing the log-likelihood
function while imposing a constraint that the total abso-
lute sum of the regression coefficients, J kj=1|Bj|, does
not exceed a specified positive constant.

y=PBo+ Brx1 + Poxa + -+ Byxp + €

Where 'y =  target dependable variable;
Bos 1, B2 ..., Bp= parameter coefficient for estimation;
Xy, Xy, X3 = independent variables; and € = error. Further
research is needed to evaluate the effectiveness of the
LASSO regression algorithm in MCED tests, as its capa-
bility for feature selection and handling high-dimensional
cfDNA data holds significant promise for enhancing can-
cer classification and early detection.

Logistic regression (LR)
Logistic Regression (LR) is a supervised classifica-
tion algorithm that models the probability of a binary
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outcome using the sigmoid function. The finding of
optimum results can be defined by applying cost func-
tion using gradient methods such as gradient descent
and conjugate gradient [94]. Regularization techniques,
including L1 (LASSO) and L2 (Ridge), are commonly
applied to improve feature selection.

ebot+b1X)
Y= 1 1 eothiX)

where x= input feature, y = predicted value, by = bias;
b1 = input coefficient. Moreover, LR is used to form an
Ensemble model which involves the use of a stacking
ensemble model with logistic regression to integrate
the predictions from individual feature models, achiev-
ing AUC of 93% [92]. Infact, LR outperformed several
other algorithms—including k-NN, Random Forest, and
SVM—with an AUC of 0.96. The latter demonstrated
exceptional performance in cfDNA-based multimodal
cancer classification and prognostic assessment [95].

Multinomial logistic regression (MLR)
Multinomial Logistic Regression (MLR) extends binary
logistic regression to model categorical outcomes with
more than two classes. The latter is done by estimating
the probability of each class based on the log-odds trans-
formation (logit), according to the equation:

Log(odds) = logit(P) = In(P; — P) = a + b1x1 + baxy
+b3x3+

Where P represents the likelihood of a case belonging
to a specific category; exp denotes the exponential value
(~ 2.72); a being the constant of the equation, and b rep-
resents the coefficient of the predictor or independent
variables [96]. In the CCGA Sub-Study, MLR played a key
role in predicting Cancer Signal Origin (CSO) labels by
analysing fragmentomic patterns in WGBS-based meth-
ylation classifiers, gene disruptions in SNV-WBC clas-
sifiers, and read depth variations in WGS-based SCNA
classifiers, thereby enhancing tumor origin identification
in MCED tests [90].

Random forests (RF)

Random Forests (RF) are supervised, non-parametric,
tree-based ensemble approaches that construct multi-
ple decision trees during training. It determines the final
output by selecting the most frequent class for classifi-
cation or averaging the predictions for regression. This
algorithm is widely used for feature selection and clas-
sification, exhibiting higher performance accuracy than
SVM, Decision Tree, Multilayer Perceptron, and K-Near-
est Neighbors [41]. It combines the principles of adaptive
nearest neighbors with bagging, enabling efficient data-
adaptive inference. The greedy nature of the algorithms
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optimally splits the trees at each step while applying reg-
ularization for effective complex data and managing fea-
ture interactions and correlations. The SelectFromModel
function with a 0.0001 threshold was employed for fea-
ture selection in the RF model for classifying different
cancer types. GridSearchCV was used for hyperparam-
eter selection, and the model was further validated using
k-fold cross-validation [92]. Also, the RF model was uti-
lized for detecting cancer and classifying the TOO, incor-
porating rigorous cross-validation and feature selection
techniques[97]. Moreover, Zhang et al 2024, used Ran-
dom Forest with feature selection on serum microRNAs
to help predict the tissue of origin in 13 cancer types,
achieving up to 95% accuracy in the top 3 predictions—
supporting its use alongside MCED screening [98].

Generalized linear model (GLM)

The Generalized Linear Model (GLM) is a class of super-
vised regression models used to describe relationships
between one or more predictor variables and a response
variable. GLM is designed to handle diverse error dis-
tributions and allow for flexible and non-linear feature
correlations by using a separate underlying statistical
distribution. Bao et al. 2022, utilized GLM for the con-
struction of the ensemble learning base model, incorpo-
rating other algorithms such as GBM, Random Forest,
Deep Learning, and XGBoost. The base model predic-
tions were aggregated into a large matrix, which was then
utilized to train the final stacked ensemble model. The
researchers assessed the cancer detection model on a test
dataset and validated the cancer origin model using true-
positive cases [99].

k-Nearest neighbors (kNN)

The traditional K-Nearest Neighbors (KNN) algorithm
is a supervised, non-parametric method primarily used
for classification by comparing a sample to its closest
neighbors within the feature space. It predicts the label
of a query point based on the majority class (for classi-
fication) or average value (for regression) of its k closest
training samples, using distance metrics like Euclidean or
Manhattan distances [100]. Upon identifying the k near-
est data points, the algorithm employs a majority voting
mechanism to ascertain the most frequently occurring
class among these neighbors. The classification accuracy
of the algorithm is highly dependent on the number of &,
necessitating testing of different values to determine the
optimal one for the dataset [101].

R 1
y=f@=1>

ieNy
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y denotes the estimated continuous value for the given
query point x; k represents the total number of nearest
neighbors used for prediction; y; represents the actual
target value of the i neighbor; N, signifies the collec-
tion of the k nearest neighbors to x; % Y _ieN, Ji computes
the average target value of these k selected neighbors. In
recent applications, such as demonstrated by Hajjar, M. et
al. 2024, KNN was tested in cfDNA-based cancer detec-
tion, but Logistic Regression ultimately outperformed it
in sensitivity within a multimodal diagnostic approach
(cfDNA fragmentomic and genomic features)[90].

Deep learning for cancer methylation analysis

Deep learning uncovers complex structures within large
datasets using the backpropagation algorithm, which
optimizes its internal parameters to compute representa-
tions in each layer based on the previous one. Common
deep learning algorithms, such as convolutional neural
network (CNN) and graph convolutional neural network
(GCNN), are widely used for classification of tumor of
origin prediction models. These neural networks are the
amalgamation of interconnected nodes or neurons that
process and learn from the training data.

Graph convolutional neural network (GCNN)

Graph Convolutional Neural Networks (GCNNs) clas-
sifies TOO in multi-cancer detection by utilizing graph-
structured relationships among cancer types. These
models analyze input graphs where patients are nodes
and similarities are edges, often constructed using
the k-nearest neighbors (k-NN) algorithm. Applying
GCNNs to ctDNA-based detection is challenging due
to ctDNA’s low abundance and variability, impacting
model reliability [102, 103]. To address this, Nguyen et
al. 2023 introduced SPOT-MAS, a multimodal assay
combining methylomics, fragmentomics, copy number
variations, and end motifs using shallow genome-wide
sequencing (~0.55x). The resulting machine learning
method achieved 72.4% sensitivity at 97.0% specificity,
with a tumor-of-origin classification of five cancer types
reaching 0.7 accuracy. Although this shows a promising
potential of ctDNA-based assays, data sparsity remains a
constraint for graph-based learning models. To enhance
feature selection in GCNN applications, the authors used
importance scores (Fi), with a cutoff 8f = 0.9 to minimize
noise from low-abundance ctDNA signals and improve
classification accuracy [92].

Neural network-based machine learning framework

Machine learning frameworks based on neural net-
works are widely known for their ability to perform
robust predictions across various cancer data types and
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identify potential biomarkers. For instance, EMethyINET
(Explainable Methylome Neural network for Evaluation
of Tumours), is a hybrid model integrating XGBoost and
a deep neural network for multiclass and binary clas-
sification of DNA methylation microarray data. This
framework was applied to the dataset from 13 cancer
types and corresponding normal tissues collected from
TCGA. EMethyINET utilized an XGBoost model with
800 estimators, a maximum tree depth of three, and a
tuned learning rate for optimal performance. To prevent
overfitting, 50% of features and samples were randomly
selected for each tree and only features with a positive
importance score in XGBoost were used as input for the
feedforward neural network. The neural network was
trained with the Adam optimizer and cross-entropy loss,
using a “Talos-based hyperparameter search” with 30%
validation data and early stopping for selecting the best
model within 500 epochs [104]. Moreover, CrossNN is
another a machine learning framework based on neural
networks that accurately classify tumor types using DNA
methylation profiles from various platforms, regardless
of epigenome coverage and sequencing depth. Feature
selection involved encoding methylated/unmethylated
probes and filtering uninformative probes. The neural
network model was trained using reference methylomes
dataset, with beta values binarized at a threshold of 0.623
and zero variance features removed. To maximize feature
utilization, a fixed sample rate was employed, with ran-
dom masking of 0.25% of training samples, determined
via 5-fold cross-validation. A normalization function
and a SoftMax layer converted outputs into probabilities
of brain tumor subtypes, and the model using PyTorch
1.13.0 was developed using the Adam Optimization
Algorithm [105].

Here, we provide a concise and updated comparative
summary of key artificial intelligence algorithms cur-
rently applied in multi-cancer early detection (MCED)
using cfDNA, highlighting their core principles, applica-
tions, advantages, and limitations (Table 3).

Interactive machine learning (IML) algorithms

In the domain of cancer epigenomics, where data
are inherently high-dimensional, sparse, and biologi-
cally complex, interactive machine learning (IML) has
emerged as a promising paradigm to bridge gaps left
by conventional machine learning methods that strug-
gle with small or noisy datasets [106]. IML technique,
which involves the human-in-the-loop strategies drawn
from active learning, Explainable AI, and reinforcement
learning has enabled iterative and expert-guided model
refinement [107-109]. These approaches have shown
tangible benefits in epigenetic signature interpretation,
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feature selection, and model explanation, which are cru-
cial tasks in the analysis of DNA methylation patterns
and multi-omics data for cancer detection. For example,
in the context of early cancer screening and minimal
residual disease detection, IML frameworks have been
used to identify differentially methylated regions (DMRs)
by reducing the annotation burden through active learn-
ing, and to guide expert-driven decision-making in fea-
ture prioritization [110]. Recent developments even
explore human-in-the-loop reinforcement learning mod-
els that integrate clinician expertise in selecting biologi-
cally meaningful features, enhancing model robustness in
pan-cancer classification and tissue-of-origin prediction
[111]. These developments illustrate the transformative
potential of IML to not only handle the complexities of
cancer epigenomics but also accelerate the clinical adop-
tion of Al systems by embedding expert knowledge into
every stage of model development [112]. Thus, the inte-
gration of IML into epigenetics offers a fertile ground
for advancing explainable, accurate, and patient-aligned
machine learning tools for cancer diagnostics and
therapeutics.

Multi-cancer early detection (MCED): pipelines,
technologies and industry advancement

Recent advancements in detecting cancer-related
changes in ctDNA and other liquid biopsy biomarkers
have facilitated the development of MCED tests. These
tests consolidates the detection of multiple low-prev-
alence cancers into a single diagnostic tool, improving
positive predictive value (PPV) through high specificity
while reducing the need for invasive screening proce-
dures. Also, MCED analyzes a broad range of biological
markers, including tumor cells, DNA, RNA, proteins,
and other molecules [113]. cfDNA being the primary
analyte, is analyzed using WGS is used for identifying
somatic copy number alterations in the DNA sequence,
including fragment endpoints, fragment length, and
allelic imbalance [90]. Some of the key features ensuring
MCED test accuracy and clinical utility include: 1) case-
control efficiency for initial development and validation,
despite potential spectrum bias; 2) varying sensitivity and
specificity across cancer types, stages, and study designs;
and 3) essential clinical validation studies at the popula-
tion level to ensure effectiveness [13].

The integration of MCED techniques into clinical
practice demands a careful evaluation of early detec-
tion benefits, such as decreased mortality, against the
risks associated with false positives, overdiagnosis, and
unnecessary treatment [114]. To elucidate the progres-
sion of these advancements, we performed a systematic
PubMed search employing the terms (MCED OR "multi-
cancer early detection”) AND (methylation OR "DNA
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Refinement of MCED
& Large-Scale Validation

* SYMPLIFY trial assesses MCED
performance in symptomatic
patients;

multimodal Al-driven analysis.

+ THUNDER study integrates omics /{ﬁ?\g
o5

* Microsimulation models assess
cost-effectiveness and clinical

Foundation for Multi-Cancer
Early Detection (MCED)

« Validation of cfDNA methylation
assays (e.g., PATHFINDER) valuating
real-world feasibility.

« Increased focus on methylation
profiling as a reliable biomarker for
early detection.

approval.

Clinical Integration & Large-
Scale Validation

+ Prospective validation studies
focus on asymptomatic adults,
moving MCED from research to
clinical practice.

* ctDNA assays optimized for
early cancer screening,
advancing toward regulatory

Page 18 of 30

Advancements in Liquid
Biopsy & Diversity
* Introduced Galleri Test leverages

cfDNA methylation signals for
pan-cancer screening.

* Advancing fragmentomics to
improve DNA fragment patterns
detection sensitivity.

Emphasizing racial diversity to
ensure equitable representation
in genomic studies.

Next-Gen MCED: Multi-

Biomarker & Disease-Specific

Approaches

+ TOTEM model enhances tissue-
of-origin (TOO) classification
accuracy.

+ Expansion into aggressive
cancers (e.g., prostate, liver) with
multi-biomarker approaches.

+ Advances improved detection
sensitivity using liquid biopsy.

Fig. 5 Timeline depicting advancements in Multi-Cancer Early Detection (MCED) from 2021 to 2025, highlighting progress in liquid biopsy,
multi-omics integration, validation studies, and clinical implementation for early cancer screening

methylation"), which uncovered crucial milestones in
MCED evolution. Figure 5 illustrates this developmental
trajectory, showcasing landmark achievements, including
the clinical implementation of methylation-based diag-
nostic tools. The subsequent sections will explore more
elaborate MCED workflows and recent innovations in
detail.

Clinical pipelines and industry advancements in MCED
technologies

In recent years, the development of MCED tests has
surged, driven by advances in sequencing technologies
and bioinformatics workflows. Several biotech compa-
nies, including GRAIL, are at the forefront of MCED
innovation, using ctDNA methylation analysis to detect
over 50 types of cancer. One of GRAILS initial studies,
the CCGA by Liu et al. 2018, demonstrated that WGBS
outperforms targeted mutational panels and WGS in
cancer detection. This analysis involved 2402 samples
(both controls and newly diagnosed untreated cancers
across 20 types) using sequencing assays such as cfDNA/
white blood cell (WBC) targeted sequencing, WGS,
and WGBS, with cancer-specific sensitivities ranging
from 54% to 94% [115]. GRAIL's Galleri test, validated
in 4077 samples, achieves 51.5% sensitivity (stage I-IV)
and 88.7% TOO accuracy [116, 117], with an estimated
PPV minimum of 84.2% [118]. Another cfDNA-based
probabilistic method, CancerLocator, detects cancer and

predicts TOO using genome-wide DNA methylation
data. This method outperforms traditional multiclass
classification measures on both simulated and real data
by selecting CpG cluster with high methylation levels
and applying mixture modeling, maximum-likelihood
estimation, and Pearson’s correlation [119]. Moreover,
the cfMeDIP-seq library, consisting of 189 plasma sam-
ples from seven types of cancer, was used to identify
Differentially methylated regions (DMRs), which were
then applied to construct highly accurate cancer-spe-
cific classifiers [120]. Additionally, a targeted bisulphide
sequence-based methylation assay analyzing 9223 hyper-
methylated CpG sites in cfDNA accurately detected,
classified, and differentiated various advanced cancers,
identifying over 80% of cases across 32 common cancer
types [121]. The development of multi-biomarker based
MCED test may also enhance the ability to detect molec-
ular and phenotypic tumor heterogeneity. For instance,
an optimized and validated novel three-marker methyl-
ation-based blood test model designed by Funderburk
K et al. 2023 using TLX1, GALR1, and ZNF154 markers
in array-based methylation data demonstrated superior
sensitivity, specificity, and PPV across 14 cancer types.
This study also employed logistic regression models for
each cancer types [122]. Similarly, CancerSEEK, which
integrates mutation and protein biomarkers, demon-
strated 62% sensitivity across eight types of cancers [123].
Table 4 summarizes the key features and performance of
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widely used DNA methylation-based MCED tests, iden-
tified from literature surveys, companies’ websites, and
conference abstracts.

Machine learning driven pan-cancer classification

pipelines

Recent progress in high-throughput technologies has
been crucial developing MCED tests. Nevertheless, these
technologies alone are not sufficient for precise and
scalable cancer diagnostics. Machine learning (ML) has
emerged as a critical tool in improving the accuracy of
MCED tests, facilitating robust pan-cancer classification.
In the following section, we discuss key algorithms that
have been applied for enhanced pan-cancer detection:

a) XGBoost: Cui, P. et al. 2024 developed an XGBoost
model using sequenced methylation data from WGS
and WGBS of cfDNA obtained from patients with
cancer and healthy controls. The model was trained
on a numerical matrix of 11-nt cleavage windows and
their corresponding values, effectively distinguishing
between hyper- and hypo-methylated CpG sites. It
achieved AUCs of 0.959, 0.896, and 0.827 for HCC,
lung cancer, and colorectal cancer, respectively [143].

b) Random forest: Modhukur et al., 2021 demonstrated
that Random Forest outperformed other algorithms
like SVM, Naive Bayes, and XGBoost in classifying
cancer types based on TOO prediction. This model
achieved an average accuracy of 99% highlighting its
robustness in distinguishing cancer types based on
methylation profiles [88].

¢) MetDecode: MetDecode, a CNN-based tool,
achieved 84.2% accuracy of TOO using whole-
genome methylation data. By leveraging DNA meth-
ylation signatures from integrated in-house and pub-
lic whole genome methylation datasets, this approach
demonstrated strong performance in identifying the
TOO in cfDNA. Specifically, it achieved a limit of
detection (LOD) of 2.88% with Pearson correlation
coefficients exceeding 0.95, outperforming similar
TOO prediction methods like CancerLocator and
CelFiE [144].

d) TOTEM (cTdna Origin Tracker dependent on Epige-
netic Methylation markers): This algorithm is being
used for MCED test and cancer signal origin (CSO)
localization, based on enzymatic conversion-based
targeted methylation sequencing of patient samples.
The model achieved AUC values of 0.907, 0.908, and
0.868 in the training, testing, and independent vali-
dation cohorts, respectively, with specificities of 98%,
100%, and 98.6%. The model’s robustness was further
validated using a smaller set of 21 diagnostic markers
and 214 cancer signal origin (CSO) markers, yielding
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a testing AUC of 0.866 and a top-2 accuracy of 83.1%

[145].

Methylation-based classifier (MFCUP): Sun M. et

al., 2024 developed a novel methylation-based clas-

sifier (MFCUP) to predict the tissue of origin in CUP
patients. Leveraging a large methylation dataset of

32 cancer types, the researchers trained a ML model

with random forest for feature selection and elas-

tic net for classification. This approach significantly
improved accuracy from 84.8% to 93.4% on Infinium

EPIC and 450K array while enhancing the sensitivity

(0.8 to 1) and specificity (0.995 to 1) across 25 differ-

ent cancer types [146].

f) Microsimulation model: A recently developed micro-
simulation model assessed the performance of the
Galleri® MCED test in cancer screening trials, pre-
senting a range of positive predictive value (PPV)
values from 48% to 61%. After three annual screen-
ings, early-stage 23 different cancer detection (stage
I/1I) increased by 9% to 14%, incidence of stage-1V
cancers decreased by 37% to 46%, and mortality rate
reduced by 13% to 16% [147].

o
~

Deep learning approaches for pan-cancer classification
pipelines

Traditional screening methods analyzing blood samples
under microscopy is time-consuming, prone to bias, and
dependent on the expert availability. In contrast, deep
learning algorithms offer automated, and efficient solu-
tions, enabling tumor detection from large-scale digital
histopathology images with improved accuracy using
CNN [148].

a) Convolutional neural networks (CNNs): Convolu-
tional neural networks (CNN) are the type of neural
network capable of discerning distinctive patterns
and characteristics associated with diverse forms of
cancer using image-based and gene expression data-
sets. The CNN model comprises multiple layers,
including the input layer, convolutional layer, and
pooling layer, enabling hierarchical feature extraction
for creating the data models. Utilizing a one-dimen-
sional kernel with two input vectors as its foundation,
CNNs can effectively predict cancer types [149].

Several studies showcase an architecture of the CNN
for the classification of cancer epigenetics and dis-
eases. For instance, iCancer-pred [150] leverages
DNA methylation data for cancer diagnosis through
a two-stage feature selection process using the coef-
ficient of variation and elastic network techniques.
iCancer-pred incorporates fully connected neural
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networks for binary (sigmoid) and multiclass (soft-
max) classification, achieving high accuracy (98.37%)
and AUC (99.68%) in distinguishing cancer subtypes.
Similarly, DISMIR utilizes a CNN-based model and
introduces the ‘switching region’ feature to identify
cancer-specific  differentially methylated regions,
enhancing cancer signal detection at read resolution
for highly sensitive plasma-based cancer diagnostics
[151]. Although CNN has not yet been fully utilized
in MCED tests, it presents significant potential for
identifying methylation biomarkers crucial for early
cancer detection and facilitating accurate pan-cancer
classification.

b) Variational autoencoder (VAE): A variational autoen-
coder (VAE) is a generative neural network com-
prising an encoder and a decoder for efficient fea-
ture learning. Such methods have been increasingly
applied to epigenetic cancer subtype classification
using multi-omics datasets, gaining attention for
pan-cancer prediction. For instance, OmiEmbed,
developed by Zhang et al. 2021, leverages a vari-
ational autoencoder (VAE) to encode high-dimen-
sional multi-omic data into a compact latent space. A
multi-layer fully connected network then processes
this representation for tumor classification, primary
site identification, and disease stage prediction. This
method outperformed traditional machine learn-
ing models, achieving an AUC ROC of 0.9943 versus
0.9863, highlighting its efficacy in multi-cancer clas-
sification and survival analysis [152]. Next, Methyl-
net, a pretrained variational autoencoder (VAE), was
utilized for feature extraction in multi-output regres-
sion and classification tasks, including pan-cancer
subtypes and smoking prediction. Optimized via
autonomous hyperparameter scanning, it employed
Shapley Feature Attribution to identify key CpGs,
achieving 97% accuracy, precision, sensitivity, and
F1 score in pan-cancer classification [153]. Also,
MetaCancer is a DL model developed for pan-cancer
metastasis prediction that integrates TCGA multi-
omics data and employs a convolutional variational
autoencoder for feature extraction, followed by a fully
connected network for classification. MetaCancer
outperformed the SVM ensemble, achieving 88.85%
accuracy versus 82.50% [154].

¢) Graph convolutional neural networks (GCNNS):
Four innovative GCNN models utilize unstructured
gene expression data to classify samples into 33
cancer types or as normal tissue. Validated on the
TCGA dataset, GCNNs achieved over 94% accu-
racy, demonstrating their potential utility in cancer
diagnosis [155]. Its architecture comprises an input
graph encoded by an adjacency matrix, followed by
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graph convolutional layers that perform coarsening
and pooling. A hidden layer is subsequently linked
to a fully connected softmax output layer for clas-
sification. Moreover, Categorical cross-entropy was
utilized as the loss function, with the Adam opti-
mizer applied across all four GCNN models. Optimal
hyperparameters, including pooling strategy, learn-
ing rate, hidden layer size, and batch size, were iden-
tified through Random Search [156].

d) CancerNet: CancerNet utilizes a deep learning archi-
tecture to analyze methylation data for cancer detec-
tion. It comprises an encoder with two dense layers
(ReLU activation), a probabilistic layer, a classifier
(ReLU and softmax layers), and a decoder (ReLU
and sigmoid layers). This model accurately classifies
33 cancer types with >99% F-measure, distinguishing
primary, metastatic, and pre-cancerous lesions [157].

Prognostic insights into MCED tests in patient
management

MCED tests provide valuable prognostic insights for
patient management, by considering cancer subtypes and
detection timing, critically impacting patient manage-
ment strategy. Xiaoji Chen et al. 2021, demonstrated that
cancers undetected by the MCED test had better survival
rates over three years compared to the detected ones.
The finding holds true regardless of their clinical stage,
underscoring the potential correlation between test
detection and tumor fraction in cfDNA [158]. Moreover,
the prognostic implication of the MCED test depends
on histological subtype and detection timing. The find-
ings suggest MCED test do not predict relapse within
five years post-resection and an increased rate of patho-
logical upstaging [159]. Moreover, Hubbell E et al. 2021
developed an interception model integrating Surveil-
lance, Epidemiology, and End Results (SEER) data with
MCED test to improve late-stage cancer prognosis. From
their projection, MCED test could intercept 485 cancers
per 100,000 annually, reduce late-stage incidence by 78%,
and lower 5-year cancer mortality by 39%. The latter cor-
responds to 104 fewer deaths per 100,000 or a 26% reduc-
tion in overall cancer-related mortality [160]. Certainly,
the tests also exhibit moderate sensitivity with robust
detection of clinically aggressive cancers while often
missing indolent or early-stage tumors [161, 162].

Validation of MCED tests in symptomatic patient cohorts

The prospective evaluation of the targeted methylation-
based MCED test in a large cohort of symptomatic
patients supports its effectiveness in aiding clinicians
with urgent decision-making and optimizing refer-
ral processes from primary care [163]. Some of the
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key validation studies supporting these findings are
described below:

a) SYMPLIFY: One of the validation studies, SYM-
PLIFY, showed that the MCED test achieved a high
specificity of 98.4% and overall sensitivity of 66.3%.
Sensitivity was highest for upper gastrointestinal can-
cers (80.4%), with a negative predictive value (99.1%).
Additionally, the predicted accuracy for detecting
cancer’s site of origin in 84.8% of cases [163].

b) THUNDER: Recently, Gao Q et al,, 2023, conducted
the THUNDER study to evaluate enhanced linear-
splinter amplification sequencing for early cancer
detection and localization. Two MCDBT models
were developed using 161,984 CpG sites and tested
on cfDNA from 1693 participants. MCDBT-1
showed 69.1% sensitivity, 98.9% specificity, and
83.2% tissue origin accuracy, with potentially reduc-
ing late-stage cancer incidence by up to 46.4% and
increasing 5-year survival by up to 40.4%. In con-
trast, MCDBT-2 had higher sensitivity (75.1%) but
lower specificity (95.1%), making it more suitable for
higher-risk populations [164]. Additionally, Bryce AH
et al, 2023 evaluated a targeted methylation assay
using the MCED test for improved cancer detection,
reporting high specificity (99.5%), moderate sensitiv-
ity (64.3%), CSO prediction (90.3%) and overall sensi-
tivity (84.1%) for gastrointestinal cancer [161].

c¢) PATHFINDER: The PATHFINDER study evalu-
ated the clinical implementation of the CancerSEEK
MCED blood test, showing an impressive prediction
accuracy of 97% for both initial and subsequent can-
cers. Nearly half of the non-recurrent cancers were
diagnosed at an early stage, with over 70% were can-
cers included in the standard screening guidelines. In
fact, most true positive outcomes received diagnos-
tic resolution within a few months [165]. Further-
more, Vittone, J. et al., 2024 reported that the Galleri
MCED test successfully identified early-stage solid
organ cancers in three clinical cases, demonstrat-
ing its potential to detect early-stage cancers, detect
malignancies beyond the scope of USPSTF guidelines
and render diagnostic evaluations based on CSO pre-
dictions [166].

Future directions, limitation and concluding
remarks

Despite the groundbreaking advancement in integration
AI with DNA methylation analysis, the field remains nas-
cent, and requires further technological innovations and
clinical validation to maximize its potential. Below, we
highlight critical areas for future research and develop-
ment, focussing on early-stage sensitivity, multi-omics
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integration, explainable Al, population-specific valida-
tion, and ethical considerations.

Enhancing early-stage sensitivity and specificity
Improving sensitivity for early-stage cancers, which
often exhibit low tumor fractions in circulating tumor
DNA (ctDNA), remains a key challenge in MCED. Cur-
rent tests, such as Galleri, achieve only 16.8% sensitivity
for stage I cancers, highlighting the need for more robust
biomarkers [117]. Future research should focus on identi-
fying methylation patterns unique to early tumorigenesis,
such as those associated with pre-malignant lesions or
field cancerization could enhance sensitivity. Single-cell
methylation profiling (e.g., scBS-seq) could help identify
clonal epigenetic alterations before clinical symptoms
appearance, enabling earlier tumors detection [74]. Addi-
tionally, integrating fragmentomics, such as cfDNA frag-
ment length, end motifs, and nucleosome positioning
alongside methylation data could further improve sen-
sitivity, as demonstrated by DELFI's 73% sensitivity for
stage I-II cancers [167].

Multi-omics integration for comprehensive profiling
Methylation does not operate in isolation; its inter-
play with genetic mutations, histone modifications, and
immune microenvironment changes, all of which play
role in tumor evolution. Hybrid models combining meth-
ylation with somatic mutations (e.g., KRAS, TP53), prot-
eomic biomarkers (e.g., CA-125, CEA), or transcriptomic
signatures could enhance diagnostic, classification accu-
racy and provide a more comprehensive view of tumor
biology. For example, Freenome’s MCED test integrates
methylation, fragmentomics, and proteomics, achieving
79.2% sensitivity for colorectal cancer [142]. Similarly,
spatial multi-omics platforms (e.g., Visium HD) may
uncover spatially resolved epigenetic-immune interac-
tions, refining TOO prediction and identifying novel
therapeutic targets [168].

Explainable Al (XAl) frameworks for clinical adoption

The "black-box" nature of AI models remains a major
barrier to clinical adoption. Clinicians and regulators
require transparent, interpretable frameworks to trust
and validate these technologies. Tools like EMethyINET,
which links methylation features to gene pathways, and
SHAP (SHapley Additive exPlanations), quantifies feature
importance, are essential for building trust and under-
standing model predictions [104]. Regulatory agencies,
such as the FDA, are increasingly prioritizing algorithm
interpretability in their guidelines, underscoring the need
for explainable Al in clinical applications [169]. Based on
existing studies, Logistic Regression (LR) and Random
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Forest (RF) have shown strong potential in MCED tests,
with LR offering clinical interpretability and RF handling
complex, non-linear data [170]. Future research should
focus on developing ensemble models combining algo-
rithm like LR, RF, and other statistical approaches to
enhance MCED accuracy and reliability.

Population-specific validation and global equity

Most MCED tests are validated in Western cohorts, limit-
ing their applicability to diverse populations. For instance,
SEPT9 methylation shows variable performance in Asian
vs. European colorectal cancer cohorts, highlighting the
need for geographically tailored biomarkers [171]. Moreo-
ver, ensuring equity in MCED tests is crucial as they develop,
requiring proactive efforts to prevent disparities in access
and benefits [14]. Large-scale studies like the Singapore
Multi-Cancer Screening Trial (NCT05808300) and SPOT-
MAS'’s validation in over 10,000 Vietnamese patients [140],
demonstrate the importance of population-specific valida-
tion. Ensuring global access to these technologies is equally
critical. For example, Galleri’s $949 price tag limits its use in
low-income countries, necessitating cost-effective alterna-
tives like IMPRESS, which reduces sequencing costs by 70%
[46].

Technological advancements for scalability and precision
A) Single-Cell and Long-Read Sequencing: Technologies
such as Single-cell bisulfite sequencing (scBS-seq) and
nanopore sequencing could resolve methylation hetero-
geneity and detect rare tumor clones in ctDNA, improv-
ing early detection precision [172].

b) Liquid Biopsy 2.0: In addition to cfDNA, analyzing
methylation in extracellular vesicles (EVs) or circulating
tumor cells (CTCs) may improve specificity, as shown by
Epic Sciences’ CTC-based assay [173].

c) Point-of-Care Testing: Developing portable, low-
cost methylation profiling devices could expand access to
MCED, particularly in resource-limited settings.

Ethical, regulatory, and implementation challenges

The rise of Al-driven MCED tests necessitates robust
frameworks for data privacy, algorithmic bias mitiga-
tion, and equitable access. Regulatory agencies must
standardize validation protocols, as current MCED trials
(e.g., PATHFINDER, SYMPLIFY) vary in design and end-
points [163, 165]. Additionally, the potential for overdiag-
nosis and overtreatment, particularly for indolent cancers
detected by MCED tests, must be carefully managed.

Limitations

This review provides an overview of recent advance-
ments in MCED tests but has several limitations.
Detailed descriptions of clinical trial designs and
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validation cohorts were not included, limiting insights
into real-world specificity and performance [174, 175].
Key emerging areas, such as epigenetic biomarkers—spe-
cifically histone and chromatin modifications—were also
not addressed, despite their potential relevance to MCED
[176]. Additionally, we did not cover Al-based models
utilizing serum protein biomarkers, where real-world
data are critical for clinical reliability and generalizabil-
ity [177]. Multi-omics-based MCED platforms, such as
SeekInCare, which show promise in detecting a wide
range of cancers, were mentioned but not explored in
detail [178]. Ongoing challenges in MCED technologies,
such as limited sensitivity for early-stage cancers, unde-
fined follow-up protocols, uncertain insurance coverage,
and the need for long-term clinical trials, underscore the
need for continued innovation and comprehensive evalu-
ation. These gaps not only highlight the scope and limita-
tions of the review but also point to important directions
for future research and clinical development.

Conclusions

The integration of Al and cancer epigenomics has signifi-
cantly advanced precision oncology, with DNA methyla-
tion biomarkers becoming a key element in non-invasive
cancer detection and monitoring methods. Multi-cancer
early detection (MCED) tests, such as Galleri and Can-
cerSEEK, demonstrate the clinical potential of meth-
ylation biomarkers, offering a revolutionary shift from
reactive to proactive cancer management. These tech-
nologies have the potential to reduce cancer mortality
rates by 30-50%, especially for cancers that currently lack
standardized screening procedures [179].

Despite advancements in Al-driven multi-omics inte-
gration and epigenetic biomarkers for early cancer detec-
tion, challenges remain in improving detection sensitivity,
ensuring model interpretability, mitigating demographic
biases, and addressing data imbalance. Moreover, the
advancement of cancer treatment will rely on joint efforts
to integrate multi-omics data, enhance artificial intel-
ligence tool accessibility, and confirm technology effec-
tiveness across global populations. By addressing these
aforementioned issues, the next generation of MCED
tests has the potential to transform oncology, facilitating
early cancer detection, precise treatments, and improved
patient outcomes on a global scale.
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