
Journal of Mathematical Biology (2022) 85:54
https://doi.org/10.1007/s00285-022-01815-2 Mathematical Biology

Permanence via invasion graphs: incorporating community
assembly into modern coexistence theory

Josef Hofbauer1 · Sebastian J. Schreiber2

Received: 7 April 2022 / Revised: 30 July 2022 / Accepted: 6 September 2022 /
Published online: 18 October 2022
© The Author(s) 2022

Abstract
To understand the mechanisms underlying species coexistence, ecologists often study
invasion growth rates of theoretical and data-driven models. These growth rates cor-
respond to average per-capita growth rates of one species with respect to an ergodic
measure supporting other species. In the ecological literature, coexistence often is
equated with the invasion growth rates being positive. Intuitively, positive invasion
growth rates ensure that species recover from being rare. To provide a mathematically
rigorous framework for this approach, we prove theorems that answer two questions:
(i) When do the signs of the invasion growth rates determine coexistence? (ii) When
signs are sufficient, which invasion growth rates need to be positive? We focus on
deterministic models and equate coexistence with permanence, i.e., a global attractor
bounded away from extinction. For models satisfying certain technical assumptions,
we introduce invasion graphs where vertices correspond to proper subsets of species
(communities) supporting an ergodicmeasure and directed edges correspond to poten-
tial transitions between communities due to invasions by missing species. These
directed edges are determined by the signs of invasion growth rates.When the invasion
graph is acyclic (i.e. there is no sequence of invasions starting and ending at the same
community), we show that permanence is determined by the signs of the invasion
growth rates. In this case, permanence is characterized by the invasibility of all −i
communities, i.e., communities without species i where all other missing species have
negative invasion growth rates. To illustrate the applicability of the results, we show
that dissipative Lotka-Volterra models generically satisfy our technical assumptions
and computing their invasion graphs reduces to solving systems of linear equations.
We also apply our results to models of competing species with pulsed resources or
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sharing a predator that exhibits switching behavior. Open problems for both deter-
ministic and stochastic models are discussed. Our results highlight the importance of
using concepts about community assembly to study coexistence.

Keywords Coexistence · Community assembly · Permanence · Uniform persistence ·
Lyapunov exponents

Mathematics Subject Classification 92D25 · 34D30 · 37C10
1 Introduction

Understanding themechanisms allowing interacting populations to co-occur underlies
many questions in ecology, evolution, and epidemiology: When are species limited by
a common predator able to coexist?What maintains genetic diversity within a species?
Why do multiple pathogen strains persist in host populations? One widely used metric
for understanding coexistence is invasion growth rates: the average per-capita growth
rates of populationswhen rare. This approach has a long history going back to thework
of MacArthur and Levins (1967), Roughgarden (1974), Chesson (1978) and Turelli
(1978). This earlier work focused on the case of two competing species and lead to the
mutual invasibility condition for coexistence. Namely, if each competitor has a positive
invasion growth rate when the other species is at stationarity, then the competitors
coexist. Mathematically, this form of coexistence corresponds to all species densities
tending away from extinction. This corresponds to permanence or uniform persistence
for deterministicmodels (Schuster et al. 1979; SigmundandSchuster 1984;Butler et al.
1986; Garay 1989; Hofbauer and So 1989; Hutson and Schmitt 1992) and stochastic
persistence for stochastic models (Chesson 1982; Chesson and Ellner 1989; Schreiber
et al. 2011).

A key feature of the mutual invasibility criterion is that coexistence is determined
by the signs of invasion growth rates. For many classes of multispecies models, posi-
tive invasion growth rates of at least one missing species from each subcommunity is
a necessary condition for permanence to persist under small structural perturbations,
i.e., robust permanence (Hutson and Schmitt 1992; Schreiber 2000). However, it need
not be sufficient as in the case of three competing species exhibiting a rock-paper-
scissor dynamic (May and Leonard 1975). In this case, all single species equilibria
can be invaded by a missing species but coexistence depends on quantitative infor-
mation about the invasion growth rates at these equilibria (Hofbauer 1981; Hofbauer
and Sigmund 1998; Schreiber 2000; Hofbauer and Schreiber 2010). This raises the
question, when is it sufficient to know the sign structure of the invasion growth rates?
Are rock-paper-scissor type dynamics the main barrier to qualitative conditions for
permanence?

Invasion growth rates are the basis of what has become known as modern coexis-
tence theory (MCT)orChesson’s coexistence theory (Chesson1994;Letten et al. 2017;
Barabás et al. 2018; Chesson 2018; Ellner et al. 2018; Grainger et al. 2019b, a; Godwin
et al. 2020; Chesson 2020). To understand the mechanisms underlying coexistence,
positive invasion growth rates are decomposed into biologically meaningful compo-
nents and compared to the corresponding components for the resident species (Chesson
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1994; Ellner et al. 2018). This decomposition allows ecologists to identify which
coexistence mechanisms may or may not be operating in their system (Chesson 1994;
Adler et al. 2010; Ellner et al. 2016, 2018). For many applications of MCT, simple
variants of the mutual invasibility condition determine which invasion growth rates
need to be positive for coexistence (Chesson and Kuang 2008; Chesson 2018). For
example, for two prey species sharing a common resource and a common predator,
coexistence is determined by the invasion growth rates of each prey species into the
three species community determined by its absence (Chesson and Kuang 2008). How-
ever, for more complex models, it is less clear how invasion growth rates determine
coexistence (Barabás et al. 2018; Chesson 2018).

Here, we address these issues by introducing a mathematically precise notion of
the invasion graph that describes all potential transitions between subcommunities via
invasions (Sect. 2). For our models, we focus on a specific set of generalized ecological
equations (Patel and Schreiber 2018). However, the proofs for our main results should
hold formore general classes ofmodels (e.g. reaction-diffusion equations (Zhao 2003),
discrete-time models (Garay and Hofbauer 2003; Roth et al. 2017)) where conditions
for permanence are determined byMorse decompositions (Conley 1978) and invasion
growth rates. Under suitable assumptions about the ecological dynamics described
in Sect. 2.2, we prove that if the invasion graph is acyclic and each subcommunity
is invadable, then the species coexist in the sense of robust permanence (Sect. 3).
In fact, we show that invasibility only needs to be checked at −i communities, i.e.,
communities without species i that are uninvadable by the remaining missing species.
This sufficient condition always is a necessary condition for robust permanence. We
show that our assumptions in Sect. 2.2 hold generically for Lotka-Volterra systems and
provide a simple algorithm for computing invasion graphs (Sect. 4). We also apply our
results to models of two prey sharing a switching predator and a periodically-forced
chemostat with three competing species (Sect. 4).We concludewith a discussion about
open problems and future challenges (Sect. 5).

2 Ecological equations, invasion schemes, and invasion graphs

2.1 Models, assumptions, and permanence

To cover ecological models accounting for species interactions, population structure
(e.g. spatial, age, or genotypic), and auxiliary (e.g. seasonal forcing or abiotic vari-
ables), we consider a class of ordinary differential equations introduced by Patel and
Schreiber (2018). In these equations, there are n interacting species with densities
x = (x1, x2, . . . , xn) taking values in the non-negative cone of R

n . In addition, there
are auxiliary variables, y = (y1, y2, . . . , ym), taking values in a compact subset Y
of R

m . These auxiliary variables may describe internal feedbacks within species (e.g.
genetic or spatial structure) or external feedbacks (e.g. environmental forcing or abiotic
feedback variables). Let z = (x, y) denote the state of the system. In this framework,
the dynamic of species i is determined by its per-capita growth rate fi (z), while the
dynamics of the auxiliary variables are determined by some multivariate function
g(z) = (g1(z), . . . , gm(z)). Thus, the equations of motion are
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dxi
dt

= xi fi (z) for i ∈ [n] := {1, 2, . . . , n}
dy

dt
= g(z) where z = (x, y).

(1)

The state-space for these dynamics is the non-negative orthant K = [0,∞)n × Y .
The boundary of this orthant, K0 = {(x, y) ∈ K : ∏

i xi = 0}, corresponds to
the extinction of one or more species. The interior of this orthant, K+ = K \ K0,
corresponds to all species being present in the system. For any initial condition z ∈ K

at time t = 0, we let z.t denote the solution to (1) with initial condition z.0 = z.
Our first two standing assumptions for the equations (1) are:

A1: The functions (x, y) �→ xi fi (x, y) and (x, y) �→ g(x, y) are locally Lipschitz
and, consequently, there exist unique solutions z.t to (1) for any initial condition
z = (x, y) ∈ K.

A2: The system is dissipative: There exists a compact attractor � ⊂ K such that
dist(z.t, �) → 0 as t → +∞ for all z = (x, y) ∈ K. Let �0 = � ∩ K0.

We are interested in when the equations (1) are robustly permanent, i.e., species
persist following large perturbations of their initial conditions z and small perturba-
tions of the equations governing their dynamics (Hutson and Schmitt 1992; Schreiber
2000; Garay and Hofbauer 2003; Patel and Schreiber 2018). (1) is permanent if there
exists a compact set K ⊂ K \ K0 such that for all z = (x, y) ∈ K\K0, z.t ∈ K
for t sufficiently large. Namely, for all initial conditions supporting all species, the
species densities are eventually uniformly bounded away from the extinction set K0.

(1) is robustly permanent if it remains permanent under perturbations of fi and g
that satisfy assumptions A1–A2. More precisely, given any compact neighborhood
V of �, there exists δ > 0 such that dxi

dt = xi f̃i (x, y),
dy
dt = g̃(x, y) is permanent

whenever ‖( f (z), g(z))− ( f̃ (z), g̃(z))‖ ≤ δ for all z = (x, y) ∈ V and ( f̃ , g̃) satisfy
assumptions A1–A2 with a global attractor �̃ contained in V .

2.2 Invasion growth rates, schemes, and graphs

To understand whether species coexist in the sense of permanence, we have to con-
sider species per-capita growth rates when rare, i.e., invasion growth rates. These are
best described using ergodic probability measures that correspond to indecomposible
dynamical behaviors of themodel.Recall, aBorel probabilitymeasureμonK is invari-
ant for (1) if

∫
h(z)μ(dz) = ∫

h(z.t)μ(dz) for any continuous function h : K → R

and any time t . Namely, the expected value of an “observable” h does not change in
time when the initial condition is chosen randomly with respect to μ. An invariant
probability measure μ is ergodic if it can not be written as a non-trivial convex com-
bination of two invariant probability measures, i.e., if μ = αμ1 + (1 − α)μ2 for two
distinct invariant measures μ1, μ2, then α = 1 or α = 0. The simplest example of an
ergodic probabilitymeasure is aDiracmeasureμ = δz∗ associatedwith an equilibrium
z∗ of (1). This Dirac measure is characterized by

∫
h(z)μ(dz) = h(z∗) for every con-

tinuous function h : K → R. Alternatively, if z∗.t is a periodic solution with period
T , then the measure μ defined by averaging along this periodic orbit is an ergodic
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measure (Mañé 1983; Schreiber 2000). Specifically,
∫
h(z)μ(dz) = 1

T

∫ T
0 h(z∗.t)dt

for all continuous h : K → R. More generally, the ergodic theorem implies that for
every ergodic measure μ there exists an initial condition z∗ such that μ is determined
by averaging along the orbit of z∗, i.e.,

∫
h(z)μ(dz) = limT→∞ 1

T

∫ T
0 h(z∗.t)dt for

all continuous h : K → R.
For any subset of species S ⊂ [n] = {1, 2, . . . , n}, we define

F(S) := {(x, y) ∈ K : x j > 0 if and only if j ∈ S}

to be the open face of K supporting the species in S. For an ergodic measure μ, we
define the species support S(μ) ⊂ [n] of μ to be the smallest subset of [n] such that
μ(F(S(μ))) = 1.

To understand whether a missing species i /∈ S(μ) not supported by an ergodic
measure μ can increase or not, we introduce the non-autonomous, linear differential
equation

dx̃i
dt

= x̃i fi (z.t)

to approximate the dynamics of species i’s density x̃i when introduced at small den-
sities. The solution of this linear differential equation satisfies

log
x̃i (t)

x̃i (0)
=

∫ t

0
fi (z.s)ds.

Birkhoff’s Ergodic Theorem implies that

lim
t→∞

1

t

∫ t

0
fi (z.s)ds =

∫

fi (z)μ(dz) for μ almost every initial condition z = (x, y).

Consequently, we define the invasion growth rate of species i at μ as

ri (μ) :=
∫

K

fi (z) μ(dz).

ri (μ) is also defined for the resident species i ∈ S(μ) supported by μ. In this case, we
don’t interpret ri (μ) as an invasion growth rate. Indeed, the following lemma shows
that ri (μ) = 0 in this case, i.e., resident species have a zero invasion growth rate.

Lemma 1 Let μ be an ergodic probability measure for (1). Then ri (μ) = 0 for all
i ∈ S(μ).

The proof of this lemma follows from the argument given for models without
auxiliary variables y found in (Schreiber 2000, Lemma 5.1).

Proof Let i ∈ S(μ) be given. Let πi : K → R be the projection onto the i-th
component of the x coordinate, i.e., πi (z) = xi when z = (x, y) ∈ K. Since
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μ(F(S(μ)) = 1, Birkhoff’s Ergodic Theorem implies that there exists an invariant
Borel set U ⊆ F(S(μ)) such that μ(U ) = 1 and

lim
t→∞

1

t

∫ t

0
fi (z.s)ds = ri (μ) (2)

whenever z ∈ U . Choose an open set V such that its closure V is contained inF(S(μ)),
V is compact, and μ(V ∩ U ) > 0. By the Poincaré recurrence theorem, there exists
z ∈ V ∩U and an increasing sequence of real numbers tk ↑ ∞ such that z.tk ∈ V for
all k ≥ 1. Since is V is compact, there exists a δ > 0 such that

1/δ ≤ πi (z.tk) ≤ δ (3)

for all k. As log πi (z.t)
πi (z)

= ∫ t
0 fi (z.s)ds, (2) and (3) imply that

ri (μ) = lim
t→∞

1

t

∫ t

0
fi (z.s)ds = lim

k→∞
1

tk
log

πi (z.tk)

πi (z)
= 0.

��
We make the following additional standing assumption:

A3a: For each ergodic invariant Borel probability measure μ supported by �0,
r j (μ) �= 0 for all j /∈ S(μ), and

A3b: sgn r j (μ) = sgn r j (ν) for any two ergodic measures μ, ν with S(μ) = S(ν),
and all j .

Assumption A3a requires the invasion growth rates ri (μ) are non-zero for species
not supported by μ. This assumption holds typically for dissipative Lotka-Volterra
systems or systems with a finite number of ergodic measures. Due to their time aver-
aging property, assumption A3b holds for all Lotka-Volterra systems and replicator
equations (Hofbauer and Sigmund 1998) and certain types of periodically forced ver-
sions of these equations (Patel and Schreiber 2018). This assumption automatically
holds when each face supports at most one invariant probability measure (e.g. there is
a unique equilibrium, periodic orbit, or quasi-periodic motion in a given face). Some-
times this sign parity also can be verified when the per-capita growth functions fi
exhibit the right convexity properties (e.g. Kon 2004; Schreiber 2004). For non-Lotka
Volterra systems, it is possible for the per-capita growth rates of a missing species
to have opposite signs at different ergodic measures. In this case, assumption A3b
fails. For example, this failure arises in models of two predator species competing for
a single prey species (McGehee and Armstrong 1977). If one predator has a type II
functional response, then the predator–prey subsystem may simultaneously have an
unstable equilibrium (defining one ergodic measure) and a stable limit cycle (defining
another ergodic measure). McGehee and Armstrong (1977) showed that the invasion
growth rates of the other predator species may be positive at the stable limit cycle but
negative at the unstable equilibrium. A similar phenomenon arises in models of two
prey species sharing a common predator (Schreiber 2004).
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In light of assumption A3, we can uniquely define

ri (S) = sgn ri (μ) if S = S(μ).

for each subset S ⊂ [n] of species. Let S be the set of all subcommunities: all proper
subsets S of [n] such that S = S(μ) for some ergodic measure μ. For S ∈ S, there
are at most n − 1 species and, consequently, μ(K0) = 1 for any ergodic measure μ

supported by S. Furthermore,S isn’t empty as it always contains the empty community
∅ ⊂ [n]. Let |S| be the number of elements in S, i.e., the number of subcommunities.

Now, we introduce our two main definitions. We define the invasion scheme IS to
be the table of the signs of invasion growth rates {(ri (S))i∈[n] : S ∈ S}. When viewed
as a |S| × n matrix, the invasion scheme is the signed version of the characteristic
matrix introduced in (Hofbauer 1994). The rows of this matrix correspond to the
different subcommunities while the columns correspond to the different species. We
define the invasion graph IG as the directed graph with vertex set S and a directed
edge from S ∈ S to T ∈ S if

• S �= T ,
• r j (S) > 0 for all j ∈ T \S, and
• ri (T ) < 0 for all i ∈ S \ T .

The first condition implies that there are no self-loops in the invasion graph. The
second condition implies that all the species in T missing from S can invade S. The
third condition allows for the loss of species from S that are not in T and ensures that
these lost species can not invade T . One can view the invasion graph as describing all
potential transitions from one subcommunity S ∈ S to another subcommunity T ∈ S
due to invasions of missing species.

Remark 1 If z ∈ K is such that its α-limit set lies in F(S) for a proper subset S ⊂ [n]
and its ω-limit lies inF(T ) for another proper set T �= S, then there is a directed edge
from S to T . The proof follows from the arguments presented in Appendix A.

Remark 2 As we focus on determining whether or not [n] is permanent, the invasion
graph IG doesn’t include [n]. However, for visualization purposes, we include [n] in
our plots whenever [n] is permanent (see, e.g., Fig. 1). Schreiber 2022 provides R code
for computing and plotting these invasion graphs.

3 Main results

The following theorem partially answers our main question,“when is knowing only
qualitative information of the invasion growth rates ri (μ) (namely, their sign) sufficient
for determining robust permanence?” Recall, that a directed graph is acyclic if there
is no path of directed edges starting and ending at the same vertex, i.e., there are no
cycles.

Theorem 1 Assume thatA1–A3 hold and IG is acyclic. Then (1) is robustly permanent
if for each S ∈ S there is i such that ri (S) > 0 i.e., each subcommunity is invadable.
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Fig. 1 Invasion graphs, −i communities, and sample simulations for two 5 species competitive Lotka-
Volterra models. Vertex labels correspond to the species in the community. −i communities for which
species i has a positive invasion growth rate are colored olive green, and otherwise gold. Lighter shaded ver-
tices correspond to non-permanent communities, all others correspond to permanent communities. Thicker
directed edges correspond to single species invasions. Green directed edges indicate transitions due to
species i invading a −i community. Both models have acyclic invasion graphs, but only the model in the
top panels allows for robust permanence. Sample simulations of the models are shown in the right hand
panels. Parameter values in Appendix C

Remark 3 If ( f , g) are twice continuously differentiable and there exists S ∈ S such
that ri (S) < 0 for all i ∈ [n]\S, then Pesin’s StableManifold Theorem (see, e.g., Pugh
and Shub (1989)) implies there exists z ∈ K+ such thatω(z) ⊂ K0 and, consequently,
(1) is not permanent.

The proof of Theorem 1 is given in Appendix A. The idea of the proof is as
follows. The invasion graph being acyclic allows us to construct a Morse decomposi-
tion (Conley 1978) of the flow on the extinction set K0. Each component of the Morse
decomposition corresponds to a subcommunity in the invasion graph. The invasibility
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conditions ensure that the stable set of each component of the Morse decomposition
doesn’t intersect the non-extinction set K\K0 (Schreiber 2000; Garay and Hofbauer
2003; Patel and Schreiber 2018). Then one can apply classic results about perma-
nence (Butler et al. 1986; Garay 1989; Hofbauer and So 1989).

We derive two useful corollaries from this theorem. First, we show that if the
invasion graph is acyclic, then checking for robust permanence only requires checking
the invasibility conditions for a special subset of subcommunities. Specifically, given
a species i , a community S ⊂ [n] \ {i} is a −i community if r j (S) ≤ 0 for all j �= i .
In words, a −i community is a community S that doesn’t include species i and that
can not be invaded by any of the missing species j /∈ S except possibly species i .

Corollary 1 Assume thatA1–A3 hold and IG is acyclic. Then (1) is robustly permanent
if ri (S) > 0 for each −i community S and i ∈ [n].
Proof Let S ∈ S and i ∈ [n]\S. By assumption A3, either r j (S) < 0 for all j ∈
[n]\S ∪ {i} (i.e. S is a −i community) or r j (S) > 0 for some j ∈ [n]\S ∪ {i} (i.e.
S is not a −i community). As, by assumption, ri (S) > 0 for the −i communities,
applying Theorem 1 completes the proof. ��
Remark 4 In general, −i communities correspond to subcommunities S for which
there is an initial condition z = (x, y) such that (i) xi = 0 and x j > 0 for j �= i , and
(ii) the ω-limit set of z intersects F(S). Indeed, if there is a community S ⊂ [n]\{i}
and initial condition z satisfying (i) and (ii), then the proof of Lemma 2 in Appendix
A implies S is a −i community. Conversely, if S is a −i community and the functions
fi , g are twice continuously differentiable, then Pesin’s Stable Manifold Theorem
(see, e.g., Pugh and Shub (1989)) implies there exists an initial condition z satisfying
(i) and (ii).

Our second corollary concerns average Lyapunov function condition for perma-
nence due to Hofbauer (1981). This sufficient condition is

H: There exist positive constants p1, . . . , pn such that
∑

i pi ri (μ) > 0 for all ergodic
measures μ with S(μ) ∈ S.

One can ask “when does knowing only the signs of the ri (μ) ensure that condition
H holds?” To answer this question, we say the invasion scheme IS is sequentially
permanent if there is an ordering of the n species, say �1, �2, . . . , �n , such that column
�i of ISi has only non-negative entries where IS1 = IS and ISi for i ≥ 2 is defined by
removing the rows of ISi−1 where species �i−1 has a positive per-capita growth rate.As
sequential permanence implies that the invasion graph is acyclic and maxi ri (S) > 0
for all S ∈ S, we get the following result:

Corollary 2 Assume that A1–A3 hold. If IS is sequentially permanent, then (1) is
robustly permanent.

If IG is sequentially permanent, then the invasion schemes of (1) restricted to each
of the communities {�1}, {�1, �2}, . . . , [n] are also sequentially permanent. Hence,
each of the communities in this sequence is also permanent. Such a sequential way
to prove permanence has been used by Hofbauer et al. (2008, p. 877 ff). A simple
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example of a system which is not sequentially permanent but has an acyclic invasion
graph is given in Sect. 4.2.

To see how sequential permanence relates to condition H, consider the special
case where ri (μ) = ri (ν) for ergodic measures satisfying S(μ) = S(ν) e.g. a Lotka
Volterra model or models where each face supports at most one ergodic measure. For
each S ∈ S and i ∈ [n], letCi (S) = ri (μ)where S(μ) = S. This characteristic matrix
C = {Ci (S)}S,i has the same sign pattern as the invasion scheme IS = {ri (S)}S,i .
For a vector p = (p1, . . . , pn), we write p � 0 if pi > 0 for all i . Condition H
is equivalent to Cp � 0 for some p = (p1, . . . , pn) � 0. The following algebraic
proposition shows that H is guaranteed by the sign structure of the C if and only if IS

is sequentially permanent. The proof is in Appendix B.

Proposition 1 Let IS be an invasion scheme. Then IS is sequentially permanent if and
only if for everymatrixC with sgn(C) = IS, Cp � 0 for some p = (p1, . . . , pn) � 0.

4 Applications

To illustrate the use of our results, we first describe how to verify them for Lotka-
Volterra systems and also illustrate their application to twononLotka-Volterra systems:
a model of competing prey sharing a switching predator, and a periodically-forced
model of three competing species. For the first two applications, the conditions of
Theorem 1 are evaluated analytically, while in third application, we verify the condi-
tions numerically.

4.1 Lotka-Volterra systems

Consider the Lotka-Volterra equations where x is the vector of species densities and
there are no y variables (see, however, below for several extensions involving aux-
iliary variables). Let A be the n × n matrix corresponding to the species interaction
coefficients and b the n × 1 vector of intrinsic rates of growth. Then f (x) = Ax + b.

Assume A and b are such that the system is dissipative (i.e. A2 holds). Hofbauer
and Sigmund (1998, ch. 15.2) provide various algebraic conditions that ensure dis-
sipativeness. Furthermore, assume that each face of the non-negative orthant has at
most one internal equilibrium. Under these assumptions, the Lotka-Volterra system
exhibits the time averaging property. Namely, if z = x is an initial condition such that
the ω-limit set of x .t is contained in F(S) for some S ⊂ {1, . . . , n}, then

lim
t→∞

1

t

∫ t

0
x .s ds = x∗

where x∗ is the unique equilibrium in F(S). The invasion growth rate of species i
along this trajectory equals

lim
t→∞

1

t

∫ t

0
fi (x .s)ds = (Ax∗)i + bi .
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Therefore, ri (μ) = ∑
j Ai j x∗

j + bi for any ergodic measure μ supported by F(S). In
particular, assumption A3b is satisfied.

These observations imply that computing the invasion scheme and graph involves
three steps.

Step 1: Find the set E of all feasible equilibria with at least one missing species: for
each proper subset S ⊂ [n], solve for x ∈ R

n such that (Ax)i = −bi and
xi > 0 for i ∈ S, and x j = 0 for j /∈ S. By assumption, E is a finite set. The
vertices S of the invasion graph are given by S such that F(S) ∩ E �= ∅.

Step 2: Compute the invasion scheme (ri (S))S∈S,i∈[n] where ri (S) = sgn((Ax)i +bi )
with x = E ∩ F(S).

Step 3: Compute the invasion graph by checking the directed edge condition for each
pair of subcommunities in S, i.e., there is a directed edge from S to T iff
r j (S) > 0 for all j ∈ T \S and r j (S) < 0 for all j ∈ S\T .

Two examples of using this algorithm for different 5 species competitive communi-
ties are shown in Fig. 1. In the case of the community in the top panel, we also plot the
vertex [n] and transitions to this community. For both examples, the invasion graph is
acyclic. For the community in the top panel, there is a unique −i community for each
species and species i has positive invasion growth rates at this community. Hence,
Corollary 1 implies that this system is robustly permanent, see sample simulation in
the upper right panel of Fig. 1. Three −i communities (i = 2, 3, 4) are co-dimension
one and, consequently, species i invading these communities (green directed edges)
results in all species coexisting. The other two −i communities (i = 1, 5) have more
missing species. For example, the −1 community {2, 3, 4} also misses species 5.
When species 1 invades this community, species 3 and 4 are displaced leading to the
−5 community {1, 2}. Successive single species invasions by species 5, 3 (or 4), and
then 4 (or 3) assemble the full community. For the community in the lower panel of
Fig. 1, there are nine−i communities. For three of these−i communities, species i has
negative invasion growth rates. Hence, the system isn’t permanent. Two of these −i
communities ({1, 2, 5} and {1, 3, 4}) correspond to permanent subsystems where all
the missing species have negative invasion growth rates. Hence, these−i communities
correspond to attractors for the full model dynamics. Moreover, each is a −i commu-
nity for each of the missing species e.g. {1, 3, 4} is a−2 and−5 community. The third
of these uninvadable −i communities ({1, 3, 4, 5}) is a non-permanent system due to
the attractor on the boundary for the {1, 3, 4} community. This explains the directed
edge from {1, 3, 4, 5} to {1, 3, 4}. The lower, right hand panel of Fig. 1 demonstrates
that the dynamics approach a three species attractor corresponding to one of the −i
communities.

Certainmodifications of the classical Lotka-Volterra equations also satisfy the time-
averaging property. Hence, for these modifications, computing the invasion scheme
and the invasiongraph also reduces to solving systemsof linear equations. For example,
Patel and Schreiber (2018) showed that if the intrinsic rates of growth are driven by a
uniquely ergodic process (e.g. periodic, quasi-periodic), then this reduction is possible.
In this case, one uses auxiliary variables dy

dt = f (y) that are uniquely ergodic and
replace b with vector valued functions b(y).
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4.2 Competitors sharing a switching predator

Theoretical and empirical studies have shown that predators can mediate coexistence
between competing prey species (Paine 1966; Hutson and Vickers 1983; Kirlinger
1986; Schreiber 1997). For example, Hutson and Vickers (1983) and Schreiber (1997)
showed that a generalist predator with a type I or II functional response can mediate
coexistence when one prey excludes the other, but can not mediate coexistence when
the prey are bistable, i.e., the single prey equilibria are stable in the absence of the
predator. Here, we re-examine these conclusions by considering a modified Lotka-
Volterra model accounting for predator switching (Kondoh 2003).

Let x1, x2 be the densities of two prey competitors. Let x3 be the density of a
predator whose prey preference is determined by the relative densities of the two prey
species. Specifically, if y is the fraction of predators actively searching for prey 1
and 1 − y is the fraction actively searching for prey 2, then we assume predators
switch between prey at a rate proportional to the prey densities, i.e., dy

dt = x1(1 −
y) − x2y. For simplicity, we assume the two prey species have a common intrinsic
rate of growth r , normalized intraspecific competition coefficients and a common
interspecific competition coefficient α. Under these assumptions, the predator–prey
dynamics are

dx1
dt

= r x1(1 − x1 − αx2) − ax1yx3

dx2
dt

= r x2(1 − x2 − αx1) − ax2(1 − y)x3

dx3
dt

= ax1yx3 + ax2(1 − y)x3 − dx3

dy

dt
= x1(1 − y) − x2y

(4)

where a is the attack rate of the predator and d is the per-capita death rate of the
predator. The state space is K = [0,∞)3 × [0, 1].

As we are interested in predator mediated coexistence, we assume that a > d to
ensure the predator always persists. Under this assumption, the single prey-predator
subsystem xi − x3 − y with i = 1, 2 has a unique globally stable equilibrium given by
xi = d/a, x3 = r(1−d/a)/a and y = 1, 0 for i = 1, 2, respectively. Ifα ∈ [0, 1), then
the x1− x2− y prey subsystem has a globally stable equilibrium x1 = x2 = 1/(1+α)

and y = 1/2. Alternatively, if α > 1, then the x1 − x2 − y prey subsystem is
bistable with a saddle at x1 = x2 = 1/(1 + α) and y = 1/2. As the invasion graphs
for α �= 0 are acyclic, Theorem 1 implies that robust permanence occurs if and
only if the three equilibria associated with the −i communities {1, 2}, {1, 3}, {2, 3}
are invadable. Invasibility of {1, 2} and {1, 3} requires that r(1 − αd/a) > 0. This
occurs whenever a/d > α, i.e., predation is sufficiently strong relative to interspecific
competition. Invasibility of {2, 3} requires a/d > 1+α. In particular, unlike the case of
non-switching predators (Hutson and Vickers 1983), predator-mediated coexistence is
possible in the case of bistable prey. In this case, the invasion scheme is not sequentially
permanent.
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4.3 Three competing species in a periodically forced chemostat

Chemostat are used in laboratories to study the dynamics of interacting microbial
populations. As they provide a highly controlled environment, they are the basis of
many mathematical modeling studies (Smith and Waltman 1995). For example, when
species compete for a single limiting resource with a constant inflow, Hsu et al. (1977)
proved that (generically) the species with the lowest break-even point excludes all
others. When the resource inflow, however, fluctuates, coexistence is possible. For
example, using a mixture of numerics and analysis, Lenas and Pavlou (1995) and
Wolkowicz and Zhao (1998) showed that three competing species can coexist when
the inflow rate varies periodically. Specifically, if R denotes the density of the resource
in the chemostat and xi the density of competitor i , then they considered a model of
the form:

dR

dt
=(R0 − R)D(t) −

3∑

i=1

fi (R)xi

dxi
dt

=xi (t)( fi (R) − D(t)) i = 1, 2, 3

(5)

where R0 is the incoming resource concentration, D(t) = D0 +a cos(ωt) is a period-
ically fluctuating dilution rate, and fi (R) = αi R

βi+R corresponds to a type II functional
response. We can put this model into our coordinate system by defining y1 = R and
(y2, y3) to be points on the unit circle:

dy1
dt

= (R0 − y1)D(y2) −
3∑

i=1

fi (y1)xi

dxi
dt

= xi (t)( fi (y1) − D(y2)) i = 1, 2, 3

dy2
dt

= −ωy3
dy3
dt

= ωy2 with y22 + y23 = 1

(6)

where D(y2) = D0 + a y2. The state space for (6) is K = R
4+ × S1 where S1 ⊂ R

2

denotes the unit circle.
Using a numerically based invasion analysis, Wolkowicz and Zhao (1998) showed

that (6) is permanent for the parameter values α1 = 1, α2 = 0.7, α3 = 0.64, β1 =
1, β2 = −.3, β3 = 0.2,D0 = 0.4675, ω = 0.2, a = 0.3, and R0 = 11. Fig. 2A plots
the time series for what appears to be a global periodic attractor at which the three
species coexist. Varying the amplitude of the dilution rate, however, can lead to the
loss of one or two species (Fig. 2B): at amplitudes higher than 0.3, species 3 is lost; at
slightly lower amplitudes than 0.3, species 2 is lost; at much lower amplitudes, both
species 1 and 2 are lost.

To better understand these effects of the amplitude of fluctuations on species coex-
istence, we numerically calculated the Lyapunov exponents for all subsystems and
created the invasion graphs for different amplitudes of the dilution rate (Fig. 3). At the
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Fig. 2 Periodic attractors for three competing species in a periodically-forced chemostat. In A, a periodic
attractor at which all three species coexist (with a = 0.3). In B, the mean densities of all three species
along periodic attractors for increasing amplitude of the periodically-forced dilution rate. Parameter values:
D0 = 0.4675, ω = 0.2, α1 = 1, α2 = 0.7, α3 = 0.64, β1 = 1, β2 = 0.3, β3 = 0.2, R0 = 11, and a = 0.3
in A and as shown in B

∅
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Fig. 3 Invasion graphs for three competing species in a periodically-forced chemostat for increasing values
of the amplitude a of the dilution rate. Shaded nodes correspond to−i subcommunities; olive green shading
corresponds to a positive invasion growth rate of species i and yellow shading a negative invasion growth
rate. Parameters as in Fig. 2

amplitude value a = 0.3 used by Wolkowicz and Zhao (1998), we recover the inva-
sion graph suggested by their analysis. Specifically there are only two -i communities,
{1, 2}, {1, 3}, and both of these communities can be invaded by the missing species.
Hence, Theorem 1 implies robust permanence. At a higher amplitude of a = 0.325,
the community {1, 2} can no longer be invaded by species 3 and permanence no longer
occurs, consistent with the loss of species 3 in Fig. 2B at a = 0.325. At a lower value
of the amplitude, a = 0.275, the −2 community is not invadable, a prediction con-
sistent with species 2 being excluded in Fig. 2B at a = 0.275. At an even lower value
of the amplitude, a = 0.2, the invasion graph in Fig. 3 dramatically changes with the
community determined by species 3 resisting invasion from the other two species,
consistent with only species 3 persisting in Fig. 2 at a = 0.2.

5 Discussion

Modern coexistence theory (MCT) decomposes and compares invasion growth rates to
identify mechanisms of coexistence (Chesson 1994, 2000; Letten et al. 2017; Chesson
2018; Barabás et al. 2018; Ellner et al. 2018; Grainger et al. 2019b, a; Godwin et al.
2020; Chesson 2020). Our work addresses two key question for this theory: When are
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signs of invasion growth rates sufficient to determine coexistence? When signs are
sufficient, which positive invasion growth rates are critical for coexistence?

To answer these questions, we introduced invasion schemes and graphs. The inva-
sion scheme catalogs all invasion growth rates associated with every community
missing at least one species. The invasion graph describes potential transitions between
communities using the invasion growth rates. Potential transition from a community
S to a community T occurs if (i) all the species in T but not in S have positive inva-
sion growth rates when S is the resident community and (ii) all the species in S but
not in T have negative invasion growth rates when T is the resident community. Our
definition of invasion graphs is related to what is often called an assembly graph in the
community assembly literature (Post and Pimm 1983; Law and Morton 1996; Morton
et al. 1996b; Serván andAllesina 2021). For example, Serván andAllesina (2021, page
1030) define assembly graphs for Lotka-Volterra systems. Like our definition applied
to Lotka-Volterra systems (see Sect. 4.1), vertices correspond to feasible equilibria
of the model. Unlike our definition, Serván and Allesina (2021) only consider tran-
sitions between communities due to single species invasions. This more restrictive
definition, however, may not exclude heteroclinic cycles between equilibria due to
multiple species invasion attempts, i.e., the “1066 effect” of Lockwood et al. (1997).
These heteroclinic cycles may exclude the possibility of determining permanence only
based on the signs of the invasion growth rates (Hofbauer 1994).

We show that the signs of the invasion growth rates determine coexistence when-
ever the invasion graph is acyclic, i.e., there is no sequence of invasions starting and
ending at the same community. For acyclic graphs, we identify a precise notion of
what Chesson (1994) has called “−i communities”, i.e., the communities determined
in the absence of species i . Specifically, these are communities where (i) species i
is missing, and (ii) all other missing species have a negative invasion growth rate.
−i communities can be found, approximately (see Remark 4), by simulating initial
conditions supporting all species but species i for a sufficiently long time, removing
“atto-foxes” (Sari andLobry 2015; Fowler 2021), and seeingwhat species are left. This
characterization ensures that each species i has at least one −i community associated
with it.

When the invasion graph is acyclic, we show that robust permanence occurs if,
and only if, at each −i community, species i has a positive invasion growth rate.
Thus, this result helps define the domain of modern coexistence theory which relies
on the signs of invasion growth rates determining coexistence (MacArthur and Levins
1967; Chesson 1994, 2000; Letten et al. 2017; Barabás et al. 2018; Ellner et al. 2018;
Grainger et al. 2019b, a; Godwin et al. 2020; Chesson 2020).

Our work also highlights the importance of going beyond average Lyapunov func-
tionswhen only using qualitative information about invasion growth rates. The average
Lyapunov function condition for permanence requires the existence of positiveweights
pi such that

∑
i pi ri (μ) > 0 all ergodic measures μ supporting a strict subset of

species (Hofbauer 1981). This sufficient condition for permanence has received more
attention in the theoretical ecology literature (Law and Blackford 1992; Law and
Morton 1993, 1996; Chesson 2018, 2020) than sufficient topological conditions using
Morse decompositions (Garay 1989; Hofbauer and So 1989), or conditions using inva-
sion growth rates with Morse decompositions (Schreiber 2000; Garay and Hofbauer
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2003;Hofbauer and Schreiber 2004, 2010; Roth et al. 2017; Patel and Schreiber 2018).
This is likely due to themore technical nature of these latter papers.However,when one
only knows the signs of the invasion growth rates, the averageLyapunov condition only
works for specific types of acyclic graphs. Specifically, those graphs corresponding to a
nested sequence of permanent communities, {1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . , n},
where species i + 1 has non-negative invasion growth rates for all communities
including species 1, 2, . . . , i . While these special graphs arise in some situations (e.g.
diffusive competition (Chesson 2018;Mierczyński and Schreiber 2002) or certain gen-
eralizations of mutual invasibility (Chesson and Kuang 2008)), many communities do
not exhibit this special structure.

There remain many mathematical challenges for an invasion-based approach to
coexistence. First, while our main assumption A3b naturally holds for Lotka-Volterra
and replicator systems, it is too strong for many other systems. Notably, the assump-
tion does not allow for the invariant sets supporting multiple ergodic measures at
which the invasion growth rates for a species have opposite sign. What can be done
in these cases is not clear as they can cause complex dynamical phenomena such as
riddled basins of attraction (Alexander et al. 1992; Hofbauer et al. 2004) and open
sets of models where permanence and attractors of extinction are intricately inter-
mingled (Hofbauer and Schreiber 2004). More optimistically, for stochastic models
accounting for environmental stochasticity, the storymay be simpler. For thesemodels,
permanence corresponds to stochastic persistence – a statistical tendency of all species
staying away from low densities (Chesson 1982; Benaïm et al. 2008; Schreiber et al.
2011; Benaïm 2018; Hening and Nguyen 2018; Benaïm and Schreiber 2019). Under
certain natural irreducibility assumptions (Schreiber et al. 2011; Hening and Nguyen
2018; Hening et al. 2020), each faceF(S) supports at most one ergodic measure;A3b
naturally holds for these models. Using the stochastic analog of invasion growth rates,
one can define invasion schemes and invasion graphs as we do here. For these models,
it is natural to conjecture: if the invasion graph is acyclic and all −i communities are
invadable, then the model is stochastically persistent.

Dealingwith cyclic invasion graphs is anothermajormathematical challenge.When
these cycles are sufficiently simple, their stability properties can be understood using
either averageLyapunov functions or Poincaré returnmaps (Hofbauer 1994;Krupa and
Melbourne 1995; Krupa 1997). For more complex heteroclinic cycles (even between
equilibria), the path forward for characterizing coexistence via invasion growth rates
is less clear (Hofbauer 1994; Brannath 1994). Even for cyclic graphs where invasion
growth rates characterize coexistence, it remains unclear how to carry out the second
step of modern coexistence theory, i.e., how best to decompose and compare invasion
growth rates to identify the relative contributions of different coexistencemechanisms.
We hope that future mathematical advances on these issues will be incorporated into
a next version of the modern coexistence theory (MCT v2.1).
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Appendix A. Proof of Theorem 1

Throughout this proof, we assume that assumptions A1–A3 hold. As defined earlier,
let S be the set of all subsets S of [n] such that S = S(μ) for some ergodic invariant
measure μ on K0 i.e. the set of subcommunities. For any z = (x, y), define πi z = xi .
Recall that the α-limit and ω-limit sets of a point z ∈ K are given by α(z) = {z′ : there
a sequence tk ↓ −∞ such that limk→∞ z.tk = z′} and ω(z) = {z′ : there a sequence
tk ↑ +∞ such that limk→∞ z.tk = z′}.

The key lemma for the proof is the following:

Lemma 2 Let S, T ∈ S be two subcommunities. If there exists z ∈ �0 such that
α(z) ⊂ F(S) and ω(z) ⊂ F(T ), then S → T in the invasion graph.

Proof As α(z) ⊂ F(S) and ω(z) ⊂ F(T ), we have that π�z > 0 for all � ∈ S ∪ T .
First, we show that r�(S) > 0 for all � ∈ T \S. For all t > 0, let η−

t be the probability
measure defined by

∫
K
h(z′)η−

t (dz′) = 1
t

∫ t
0 h(z.(−s))ds for any continuous function

h : K → R. Since α(z) ⊂ F(S), there exists a sequence of times tk ↑ ∞ and a
probability measure η− satisfying η−(F(S)) = 1 such that η−

tk converges in the weak*
topology as k ↑ ∞. Furthermore, the classical argument of the Krylov-Bogolyubov
theorem Kryloff and Bogoliouboff (1937) implies η− is invariant.

We have that log π�z.(−t)
π�z

= − ∫ t
0 f�(z.(−s))ds for all � ∈ S ∪ T and t > 0. As

α(z) ⊂ F(S),

r�(η
−) = lim

k→∞
1

tk

∫ tk

0
f�(z.(−s))ds = − lim

k→∞
1

tk
log

π�z.(−tk)

π�z
≥ 0

for all � ∈ S ∪ T . By the ergodic decomposition theorem, for each � ∈ T \ S, there
exists an ergodic measure μ with S(μ) = S and r�(μ) ≥ 0. Hence, assumption A3a
implies that r�(S) > 0 for all � ∈ T \S.

Second, we can use a similar argument to show that r�(T ) < 0 for all � ∈ S \ T . In
this case, we use the forward empirical measures η+

t defined by
∫
K
h(z′)η+

t (dz′) =
1
t

∫ t
0 h(z.s)ds for any continuous function h : K → R. ��
Next, we construct a Morse decomposition of �0 determined by the invasion graph.

Recall, a finite collection of compact, isolated invariant sets {M1, . . . , Mk}with Mi ⊂
�0 is a Morse decomposition of �0 if for all z ∈ �0\∪i Mi there exist j > i such that
α(z) ⊂ Mi and ω(z) ⊂ Mj .
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Lemma 3 Let k ∈ {0, 1, . . . , n − 1}, and Sk = {I ∈ S : |I | ≤ k}. Suppose IG is
acyclic. Then:

For each I ∈ Sk there is a nonempty compact invariant subset MI ⊂ F(I ) such
that

1. ω(z) ⊂ ⋃
I∈Sk

MI for all z ∈ ⋃
I∈Sk

F(I ).
2. For each bounded complete solution z.t ∈ ⋃

I∈Sk
F(I ), α(x) ⊂ ⋃

I∈Sk
MI .

3. Each MI is isolated in K.
4. The family of invariant sets {MI : I ∈ Sk} is a Morse decomposition of⋃

I∈Sk
F(I ) ∩ �0.

Proof We prove this lemma by induction on k.
If k = 0, then M∅ = {0} is hyperbolic, and, consequently, isolated in K. Properties

1, 2, and 4, hold immediately.
Suppose the Lemma holds for k − 1, and all the MI for |I | < k are given. Then we

define MI for |I | = k as the maximal compact invariant subset in F(I ). It exists (i.e.
there are no invariant sets arbitrarily close to the boundary of F(I )) as the family of
MJ with J � I forms a Morse decomposition of the boundary ∂F(I ) of F(I ), each
MJ is isolated, and hence ∂F(I ) is isolated. Hence properties 1. and 2. hold.

To show property 3., suppose to the contrary that MI is not isolated in K. Then
for every ε > 0 there is a zε ∈ K such that dist(zε.t, MI ) < ε but zε.t /∈ F(I ) for
all t ∈ R. Hence there is a j /∈ I with π j zε.t > 0 for all t ∈ R. As in the proof of
Lemma 2, we can find invariant measures με+, με− with r j (με+) ≤ 0 and r j (με−) ≥
0. Passing to appropriate subsequences εm → 0, these measures converge weak∗,
μ

εm+ → μ+, μ
εm− → μ− to (not necessarily ergodic) invariant measures supported on

F(I ). These invariant measures satisfy r j (μ+) ≤ 0 and r j (μ−) ≥ 0 that contradicts
assumption A3. Thus, property 3. holds.

Finally, the assumption that IG is acyclic implies property 4 by choosing a suitable
order on Sk . ��

Taking k = n − 1 we get

Lemma 4 If IG is acyclic then the family of invariant sets {MI : I ∈ S} is a Morse
decomposition of �0.

We also need the following lemma which follows from Assumption A3 and
Schreiber (1998, Corollary 1) (see, also, Mañé (1983, Exercise I.8.5).

Lemma 5 Let I ∈ S and i ∈ [n]\I be such that ri (I ) > 0. Then there exists τ > 0
and α > 0 such that

1

τ

∫ τ

0
fi (z.t)dt ≥ α

for all z ∈ MI .

Assume that for every I , there is j such that r j (I ) > 0. Then Lemmas 4 and 5 and
(Patel and Schreiber 2018, Theorem 2) imply (1) is robustly permanent.
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Appendix B. Proof of Proposition 1

Assume IS is sequentially permanent. Without loss of generality, we can assume the
sequence is {1, 2, . . . , n}. Let C be a matrix with sgn(C) = IG. Let c+ > 0 and
−c− < 0, respectively, be the minimum of the positive and negative elements of
C . By the definition of sequential permanence, Ci ([n − 1]) = ri ([n − 1]) = 0 for
i ≤ n−1 and sgn(Cn([n−1])) = rn([n−1]) = +1. Hence, for any choice of p � 0,∑

i piCi ([n − 1]) > 0. Choose pn = 1. Next, for any S ∈ S such that {1, . . . , n −
2} ⊂ S, Ci (S) = 0 for i ≤ n − 2, Cn−1(S) ≥ c+, and Cn(S) ≥ −c−. Hence, for
any choice of p = (p1, . . . , pn−1, 1) � 0,

∑
i piCi (S) ≥ pn−1c+ − c−. Choose

pn−1 = 2c−/c+. Then,
∑

i pi ri (S) > 0 for any S ∈ S such that {1, . . . , n − 2} ⊂ S.
Proceeding inductively (i.e. choosing pk ≥ 2(pk+1 + · · · + pn−1 + 1)c−/c+), we get
p = (p1, . . . , pk) � 0 such that Cp � 0.

Now suppose IG is not sequentially permanent. We begin by assuming this failure
of sequential permanence occurs at the first step i.e. there is no species such that
ri (S) ≥ 0 for all S ∈ S. Then for each species i , there is Si ∈ S such that ri (Si ) < 0.
Let C be such that its positive entries equal 1/n, its negative entries equal −1, and
sgn(C) = IS. Suppose, to the contrary, there exists p = (p1, . . . , pn) � 0 such that
Cp � 0. Then 0 <

∑
i piCi (S j ) ≤ −p j + ∑

i �= j pi/n for any j ∈ [n]. Adding
these n inequalities leads to a contradiction. This completes the proof when sequential
permanence fails at the first step. Now suppose that the definition fails at the k + 1
step with k < n i.e. (i) there exist distinct species �1, �2, . . . , �k such that column �i
of ISi has only non-negative entries, and (ii) every column of ISk+1 has at least one
negative entry. Then we can use the same argument restricted to ISk+1 as ri (S) = 0
for all i ≤ k and S ∈ S satisfying [k] ⊂ S.

Appendix C. Parameter values for Fig. 1

Lotka-Volterra parameters for the coexistence panels in Fig. 1

A =

⎛

⎜
⎜
⎜
⎜
⎝

−1.02 −0.71 −0.84 −0.47 −1.42
−0.43 −2.19 −0.35 −0.73 −1.03
−1.31 −1.10 −1.83 −0.59 −0.74
−1.20 −0.51 −0.01 −1.99 −0.67
−0.47 −1.00 −1.23 −1.11 −1.42

⎞

⎟
⎟
⎟
⎟
⎠

b =

⎛

⎜
⎜
⎜
⎜
⎝

1.00
1.00
1.00
1.00
1.00

⎞

⎟
⎟
⎟
⎟
⎠

Lotka-Volterra parameters for the non-coexistence panels in Fig. 1

A =

⎛

⎜
⎜
⎜
⎜
⎝

−2.23 −0.86 −0.96 −0.18 −0.04
−1.07 −1.58 −1.13 −0.79 −0.20
−1.45 −0.77 −1.14 −0.06 −1.23
−0.12 −0.55 −0.46 −2.41 −1.35
−0.08 −0.33 −1.49 −0.10 −1.14

⎞

⎟
⎟
⎟
⎟
⎠

b =

⎛

⎜
⎜
⎜
⎜
⎝

1.00
1.00
1.00
1.00
1.00

⎞

⎟
⎟
⎟
⎟
⎠
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