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ABSTRACT

microRNAs (miRNAs) are short non-coding regula-
tory RNA molecules. The activity of a miRNA in a
biological process can often be reflected in the ex-
pression program that characterizes the outcome
of the activity. We introduce a computational
approach that infers such activity from high-
throughput data using a novel statistical method-
ology, called minimum-mHG (mmHG), that
examines mutual enrichment in two ranked lists.
Based on this methodology, we provide a
user-friendly web application that supports the stat-
istical assessment of miRNA target enrichment
analysis (miTEA) in the top of a ranked list of
genes or proteins. Using miTEA, we analyze
several target prediction tools by examining per-
formance on public miRNA constitutive expression
data. We also apply miTEA to analyze several inte-
grative biology data sets, including a novel matched
miRNA/mRNA data set covering nine human tissue
types. Our novel findings include proposed direct
activity of miR-519 in placenta, a direct activity
of the oncogenic miR-15 in different healthy tis-
sue types and a direct activity of the poorly
characterized miR-768 in both healthy tissue types
and cancer cell lines. The miTEA web application is
available at http://cbl-gorilla.cs.technion.ac.il/
miTEA/.

INTRODUCTION

microRNAs (miRNAs) are short (usually �22 nt) non-
coding regulatory RNA molecules. Hundreds of
miRNAs have been discovered in recent years and
several have been functionally characterized (1). In
mammals, miRNAs are well known to take part in
regulating tissue differentiation (2) and for several
miRNAs a well-defined tissue specific signature is

known (3). As such, miRNAs are known to regulate
major biological processes such as development, cancer
(4,5) and heart function (6).
Many studies attempted to elucidate the mechanism by

which miRNAs act to regulate target genes. With recent
experimental studies, many of the major factors that
partake in the recognition mechanism of miRNA target-
ing have been revealed (7,8). Better understanding of the
miRNA mechanism of regulation led to the development
of a large variety of computational tools designed to
predict which genes are targeted by any miRNA of
interest (9). We herein refer to these tools as miRNA
target prediction algorithms (miTPAs). The current
study uses the publicly available predictions of several
such miTPAs.
The refined characterization of miRNA targets enables

better understanding of the role of miRNAs in various
biological processes by combining measurement in
relevant samples with analysis that takes information
about targets into account. Several groups have developed
computational tools to infer miRNA activity by analyzing
their targets in mRNA transcription profiles (10–15). Sood
et al. (10) used the Pictar miTPA (16) and defined cell-type
specific signatures of miRNAs by searching for enriched
miRNA targets in expression profiles using the Wilcoxon
rank sum test. Cheng and Li (11) used the miRanda
miTPA (17) to identify miRNA activity in miRNA trans-
fected HeLa cells. The statistical approach of Cheng and
Li (11) employs a generalization of the enrichment score
used by GSEA (18) which requires a permutation step to
infer the significance level. Liang et al. (14) have used
Targetscan (19) to report miRNA activity in a breast
cancer data set and in miRNA transfected HeLa cells.
Their method assesses miRNA activity in every sample
in the cohort. These per-sample activity scores, based on
t-test variants, are then compared for different classes of
samples in the cohort, using variants of the Kruskal–
Wallis test. In general, current approaches, including the
methods mentioned earlier, work with a fixed set of genes
as the target set of a specific miRNA, either by using
miTPA predictions or simply by considering the miRNA
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seed sequence (20,21). Subsequently, the expression distri-
bution of this set is tested for divergence compared to the
overall transcription profile. When significant divergence
in observed the miRNA itself can be deduced to be active.
A few groups have also provided online services to infer
miRNA activity (14,15). While miRNA targets behave in
a coherent manner in synthetic and controlled environ-
ments or experimental systems, where the miRNA is arti-
ficially induced or repressed, their coordinated activity is
obscured in most biological conditions. Therefore, there is
a need for more sensitive analysis approaches that can
capture more subtle trends in the data.
In accordance with the notion that transcription

networks are not discrete and should be modelled as quan-
titative relations (22) and to enable the performance of
more accurate and sensitive analysis of miRNA target en-
richment, we avoid the use of a predefined set of mRNAs
to describe the targets of a specific miRNA. We leverage
the additional information provided by the miTPA, in the
form of a prediction score or significance level. We thereby
produce better predictions of miRNA activity, including
subtle trends as earlier. In this article, we address mutual
enrichment in two ranked lists of elements and develop a
statistical framework and software for this purpose,
including miRNA target enrichment analysis (miTEA)—
a publically available web-based application. We apply
our methods to synthetic expression profiles to show the
strength of our approach as well as to assess the robust-
ness level of different miTPAs, in the context of these
specific experiments. We further demonstrate an analysis
of an integrative biology high-throughput data set of
mRNA and miRNA expression profiling and shed light
on several aspects of miRNA mechanisms of regulation in
healthy human tissue data sets as well as in cancer data
sets.

MATERIALS AND METHODS

Expression profiling

Protein and mRNA expression profiles for miRNA trans-
fected HeLa cells were taken from (23,24). Matched
mRNA and miRNA expression profiles for cancer cell
lines and primary tumours were taken from (25,26), re-
spectively. miRNA profiles from nine human tissue types
were described in Ach et al. (27). For mRNA profiles from
these tissue types, the same total RNA preps used for
miRNA profiling in Ach et al. (27) were labelled in dupli-
cates and profiled on human whole genome gene expres-
sion DNA microarrays from Agilent Technologies,
according to the manufacturer’s protocols (www.agilent.
com). Data were deposited in GEO with the accession
number GSE31904.
Repeat measurements of the same tissue type were

averaged resulting in one profile for each tissue type. To
obtain a tissue type-specific ranked list of genes, the ex-
pression of each gene was standardized (mean=0,
SD=1) across samples and for each tissue type genes
were ranked according to their standardized expression
signal.

Minimum-mHG

The mmHG statistics is a generalization of the mHG stat-
istics (28–32). While the mHG statistics quantifies the en-
richment level of a set of elements in the top of a ranked
list of elements, the mmHG statistics quantifies the mutual
enrichment level for two ranked list of elements. As such,
the mmHG statistics is applicable to any two ranked lists
of common elements. While any parametric or
non-parametric correlation statistics (e.g. Spearman’s cor-
relation coefficient), that takes the same input, calculates
the overall agreement between the two ranked lists, the
mmHG statistic focuses only on agreement at the top of
the two ranked lists. The mmHG calculates how many
elements are common in the top of both lists, without
predefining what the top is. Its output is simply the
chance for getting the obtained size of intersection at the
top of the two ranked lists of elements at random (the en-
richment P-value). In this article, we assess the mutual
enrichment in two ranked lists of genes—one ranked ac-
cording to an expression-based measurement and one ac-
cording to a miTPA score. Another example of an
application is to assess mutual enrichment when genes
are ranked according to differential expression in two
types of disease or other biological condition.

As our main application will be for genes we will, from
here on, focus on genes as the ranked elements. A formal
definition of the mmHG statistics follows. Given a single
permutation p2SN and for every i=1 . . .N we define a
binary vector li in which exactly i entries are 1 and N� i
are 0, as follows:

li jð Þ ¼ 1 iff � jð Þ � i ð1Þ

We define the mmHG score of a permutation p as:

mmHGð�Þ ¼ miniP�valueðmHGðliÞÞ ð2Þ

We have previously introduced the mHG statistics to
evaluate the enrichment of a fixed gene set within a
ranked list of genes (28,29). For completeness, we define
the mHG score of a ranked binary vector l as:

mHGðlÞ ¼ min
1�n�N

HGTðN,B, n, bnðlÞÞ ð3Þ

Where,

N ¼ jlj, bnðlÞ ¼
Xn

i¼1
li,B ¼ bNðlÞ ð4Þ

and

HGTðN,B, n, bÞ ¼ PrðX � bÞ ¼
Xminðn,BÞ

i¼b

n
i

� �
N� n
B� i

� �

N
B

� �

ð5Þ

is the tail probability for a random variable X, having an
appropriate hypergeometric distribution. mHG P-values
used earlier, denoted P-value(mHG(�)), assume a
uniform null distribution of binary vectors with weight
B. These P-values are exact and do not require correction
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for the multiple thresholds tested. See details of the
underlying methodology in Eden et al. (28).

For two permutations, p1= (p1(1) , . . . , p1(N)) and
p2= (p2(1), . . . , p2(N)), over a universe of N genes, the
relative permutation p, of p2 w.r.t. p1, is defined by

p(p1(j))= p2(j), for every j=1 . . .N or simply, using
operations in the permutation group SN:

� ¼ �2 � �
�1
1 ð6Þ

We are now ready to define mmHG(p1, p2) representing
the mutual enrichment of two ranked list of genes as:

mmHGð�1,�2Þ ¼ mmHGð�Þ ð7Þ

where p is the relative permutation of p2 w.r.t. p1 as
defined earlier.

Although the mmHG score is a minimum taken over a
space of mHG P-values, it cannot be considered as a sig-
nificance measure, due to the additional multiple testing.
To assess the statistical significance of an mmHG result
obtained in actual analysis, we work over a null model
that consists of a uniform measure on the group SN.
This is equivalent to a uniform measure over SN�SN by
the conversion of any p1, p2 to their relative permutation
p= p2 · p1�1 as earlier.

For mHG, there is a dynamic programming process
that provides a full characterization of the distribution
of the statistics under the null model. For mmHG, we
do not currently have an efficient process that allows for
calculating exact P-values. We can however use a union
bound approach as follows:

P�valueðmmHGð�ÞÞ < mmHGð�Þ �N ð8Þ

mmHG for miRNA target enrichment in this study

In this article, we use gene scores given by any miTPA to
define gene ranking p1. For a specific miRNA, genes are
therefore ranked according to how likely they are to be
targeted by that miRNA. The following ranking schemes
are used in the analyses performed in this study to define
the gene ranking p2:

(A) Protein expression values and related changes,
derived from SILAC/pSILAC experiments.

(B) mRNA expression values derived from high-
throughput transcription profiling .and

(C) In integrated miRNA–mRNA data—for a specific
miRNA, called the pivot miRNA, mRNAs were
ranked according to the anti-correlation level
(Pearson’s r) of their expression patterns, across
the entire cohort of samples, to the pivot miRNA
expression pattern. See Enerly et al. (26) for an
example of a similar analysis.

When using any specific miTPA we reduce the gene
universe to the genes for which the miTPA reports
results (genes targeted by any miRNA). In addition, for
each expression experiment the gene universe was further
reduced to the genes that were actually measured in the
experiment and reported to have produced an interpret-
able signal. The same is true for the protein expression
experiments.

Practical implementation

Some modifications to the abstract definition of mmHG
were used in this study, to accommodate practical consid-
erations. These are described in this section. First, instead
of computing the P-value of an mHG result as required in
Equation (2), we used the following bound which follows
from Eden et al. (28):

P�valueðmHGðliÞÞ � mHGðliÞ � i ð9Þ

Thus, instead of computing the mmHG score we define
the mmHG* score to be:

mmHG�ð�Þ ¼ min1�i�NmHGðliÞ � i ð10Þ

Notice that from Equation (9) it follows that:

mmHGð�Þ � mmHG�ð�Þ ð11Þ

and thus from Equation (8) we get:

P�valueðmmHGð�ÞÞ � mmHGð�Þ �N � mmHG�ð�Þ �N

ð12Þ

As a second practical modification, the optimization
processes described in Equations (2) and (3) are not
carried out in their full exhaustive scope. We only run
the outer loop up to a reasonable threshold—n_max.
The altered equations are therefore:

mmHGn maxð�Þ ¼ min1�i�n maxP�valueðmHGn maxðliÞÞ
ð13Þ

mHGn max lð Þ ¼ min1�n�n maxHGT N,B, n, bn lð Þð Þ ð14Þ

P�valueðmmHGn maxð�ÞÞ � mmHGn maxð�Þ � n max:

ð15Þ

Defining the bound-based version:

mmHG�n maxð�Þ ¼ min1�i�n maxmHGn maxðliÞ � i ð16Þ

we now get:

P�valueðmmHGn maxð�ÞÞ � mmHG�n maxð�Þ � n max

ð17Þ

For all parts of this study, we used the bound presented
in the right hand side of Equation (17) to represent the
significance level of an mmHG result. The bound used in
the analysis was n_max=2000 excluding the integrative
analysis part which used n_max=3000.
Since the complexity of computing the mHG P-value is

O(N2), we get that the complexity of computing
mmHG(p) is O(N3). Using the bounds presented earlier,
we get a reduced complexity of O(N2) for computing
mmHG*(p) or O(n_max2) if we consider Equation (17).

miRNA mutual exclusion

A scored list of miRNAs were mutually excluded accord-
ing to miRNA family or similar 6-bp seed, as obtained
from miRBase (1), giving precedence to high-scoring
miRNAs.
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Tool description (website)

A web-based application miTEA is publically available,
free for non-commercial use, at http://cbl-gorilla.cs.
technion.ac.il/miTEA/
miTEA is designed to statistically deduce miRNA

activity from high-throughput measurement results. The
input for miTEA is a ranked list of genes for which the
mmHG statistics is used. The miTPA ranking is embedded
into miTEA and is updated periodically. The web inter-
face for miTEA is shown in Supplementary Figure S1.
miTEA supports the following formats of gene nomencla-
ture: gene symbol, protein/gene RefSeq, Uniprot, Unigene
or Ensembl. miTEA automatically removes gene
redundancies keeping the highest ranking occurrence (in
each of the two lists, when applicable). This includes
dealing with duplicates that hide behind different nomen-
clatures. miTEA currently supports the following organ-
isms: Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster and Danio rerio, each with
miTPAs that support it. The output consists of a
colour-coded miRNA network, where the nodes are the
enriched miRNAs and an edge between two nodes is
present if the corresponding miRNAs have substantial
overlap in their target genes. The network’s nodes are
colour-coded according to the detected enrichment
levels. The output also includes a table consisting of the
enriched miRNAs (with web links to additional informa-
tion), statistical characterization of the results and the set
of targeted genes found to be enriched in the top. Results
can be exported to Excel. A running example can be found
in miTEA’s website. A single run of miTEA, spanning all
human miRNAs, on the web server, using default param-
eters, takes �13 s.

Simulated data

Each simulated data set, E, was composed of 100 samples,
where in each sample we generated a simulated expression
profile spanning all 17 297 genes that are available in
Targetscan (V5.2). The expression level of each gene in
each sample was independently randomly drawn from a
standard normal distribution, E(g,s)�N(0,1) for gene g
and sample s. In each simulated data set 10 random
miRNAs were simulated to be active at different levels
of influence: the first repressing its top 100 targets, the
second repressing its top 200 targets , . . . , the last repress-
ing its top 1000 targets. In addition, for each simulated
data set, the level of activity,a, of the miRNAs is changed.
The miRNA repression was simulated for only 50 of the
100 samples. The expression levels of the miRNA targets
in the affected samples were reduced by (a+e), where e is
drawn from a standard normal distribution. That is,
E(g, s)� (N(0,1)� (a+N(0,1))) for a target g of an active
miRNA, in one of the affected samples s. For each level of
a, three simulated data sets were generated.
While mirAct uses the entire data set as input,

DIANA-mirExTra takes only a target set and background
set of genes as input and miTEA uses a ranked list of genes
as input. Therefore, when testing the simulated data set
using miTEA and DIANA-mirExTra genes were ranked

according to their t-test P-value down-regulation in the
effected samples. For DIANA-mirExTra, genes with
P< 0.05 were assigned to the target set and the rest to
the background set. The use of miTEA, mirAct and
DIANA-mirExTra was carried out with default param-
eters as provided in the online versions.

RESULTS

Web-based miTEA tool

In this study, we introduce miTEA, an online web appli-
cation designed to detect and measure miRNA regulatory
activity in high-throughput measurement results. miTEA
takes as input a ranked list of genes that represents the
results of a high-throughput measurement experiment. It
employs the output of any selected miTPA to define, in a
robust manner, a ranked list of genes representing the
targets of each miRNA in the relevant organism. Using
mmHG, a novel statistical enrichment method (see
‘Materials and Methods’ section), miTEA finds mutual
enrichment in the two ranked lists of genes and thus stat-
istically infers miRNA activity (see Figure 1 and
‘Materials and Methods’ section for more details). The
main advantages of miTEA, compared to other similar
tools (10–15) are:

. The use of all prediction scores given by the miTPA
rather than setting a threshold and predefining the set
of genes targeted by a specific miRNA.

. A novel statistical approach that provides an assess-
ment of the statistical significance of the obtained
results without using simulations.

. Its availability as an efficient web tool easily accessible
to the community.

Evaluation through a comparison of miTPAs

As a benchmark for miRNA activity, we first tested
miTEA on two seminal studies that measured global
mRNA as well as protein expression profiles in response
to a perturbation of a single miRNA, in a controlled en-
vironment (24,23). The data span 8 protein expression
profiling and 13 mRNA expression profiling results fol-
lowing constitutive miRNA over-expression experiments.
To better assess the sensitivity of our approach, we
applied miTEA using eight different miTPAs:
Targetscan (v5), microCosm (v5), PITA, PicTar, MicroT
(v3), RNA22, targetRank and EIMMo (v4)
(1,16,19,33–37). In addition, we also applied miTEA
using a Targetscan version of only conserved sites
(Figure 2). In each of the experiments, all genes were
ranked according to their down-regulation and these
ranked lists of genes were used as input to miTEA
(Figure 1). In the majority of the experiments and for
many of the miTPAs, miTEA detects a significant enrich-
ment of the targets of the perturbed miRNA in the down-
regulated genes—as expected (Figure 2). Furthermore,
miTEA finds the perturbed miRNA targets to be most
enriched compared to targets of all other non-perturbed
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miRNAs in most of the experiments (Figure 2).
In particular, when the miTPA used was Targetscan
miTEA detected the correct perturbed miRNA in 20 out
of the 21 experiments tested.

The high range of enrichment scores obtained for dif-
ferent miTPAs could be a result of the different level of
accuracy in the target predictions provided by the
miTPAs. Similarly, different level of noise and robustness
can explain the range of enrichment scores obtained for
the different experiments. In this respect, two additional
interesting insights arise. First, Targetscan shows the best
specificity and sensitivity for miRNA detection by yielding
the highest enrichment scores in most experiments. The
proteomics work was done using pSILAC (23) and
SILAC (24) technologies. A second insight is that the en-
richment scores in the pSILAC data are more significant
than the enrichment scores in the SILAC data. In particu-
lar, the two studies measure response to miR-1 over-
expression. The targets (as predicted by Targetscan) of
miR-1 are enriched in the pSILAC data with mmHG
P< 10�71 while in the SILAC experiment they are
enriched with mmHG P< 10�9.

Comparing miTEA to existing online tools

To evaluate miTEA performance in comparison to other
existing online tools we compared miTEA to mirAct (14)
and mirExTra (15) using a simulated data set as well as
using the miRNA over-expression experiments used
earlier. The simulated data sets were designed to model
the activity of a small set of miRNAs in a subset of the
samples in different levels of activity (see ‘Materials and
Methods’ section for complete description of data simula-
tion process). Our results show that miTEA is able to
detect the active miRNAs with higher level of sensitivity
and specificity even in cases of low activity (Figure 3). For
the over-expression experiments miTEA is able to find the
activity of the perturbed miRNA with higher level of sig-
nificance but more importantly with higher specificity—
finding the perturbed miRNA to be most active
(Supplementary Table S1). For example, for the mRNA
profiling data measured 32 h after let-7 transfection (23)
mirExTra finds miR-608 to yield better results
(P< 3.1� 10�9, data not shown) than those of let-7.
Similarly, in the same experiment, mirAct finds miR-491
to be more active (data not shown). Both are inconsistent

Figure 1. mmHG applied to lists of genes ranked according to their down-regulation following a specific miRNA transfection. mmHG circumvents
the need to define the set of affected genes in the experiment and the set of genes targeted by a specific miRNA by exhaustingly testing all options
and selecting the optimal thresholds. Hypergeometric P-values (y-axis) are plotted in �log10 scale as a function of the threshold used to define the
list of down-regulated genes (x-axis). Lines with different shades of red represent different selection of top targeted genes by the relevant miRNA, as
defined by Targetscan (V5.2). For example, the lightest shade of red represents the selection of the top 50 targeted genes as the set of genes targeted
by the miRNA. The blue line represents the optimal threshold selection for top targeted genes. Different panels represent different protein expression
profiling experiments: (A) miR-1 transfection (24), (B) miR-181 transfection (24), (C) miR-1 transfection (23) and (D) let-7 transfection (23). As can
be observed, the selection of the set of genes targeted by the miRNA or the set of genes down-regulated in the experiment can vastly influence the
enrichment results, thus requiring a more flexible approach.
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with the experimental set-up. miTEA clearly identifies
let-7 as the most active miRNA (P< 9� 10�13).

Tissue-specific miRNA activity

The strength of miTEA is very well established in the
highly controlled miRNA over-expression experiments
described earlier. In the more practical contexts of less
controlled data sets, such as clinical ones, we should
consider a milder effect of miRNAs on their targets.
Therefore, to better capture miTEA sensitivity in detecting
miRNA activity, we applied it to mRNA profiling data set
of human tissue types measured for the purpose of this
study. In this analysis, we applied miTEA in combination
with Targetscan (V5.2), since among the different miTPAs
the latter demonstrates the highest specificity and

sensitivity in detecting miRNA activity in the controlled
experiments (Figure 2) and since it was comparable to
other version of Targetscan (Supplementary Table S1).

The data set we used consist of 20 human tissue samples
spanning nine different healthy tissue types of origin (see
‘Materials and Methods’ section). To test miRNA activity
in the different tissue types, we ranked all the genes, for
each tissue type separately, according to the level of their
down-regulation in that specific tissue. Applying miTEA
on each of the resulting tissue-specific ranked list of genes,
we composed a miRNA activity map for the different
tissue types (see Figure 4 and Supplementary Table S2).
The results confirmed the specific miRNA activity for
miR-124 in brain (38) (mmHG P< 4� 10�11), miR-122
in liver (39) (mmHG P< 2� 10�6) and miR-1/miR-206
in skeletal muscle (40,41) (mmHG P< 6� 10�10).

Figure 2. Results of applying miTEA using a data set of miRNA transfection experiments. The table provides the enrichment scores [given in
�log10(mmHG P-value)] obtained for two high-throughput data sets of miRNA transfection experiments (23,24). Each row represents a different
experiment, for either transcriptomics or proteomics and each column represents an application of miTEA with a different miTPA. Each row is
coloured in gradient to red according to the enrichment score compared to other enrichment scores obtained for the relevant transfected miRNA
experiment. Enrichment scores are marked in blue when the targets of the transfected miRNA, in that specific experiment, were not found to be most
enriched compared to targets of other miRNAs. TS_con stands for Targetscan representation of only conserved sites. Higher scores could be due to
better target predictions or due to less noisy and more robust profiling experiments. As can be observed, using Targetscan (V5.2), miTEA obtains the
highest enrichment scores in 15 out of the 21 experiments and also finds the correct perturbed miRNA in 20 out of 21 experiments. Thus, Targetscan
exhibits the highest sensitivity and specificity in detecting miRNA activity compared to the other miTPAs.
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Our analysis also suggests an activity of miR-519a in
placenta (mmHG P< 3� 10�5, Supplementary Figure
S2a). miR-519 was observed to be specifically expressed
in placenta (42,43). A direct effect on its targets, however,
has not been reported so far, to our knowledge.

DA-miRs in human tissues types

miRNA regulatory contributions to differentiation are not
expected to be manifested only in single tissue specificity,
but rather in differences that pertain to the entire differ-
entiation programs that lead to distinct tissue types. Using
miRNA expression profiling data from the same cohort of
healthy tissue samples, we next took a more exploratory
approach to detect complex miRNA activity, as appose to

tissue specific miRNA activity. We selected each miRNA
as a pivot and ranked all the genes according to the level
of anti-correlation between each gene’s mRNA expression
profile and the pivot miRNA expression profile across the
cohort of samples. We then applied miTEA, using
Targetscan (V5.2), to the above-ranked list to test the en-
richment of pivot targets in its anti-correlated genes. We
call miRNAs for which such enrichment is observed dir-
ectly active miRNAs (DA-miRs). As expected, our results
indicate that the list of DA-miRs forms a superset of the
tissue-specific active miRNA described earlier.
Specifically, we see that of the 470 profiled miRNAs that
are also covered by Targetscan database, 71 are found to
be DA-miRs (P< 0.05 after Bonferroni multiple testing
correction, see Supplementary Table S3 and ‘Materials

Figure 3. Comparing miTEA to alternative online tools. We compared miTEA to mirAct (14) and mirExTra (15) using simulated data (see
‘Materials and Methods’ section for full description of the simulation process). The data simulated the activity of 10 miRNAs in different levels
of activity—a. The active miRNA affected their targets in a different manner—some regulated only their top 100 targets while others regulated their
top 1000 targets. For each level of a three simulated data sets were generated and the different tools were applied on each of the simulated data set.
Panel A and B depict the observed sensitivity and specificity levels, respectively, as a function of the simulated activity—a. The measure of specificity
that was used in this analysis is the percent of truly active miRNAs in the top 20 significantly detected miRNAs. For a> 1.5, the targets set when
using mirExTra was too big and did not give any results. As can be noted miTEA achieves higher sensitivity and specificity levels and these are
significant even in low simulated activity levels.
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and Methods’ section). After mutually excluding miRNAs
from the same family we end up with 30 DA-miRs found
in this data set of human tissue-type samples
(Supplementary Table S3). Further examination of these
DA-miRs showed that, although found in healthy human
tissues, many were either shown to have elevated expres-
sion levels in cancer [e.g. miR-135b and miR-182 (44)] or
directly implicated in cancer development and metastasis
[e.g. miR-15b (45), miR-200 (46) and the oncogenic
miR-17/92 cluster (47)]. However, to our knowledge, not
all of the DA-miRs have been implicated in association
with cancer (e.g. miR-512-3p, miR-768). Their direct
activity in different human tissues might imply a role in
differentiation, a role that when impaired or disrupted
might lead to cancer development.

Study of miRNA regulation in health and disease

The link between the DA-miRs in healthy human tissues
and oncogenicity has led us to investigate the miRNA
activity map in cancer samples. The NCI-60 panel is
composed of 60 cell lines representing nine different
cancer types (48). We applied our miTEA-based analysis
pipeline presented in the previous section to the NCI-60
matched miRNA–mRNA expression data set (49) to
obtain the NCI-60 miRNA activity map. Out of 338
profiled miRNAs, 47 were found to be DA-miRs
(P< 0.05 after Bonferroni multiple testing correction, see
Supplementary Table S4). After mutually excluding
miRNAs from the same family, we end up with 27
DA-miRs in the NCI-60 data set (see Supplementary
Table S4). In line with our observation regarding
DA-miRs in the healthy tissue samples, many of the
NCI-60 DA-miRs are also known to be associated with

cancer development (e.g. miR-19, miR-429 and miR-20).
We also note that some of the DA-miRs observed in this
cancer model data set were not previously shown to be
associated with cancer (e.g. miR-194 and miR-595).

There are only three tissue types overlapping between
the healthy and NCI-60 data sets (breast, ovary and
brain), yet we further explored the similarity between the
two miRNA activity maps. Out of 258 miRNAs that can
be commonly mapped in both data sets, 42 and 44 are
DA-miRs in the healthy and in the NCI-60 data sets, re-
spectively, with a significant overlap of 14 DA-miRs
(hypergeometric P< 0.004). It is possibly more interesting
to note those miRNAs that loose/gain their direct activity
when comparing normal to highly proliferative cellular
conditions (see Figure 5 and Supplementary Table S5).
We find 30 miRNAs that are specifically active in cancer
(e.g. miR-142 and miR-29b) and 28 miRNAs that are spe-
cifically active in healthy tissue types (e.g. miR-15b and
miR-148a). Moreover, deviating from the widely
recognized role of miRNAs as repressors, we see a small
set of miRNAs (19 in the tissue type data set and 5 in the
NCI-60 data set) that are significantly correlated with
their targets rather than anti-correlated. For example,
miR-377 yields enrichment levels of mmHG
P< 6� 10�11 and mmHG P< 9� 10�6 in the tissue
types and NCI-60 data sets, respectively, when considering
positive correlatees.

DA-miRs in breast cancer

Thus far, we describe miTEA results for heterogeneous
data sets composed of several different tissue types. To
further develop our understanding of miRNA direct
activity and test miTEA in a more homogenous context,

Figure 4. Tissue-specific miRNA activity. mRNA genes were ranked according to their tissue-specific down-regulation (see ‘Materials and Methods’
section). The tissue-specific ranked list of genes was given as input to miTEA. The figure presents results for top pairs of miRNAs and tissue types.
Most of the observed miRNA activity is consistent with known miRNA tissue-specific activities (e.g. miR-124 and brain as well as 122 and liver).
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we ran the above workflow on a matched integrative
mRNA–miRNA data set of 100 primary breast cancer
samples (26). Generating the miRNA activity map for
this cohort, we found eight miRNAs from five miRNA
families to be DA-miRs, expanding the findings reported
in Enerly et al. (26) (Supplementary Table S6). We
compared these results to miRNA high-throughput trans-
fection assays that measured cell proliferation in MCF7
breast cancer cell lines (26). We found that all transfected
DA-miRs play a direct role in cell proliferation in the cell
lines (Supplementary Figure S3).

DISCUSSION

In this study, we introduce miTEA—a framework for
miRNA target enrichment analysis. miTEA takes as
input a ranked list of genes and then finds miRNAs of
which targets are enriched in the top of the input list.
miTEA uses a novel statistical analysis that takes into
account the rich information available from
high-throughput experiments as well as from the different
miTPAs. We show how miTEA can be applied to detect
miRNA activity in different experiments and shed light
into miRNA activity map in healthy and cancer
samples. miTEA is a web-based tool allowing the commu-
nity an easy and efficient free access.

Most results obtained from recent high-throughput
measurement technologies are naturally given as ranked
lists of genes rather than as fixed sets of genes. The
question of mutual enrichment in two ranked lists of
genes is thus highly relevant to the analysis of such data
sets. The mmHG approach focuses on commonalities in
the top ends of the two analyzed lists. Statistical properties

of such commonalities are not adequately addressed by
other models.
To assess the accuracy and robustness of the miTEA

approach, we first applied it to study well-designed and
controlled experiments where mRNA and protein expres-
sion profiling were performed following over-expression
of specific miRNAs. Using Targetscan as the underlying
miTPA, miTEA specifically detected the activity of the
over-expressed miRNA in 20 out of the 21 tested cases
with high significance levels. Among the various miTPAs
used in this comparison, Targetscan yielded the most
accurate and robust result, even when compared to the
version of Targetscan with only conserved sites and thus
was used for further analysis in this study. We note that
this comparison is limited to the particular data sets
analyzed in our investigation. The strong target enrich-
ment results obtained in the mRNA expression experi-
ments shed light on the mode of mRNA regulation by
miRNAs. It points to mRNA degradation rather than
translation inhibition, which is consistent with several
recent studies (24,50), but also justifies the use of
miTEA to detect miRNA activity using mRNA expression
profiles, as we describe in this article.
We next utilized miTEA to study a data set of healthy

human tissue samples and confirmed a direct activity for
known tissue-specific miRNAs (e.g. miR-122 in liver). We
note that not all miRNAs with tissue specific expression
are found to be active (e.g. miR-215 and liver,
Supplementary Figure S2b), supporting the need for a
robust enrichment analysis. We also observed a direct
activity for miR-519a in placenta (mmHG P< 3� 10�5,
Supplementary Figure S2a). miR-519a was previously
shown to be specifically expressed in placenta alongside
with numerous other miRNAs (42,43). Our finding is, to

Figure 5. miRNA activity scores in healthy and cancer data sets. miRNA activity scores [signed log(mmHG P-value)]) are plotted for each miRNA.
X-axis represents the activity scores of the miRNAs in the healthy tissue type data set where the Y-axis represents the activity scores in the NCI-60
data set. Marked in green are miRNAs that were found to be directly active in only one of the data sets. Marked in red are the 14 miRNAs that were
found to be directly active in both data sets (hypergeometric P< 0.004, for the intersection) and 3 miRNAs that were found to be positively
correlated with their targets in both data sets (hypergeometric P< 0.004, for the intersection).
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our knowledge, the first to show a direct regulatory in-
volvement, by means of effect on targets, of this miRNA
in placenta. This direct activity observed for miR-519a
was not shared with the other reported miRNAs that
are specifically expressed in placenta, further emphasizing
the need for a joint analysis approach rather than only
miRNA expression analysis. miR-519a is known to
target the developmental related gene HuR (51) and
further research is needed to better understand the
relation of miR-519a to the intricate placental transcrip-
tional programs.
We introduce a new approach to analyzing integrated

miRNA/mRNA data, based on miTEA. Applying this
approach to a matched data set of nine healthy human
tissue types, we found 71 significant DA-miRs originating
from 30 unique miRNA families. This result provides the
first comprehensive miRNA activity map for these human
tissue types. Moreover, the high prevalence of observed
directly active miRNAs corroborates the involvement of
miRNAs in differentiation and development. In addition,
our results show that a high overall expression level of a
miRNA does not necessarily indicate a significant regula-
tory effect on its targets (e.g. miR-125b or let-7a,
Supplementary Figure S4). This is also the case for
miRNAs that have high-variable expression levels (e.g.
miR-205, Supplementary Figure S4). Although lack of
miRNA activity could be a consequence of missing
target information provided by the miTPA, this result
indicate that high activity level of a miRNA is not a
direct corollary of it being highly or variably expressed
in the samples.
Interestingly, we observed that most of the DA-miRs

found in our data set have been previously implicated in
cancer. This includes well-established oncomirs such as
miR-15 (45) (Supplementary Figure S2c) and the
miR-17/92 cluster (47). We would expect that
disregulation of active miRNAs may lead to a comprom-
ise in the control of transcriptional programs driving dif-
ferentiation, which might eventually lead to cancer
pathogenesis. We note that not all DA-miRs are known
cancer-related miRNAs and further examination is
therefore necessary to see whether those DA-miRs,
such as miR-512-3p and miR-768 (Supplementary Figure
S2d), contribute to the development of cancer when
disrupted.
We further applied our workflow to a matched miRNA/

mRNA data set publicly available for the NCI-60 cell lines
data set. The resulting miRNA activity map consists of 47
cancer DA-miRs originating from 27 unique miRNA
families. The cancer miRNA activity map is of similar
size to the healthy tissue type miRNA activity map and,
as expected, the two maps share a significant number of
DA-miRs. The shared DA-miRs include known oncomirs
such as miR-19a (47) (Supplementary Figure S5) and
miR-429 (46) as well as less characterized miRNAs such
as miR-768. In addition, we find 30 miRNAs that are
DA-miRs in the NCI-60 data set only and 28 that are
DA-miRs in the healthy data set only. This discrepancy
could arise from the fact that while both data sets span
nine different tissue types, only three tissue types are
common. Another explanation may relate to specific

functions of the miRNAs that are not related to cancer
or to tissue differentiation. Tumour suppression is one
such attribute that can explain the cancer-specific direct
activity of miRNAs. Indeed many of the miRNAs which
we found to be specifically directly active in the NCI-60
data set were shown to be tumour suppressors in various
cancer types [e.g. miR-29b/c (52,53), miR-142 (54,55) and
miR-101 (56,57)]. It would be interesting to further
examine other such miRNAs for their potential role as
tumour suppressors (e.g. miR-30e, miR-203). Specific
direct activity of miRNAs in the healthy data set can be
attributed to specific tissue type regulation. Our results
also show that there is a subset of miRNAs that have a
significant positive correlation with their targets (19 and 5
in the healthy and cancer cohorts, respectively). It was
previously shown that miRNAs can up-regulate transla-
tion of their targets in quiescent cells (58) which is in line
with our observation in the healthy cohort as compared to
the cancer cohort. Positive correlation between miRNAs
and their targets and even more so, miRNA roles as acti-
vators, has weak support in existing literature. It is also
possible that these results represent false positive results in
these cohorts. Therefore, more work is required to put our
positive correlation results in broader perspective.

miR-768 is located within the sequence of a known
snoRNA—HBII-239. Since the snoRNA has a better evo-
lutionary support, miR-768 annotation was discarded
from miRBase (1). It is thus not clear whether miR-768
functions as a miRNA. Recent studies have shown that
snoRNA-like miRNAs should be examined with care (59).
Specifically, an indication for miR-768 expression was
observed in HeLa cells (60). In our study, we used
miR-768 predicted targets, taken from Targetscan (V5.2)
and compared their expression profiles to the measured
expression profile of miR-768. Our results clearly show
its predicted targets to be significantly anti-correlated to
its measured expression profile across the cohort of
samples in both data sets of healthy human tissues and
cancer cell lines. Thus, we provide evidence not only for its
existence but also for its regulatory activity in the two
independent sample cohorts.

We also analyzed a homogenous integrated mRNA/
miRNA data sets of 100 breast cancer samples.
Interestingly, we detected eight DA-miRs in spite of the
homogeneity of the data set. To validate direct activity, we
compared these results to miRNA transfection assays that
measured cell proliferation in MCF7 breast cancer cell
lines. The cell lines showed elevated or reduced levels of
proliferation when transfected with these breast cancer
DA-miRs, in agreement with their observed direct
activity in the breast cancer cohort (26). This homogenous
data context demonstrates miTEA’s high sensitivity in de-
tecting miRNA activity.

miTEA’s novel statistical approach, called mmHG,
enables the detection of miRNA activity without
predefining the set of genes targeted by the miRNA nor
the set of genes that are over/under expressed in the ex-
pression experiment. In this respect, miTEA expands and
extends the mHG approach (26,28,30) and uses two
ranked lists of genes. The statistical approach used by
miTEA finds the two thresholds in the top of the two
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ranked lists of genes that maximize the mutual enrichment
and thereby allows the data to define the set of affected
genes in the experiment and the set of relevant miRNA
targets. This approach is bound to be more sensitive than
previous approaches that fix the threshold on the predic-
tion score provided by the miTPA or define the miRNA
targets according to a 6/7/8-seed match (20,21), as these
approaches use a fixed set of genes to characterize the
miRNA targets. Similarly, using regression or a simple
correlation approach to compare two ranked lists of
genes may result in such mutual enrichment being
obscured by the majority of the genes further down the
lists (see Supplementary Table S1). This notion is
exemplified in Figure 1, where fixing a threshold to
either define the down-regulated genes in the experiment
or to define the genes targeted by the perturbed miRNA in
the experiment might result in loss of observed signifi-
cance. Moreover, a pair of thresholds that optimizes en-
richment in one configuration will not be optimal in a
different miRNA and expression configuration. Thus,
the different thresholds selected in each of the experi-
ments tested much improve the enrichment analysis
results, supporting the need for a statistical tool that
enables flexible threshold selection. Indeed, when
compared to alternative online tools miTEA was able to
obtain results with higher specificity and sensitivity in both
simulated data sets as well in a miRNA perturbation data
set (Figure 3).

The threshold optimization process obviously intro-
duces statistical multiple testing. We address multiple
testing correction through a combination of an exact
approach to mHG (28) and use of a union bound. We
provide a rigorous bound on the P-value of the resulting
enrichment. Further characterization of the distribution of
the mmHG statistics under the null model (a uniform
measure over SN—the group of all permutations) will sig-
nificantly contribute to improved analysis of mutual en-
richment in two ranked lists.

To conclude, the findings presented in this study repre-
sent the tip of the iceberg, in terms of detecting miRNA
direct activity in health and disease. Making miTEA ac-
cessible to the community, as a user-friendly and efficient
web application, we anticipate it will be used more broadly
to analyze high-throughput molecular data. This will
hopefully expand the scope of experimental results and
finings, as related to the role of miRNA in health and
disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–6 and Supplementary Figures
1–5.
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