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Background
Next-generation sequencing (NGS) technologies have been 
widely used in various areas of genetic studies, such as the 
use of RNA-seq technology in detecting differentially 
expressed genes and measuring genome-wide gene expres-
sion profiles1 and the use of DNA-seq technology in detect-
ing single-nucleotide polymorphisms (SNP) and copy number 
alterations (CNAs).2

DNA stores genetic information that can be transcribed 
into RNA, and subsequently RNA may be translated into 
proteins that are directly involved in biological activity. Thus, 
DNA and gene expression data are often used for investigating 
whether normal biological processes are altered and how these 
alterations are associated with various disease conditions such 
as tumorigenesis. In order to obtain a holistic view of the inter-
relationship between DNA, RNA, and protein, many studies 
have incorporated DNA-, RNA-, and protein-level experi-
ments to better understand the complex nature of genetic dis-
eases such as cancers. The results thus far are promising.3

DNA point/structural aberrations and RNA differential 
expression are very often found to be associated with diseases 

such as cancers. Specifically, DNA CNAs can alter the expres-
sion levels of genes that are associated with genetic disor-
ders. For example, the deletion of tumor suppression genes 
or the amplification of oncogenes can lead to expression-level 
change in these genes and subsequent diseases.4–6 In a study of 
B-progenitor acute lymphoblastic leukemia, Mullighan et al.7 
found that about 40% of patients had DNA sequence deletions 
and/or amplifications, indicating a possible association between 
CNAs and acute lymphoblastic leukemia. Therefore, it is natu-
ral to assume that many of the genes associated with tumori-
genesis are harbored within the CNA regions. On the other 
hand, studies have also revealed that, while epigenetic factors 
and other modifications of the genome attribute to a minor 
proportion of the changes in gene expression,8 about 15% of 
the variations in gene expression can be explained by CNAs.9

A common approach used in the analysis of gene expres-
sion data is to interrogate whether individual genes behave 
differently for subjects receiving treatment or control or 
between subtypes of a disease. Although both expression 
array and RNA-seq platforms are widely used for generat-
ing expression data, the latter is more powerful in that it can 
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also pick up novel microRNAs that have not yet been incor-
porated into arrays in microRNA sequencing.10,11 However, 
analytically, it remains a challenge to accurately identify dif-
ferentially expressed genes from RNA-seq data. For example, 
the lists of top differentially expressed genes identified using 
various software packages may not agree in many cases, and a 
lower type I error rate is usually accompanied with a decreased 
statistical power. While controlling the false-positive/discov-
ery rate12–14 is one important component for proper expression 
data analyses, appropriate normalization is indispensable to 
ensure accurate and reliable results.15

Many microarray-based gene expression studies have 
demonstrated that normalization is essential for proper analy-
sis of expression data. Normalization ensures that signal inten-
sities are properly centralized and that differences in signal 
intensities are due to biological differences between samples, 
rather than nonbiological noise.16,17

RNA-seq data, generated by the sequencing-by-synthesis 
procedure, are fundamentally different from microarray 
data. Read counts generated from NGS have a discrete dis-
tribution and are commonly considered to be digital. Thus, 
directly adopting the normalization methods developed for 
log-normally (continuously) distributed microarray data may 
not be the best strategy.

Many normalization methods have been developed for 
RNA-seq data to mitigate the between/within-sample dif-
ferences, such as those in library size (sequencing depth) and 
GC content.18,19 Some authors propose scaling the data so that 
the total read counts are the same across samples.20–22 Others 
directly adopt the microarray data normalization methods, 
such as quantile normalization (QN) on the log-transformed, 
length-standardized read counts.23 Alternatively, Mortazavi 
et al.18 proposed using the per kilobase per million mapped 
method to adjust for read count bias due to gene-coding region 
length. Robinson and Oshlack15 employed an empirical strat-
egy to equate the overall expression levels of genes among 
samples based on the commonly made assumption that the 
majority of genes are not differentially expressed. Specifically, 
a weighted trimmed mean of the log expression ratios is used 
to estimate the ratio of RNA productions so that a large num-
ber of genes that are highly expressed in one condition can be 
properly adjusted. In addition, Hansen et al.24 proposed using 
conditional QN to remove technical variability. We comment 
that these methods do not take into account the effect of DNA 
copy number on the gene expression, and thus, almost every 
method has obvious limitations when dealing with samples 
with DNA copy number changes.

CNA is a hallmark of cancer. Studies have shown that 
gene expressions are correlated with DNA copy number.25,26 
DNA copy number change alters the number of DNA 
templates from which genes can be transcribed and, thus, 
directly affects the corresponding expression level. To properly 
normalize expression data, ideally, the global average of the 
expression levels of genes with the same copy number should 

be the same across samples, given that differentially expressed 
genes account for only a small percentage of all genes interro-
gated. In fact, the majority of current RNA-seq normalization 
methods assume that the whole genome has a copy number 
of two (except for the sex chromosomes) by default. While 
this assumption is acceptable for samples with no structural 
genetic alterations, it would not work well for data generated 
from cancer samples, which usually have CNAs.

In fact, since gene expression is downstream of DNA 
alteration and if gene expression levels can be accurately mea-
sured, then the underlying mechanisms (for example, CNAs 
and point mutations) are not relevant. However, we cannot 
assume by default that the expression values of individual 
genes obtained by sequencing/microarray technology are 
accurate, before performing appropriate normalization, for 
example, adjusting for CNAs.

As far as we know, gene expression measurements are all 
relative. In general, some reference values are used to ensure 
that the actual expression level of a gene (per cell) is propor-
tional to the measured value, for example, read count is used 
for gene expression in RNA-seq. However, if such reference 
values are not correctly chosen, then the proportion between 
the actual expression level and the measured value will not 
be consistent across samples, and thus, gene expression can-
not be considered to be accurately measured. Consequently, all 
the downstream analyses will become problematic. Note that 
accurately controlling the number of cells used in the labora-
tory experiments might be an alternative for improving data 
normalization; however, this is not the focus of this study.

For the samples with CNAs, choosing such reference 
values is not straightforward in DNA data normalization.17,27 
In fact, it is equally challenging in RNA data normalization 
– we will demonstrate this by showing the existence of CNA-
oriented correlation between DNA copy number and gene 
expression in the “Methods” section.

With the rapid development of biotechnology, an increas-
ingly larger number of contemporary genomic studies collect 
data generated by multiple platforms simultaneously. Today, 
many experiments interrogating DNA, RNA, and protein 
activities are being carried out on samples from the same 
group of subjects, which thus provide opportunities for statis-
ticians to apply integrated data analysis strategies to improve 
the accuracy and reliability of the statistical tests. Specifically, 
in cancer genetic studies, statistical methods have been pro-
posed to integrate analysis of copy number and gene expres-
sion data, with the belief that more genetic information could 
be revealed by incorporating complementary information from 
DNA and RNA data together into a statistical model.28,29

Using either a two-step approach or an integrated 
approach, many investigations have demonstrated improved 
power for detecting DNA and RNA variations that would 
not otherwise be detected using either DNA data or RNA 
data alone. Commonly used approaches very often include 
the following steps: (1) identifying the regions with CNAs,  
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(2) calling the copy number status of each CNA region, and 
(3) comparing the expression levels of genes in the CNA 
regions to obtain a list of differentially expressed genes for 
further investigations.28,29 Many test statistics have been pro-
posed, and generally speaking, they are often based on either 
correlation or externally centered correlation between CNA 
and gene expression.25,26,30,31 Although these approaches are 
mainly designed to partition regions with strong, equally 
directed abnormalities from other regions, none of them 
addresses the possibility of using the available laboratory 
obtained DNA data, that is, addition information, to improve 
RNA data normalization.

In this article, we propose an integrated RNA-seq nor-
malization method, referred to as integrated normalization, 
which takes advantage of the availability of DNA-seq data to 
appropriately normalize RNA-seq data. In the next section, 
we describe the proposed method. Then, we utilize a pub-
licly available dataset to demonstrate how the normalization 
method affects DE gene detection as well as RNA expres-
sion profiling results. At the end of this article, we discuss 
the advantages and limitations of the proposed method and 
possible improvements.

Methods
distribution of the ratios of sample read counts. Sup-

pose that we have both the DNA-seq and RNA-seq data gener-
ated from each patient who has one of two subtypes of a cancer. 
Specifically, for DNA, preferably, we have both the tumor and 
the matched normal tissue samples for each patient; other-
wise, we can generate a generic control by averaging the data 
of several unrelated samples. Note that having paired tumor 
and germline samples would be ideal but is not a requirement. 
However, for RNA, we have the expression data for each tumor 
sample and a generic control, which is generated by averaging 
the expressions of a few matched normal tissues.

Denote x xij ij
C C ( )1 2  as the RNA-seq read count for the 

ith gene of the jth tumor sample in condition C1(C2) and 
N Nij ij

C C( )1 2  as the sum of read counts from the tumor sample 
and an appropriately matched normal tissue sample. Simi-
larly, denote y yij ij

C C( )1 2  and M Mij ij
C C( )1 2  as the corresponding 

DNA-seq read count and the sum of read counts for condition 
C1(C2). We define the following ratios:
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where uis (i = 1, 2, 3, 4, 5, 6, 7, 8) are random variables with uni-
form distribution (0, 1). These ratios will be used in the proposed 
normalization procedure. Note that in the rest of this article, 
we drop the subscription j for notational simplification.

Note that the above constructed variables are the ratios 
of modified read counts and take values between 0 and 1. 

Thus, when xij s and yij s are large, under the assumption 
that, for the ith gene, the read counts of the jth tumor and 
the control sample(s) are independent, it can be shown that 
each ratio approximately follows a beta distribution. Specifi-
cally, we assume that r r d di i i i

C C C Cand1 2 1 2, , ,  have the follow-
ing beta distributions, B ri i i( ; , )C C C1 1 1α β , B ri i i( ; , )C C C2 2 2α β ,  
B d u vi i i( ; , )C C C1 1 1 , and B d u vi i i( ; , )C C C2 2 2 , respectively, with 
parameters α βg g g g where g C C, , , , ( , )u v ∈ 1 2 . In addition, 
with the assumption that observations in nearby genome loca-
tions approximately follow the same distribution, we can, due 
to the central limit theory (CLT), approximate the distribu-
tion of the average ratio by a normal distribution. That is,
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where g ∈ {C1,C2}, m is the number of observations to be 
averaged, and πg (ρg) and σ g

2 (τ g
2) are the mean and variance of 

the ratios ri
g (di

g).
It is evident that a beta distribution is approximately sym-

metric if the two parameters are close. Also, if the two para-
meters of a beta distribution are both greater than 1, then the beta 
distribution is unimodal (see Supplementary File 1 for details). 
In this case, even for a small window size m, the approximation 
based on the CLT works considerably well (see Supplementary 
Fig. 1 for details). Furthermore, we suggest adding an inde-
pendent random number with a uniform distribution to both 
tumor and control read counts to ensure the read count ratios 
approximately have a beta distribution when both read counts 
are small.32 In fact, in many situations, the paired read counts 
are both large, and thus, adding a random uniform variable to 
each of them has very little effect on the estimation of the ratio. 
In addition, for locations where both tumor and control samples 
have zero count, we claim that these locations carry little/no 
information and will not be included in the analysis.

integrated rnA-seq data normalization. By assuming 
that differentially expressed genes only account for a small 
proportion of the genes interrogated, QN has been successful 
for microarray-based expression data normalization. However, 
QN might not be the best choice for normalizing DNA sam-
ples with substantial (whole chromosome/arm amplifications/
deletions) CNAs.17 In fact, it has been shown that for samples 
with CNAs, using QN for microarray DNA data can generate 
unwanted results, that is, the average log ratio of the regions 
without CNAs does not align to 0. Several methods have 
been proposed to address this problem such that alignment 
can be appropriately performed.17,27,33,34 Motivated by these 
methods, we propose an integrative approach for RNA-seq 
data normalization in this article.

Given the availability of both DNA-seq and RNA-seq 
data in many genomic studies, our proposed method includes 
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two steps. First, identify genomic regions that do not have 
CNAs using DNA-seq data. Second, perform RNA-seq data 
normalization using the regions without CNAs as references. 
We comment that, compared to DNA-seq data, RNA-seq 
data exhibit far greater variability due to switching between 
the on and off expression of certain genes. Thus, genomic 
regions that do not have CNAs can be more precisely identi-
fied using DNA-seq data. Note that many studies have shown 
that CNAs substantially affect regional gene expression, and 
the key to successfully implement our proposed method is to 
effectively remove the variation in gene expression associated 
with DNA CNAs to ensure that reference values used for 
RNA-seq data normalization are consistent across samples.

An operational sequence of integrated RNA-seq normaliza-
tion. In Figure 1, we present a flow chart that outlines the 
operational sequence in the proposed procedure.

Identification of regions without CNAs using DNA-seq data. 
We propose using the following steps to identify genomic 
regions without CNAs.

A. Calculate the averages of dij
C1 and dij

C2 (the subscript j and 
the superscript C1/C2 will be dropped for notational 
simplification purpose), separately, in a fixed window of 
size s (consecutive observations) to reduce the variance of 
the raw data (see Supplementary Fig. 2 for details). We 
name this variable meand. That is,
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 where   is the ceiling of a number, T is the total number 
of genes, and p is the index of each window. We will use 
s = 10 as default unless otherwise stated. The variable 

meanr, the average of r, is defined in the same fashion. 
Note that since our goal is to identify the reference 
genomic regions, the resolution of CNAs detection is not 
a main concern.

B. Apply a modality test35 on meand. Note that if there are 
no CNAs in the whole genome, then meand is supposed 
to have a unimodal distribution; otherwise, it would have 
a multimodal distribution. Unimodal and a series of mul-
timodal model fits will be compared based on AIC.36 If 
the multimodal model has a better fit, we will estimate 
the mean and variance of every component distribution 
(see Supplementary Fig. 3 for details).

C. Initially assign the two-copy state to the component dis-
tribution harboring regions without CNAs. This step 
aims at roughly identifying the regions that do not have 
CNAs. Although a modality test would not provide the 
exact locations of these regions, it provides initial esti-
mates of the mean of these regions, so that the subsequent 
analysis can use them as the references. In fact, there are 
two ways to obtain the initial two-copy state informa-
tion: (1) If laboratory data such as cytogenetic data are 
available, regions that do not have CNAs can be identi-
fied straightforwardly, and the mean of the component 
distribution harboring these regions will be set to 0.5. 
This will ensure that in the following CNA detection, 
regions without CNAs can be identified and used as the 
references. (2) If laboratory data are not available, we can 
assume that the component distribution that contains 
the majority of genes reflects the regions without CNAs. 
Note that the second option is simple but less optimal 
because sometimes, CNAs occur in the majority of the 
genome, for example, triploid or tetraploid samples. How-
ever, should reference regions be incorrectly identified for 
some samples, they are very likely to be detected in the 

Paired raw RNA-seq
data and DNA-seq
data

Identify regions without
CNAs using DNA-seq data

Transform raw DNA-seq
data to d

Obtain the mean of d

Modality test on the
mean of d

Align component
distribution harboring
the two-copy regions to
0.5

Accurately identify
regions without CNAs
using a 3-state Hidden
Markov Model

Step 1

Step 2

Transform r back to read
count

Transform raw RNA-
seq read count to r

Normalize RNA-seq data
using regions without CNAs
as references

figure 1. A flow chart of the proposed integrated normalization method.
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laboratory validation step, and appropriate correction 
can be made. In fact, there is a third option, in which 
an extra step of genotype calling using DNA-seq data 
is needed. A component distribution with heterozygous 
SNP proportion less than 15% is referred to as having loss 
of heterozygosity. The component distribution, which is 
next to it and has a higher mean, represents the regions 
that do not have CNAs.17

D. Identify regions without CNAs using a hidden Markov 
model (HMM).

We have previously developed a method, with accom-
panying software called PAIR33,37 for SNP array data nor-
malization using a two-state HMM.33 The key component of 
PAIR is to identify regions without CNAs. Note that in many 
HMM-based CNA detection algorithms, parameters for each 
hidden state need to be estimated iteratively. However, the 
accuracy of parameter estimation largely depends on whether 
every possible hidden state has been defined. Since CNAs 
are sample specific and cannot be predicted in advance, any 
method for CNA detection in a large number of samples will 
require a large number of hidden states, resulting in a heavy 
computation burden. As an alternative, in PAIR, we proposed 
an HMM with only the following two states: regions that 
harbor SNPs without CNAs (two-copy regions) and regions 
that do not. By setting up upper and lower bounds for the 
two-copy regions, we can accurately partition the regions with 
and without CNAs, while the parameters for the regions that 
harbor various forms of CNAs do not have to be estimated 
individually.

In this article, we adopt the same principle as that in 
PAIR in identifying regions without CNAs, while making 
the following modifications.

i. Use meand instead of d in the HMM. The reasons are 
twofold: (1) by doing so, the normality assumption is 
approximately satisfied by the CLT and (2) though using 
the average of a fixed number of observations may reduce 
the resolution for detecting a change point, it has mini-
mal effect on the normalization process.

ii. Instead of partitioning meand into a unimodal or 
bimodal state (part I of PAIR), we propose to use a 
HMM with the following three states: copy number 
gain, two copy, and copy number loss. There are two 
reasons for this modification: (1) SNP array data have 
log intensity readings for both A and B alleles, and 
taking the difference between them can partition all 
SNPs into unimodal and bimodal states. DNA-seq data 
consist of read counts for every genomic locations, not 
just the SNP locations, thus, adding read counts within 
fixed size windows utilizes information on all these 
locations. (2) DNA-seq data have much larger dynamic 
range; thus, regions with different copy numbers can be 
more easily separated.

iii. Use an iterative approach to estimate the mean of 
meand for regions without CNAs. Specifically, we set 
the iteration,
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where CN( )
w
i  is the copy number state of the wth observation 

at iteration i. The calculation is repeated until the difference in 
means between two consecutive iterations is less than 0.001. 
This iterative approach is necessary for accurately assigning a 
copy number state to an observation because the initial mean 
value estimated from the modality test is often slightly differ-
ent from the estimated mean in the HMM.

RNA-seq data normalization. Using the regions without 
CNAs detected by the procedure in the proceeding subsection 
as references, the normalization process for RNA-seq data can 
be carried out through the following steps.

A. Align the mean of the ratios, ris, of RNA-seq counts that 
correspond to the regions without CNAs to 0.5 by itera-
tively updating ri ,

   r r ri i
ri

update
CN= − −( ) −( )=

− −
2

2 1 10 5 1 2. ,| |

until the average ri
update of the regions without CNAs equals  

to 0.5. Note that the magnitude of the adjustment is close to 
the numerical difference when ri  is close to 0.5 and close to 0 
when ri  is close to either 0 or 1 (see Supplementary Fig. 4 for 
details). Therefore, all updated values would not go beyond the 
support of a beta distribution (0, 1).
B. Adjust tumor read counts based on the updated ri :

   
x

N x r
ri

i i i

i

update
update

update
( )

=
−
−1

,

where ||⋅|| represents the closest integer of a number.
compare the de gene detection power before and 

after normalization. Bioconductor package DESeq was used 
to detect DE genes, as well as perform expression profiling. 
Default parameters were used for analyzing the raw data, the 
DESeq normalized data, and the integrated normalized data, 
except that we forced the size factor (the coverage of a specific 
library)38 for all samples to be 1 when the raw and integrated 
normalized data were analyzed.

The housekeeping genes. In order to understand the 
effect of CNA on GE, as well as how copy number change 
affects the expression of housekeeping genes, we down-
loaded the human housekeeping genes from a public data-
base39 and utilized the online Clone/Gene ID converter40 to 
obtain gene names. In the end, we obtained approximately 
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460 housekeeping genes from this database. Spline smoothing 
was performed on the housekeeping gene expression data, and 
the correlation between the expressed levels of these genes and 
the corresponding DNA read count ratios was calculated.

results and discussion
In this section, we demonstrate the performance of the pro-
posed integrated normalization method by applying it to a 
public dataset. Both RNA-seq and DNA-seq data for eight 
breast cell lines, including seven from breast cancer and one 
from nontumor breast epithelial cells, are available for down-
load from the public domain Gene Expression Omnibus with 
access ID, GSE27003.

Four of the seven cancer cell lines were established from 
estrogen receptor positive (ER+) and the other three from 
ER− breast tumors. Both DNA and RNA of these cell lines 
were extracted from mid-log phase populations of low passage 
number cultures, as described in Ref. 41.

rnA-seq and dnA-seq data preparation. RNA-seq data 
preparation. Short reads were aligned and annotated using the 
pipeline described in Ref. 41. Specifically, Illumina’s alignment 
tool, Eland_RNA, was used to align the short reads to genome 
and exon junctions. The aligned sequence tags were summa-
rized and annotated using Illumina’s CASAVA tool. As a result, 
a total of 18,517 genes were annotated, and the total read counts 
for these genes were used for the downstream analysis.

DNA-seq data preparation. The 50 base pair paired-end 
short reads from Illumina Genome Analyzer were aligned 
by Bowtie.42 A maximum of two mismatches were allowed 
in each alignment, and reads mapped to multiple genomic 
locations were discarded. SAMtools was used to generate the 
BAM format output files,43 and subsequently read count for 
each location was calculated using HTseq-count.44 As a result, 
a total read count within the start and end locations of each of 
18,517 annotated genes was calculated.

The correlation between ge on dnA copy number. 
We calculated the correlation coefficients (CCs) between the 
RNA-seq and DNA-seq data using the variables introduced 
in the “Methods” section. The range of the CC is from 0.100 
to 0.186, indicating a weak relationship. However, consider-
ing that the random variation in signal intensity (especially 
from RNA-seq data) might have disguised the true associa-
tion, we performed circular binary segmentation (CBS)45 on 
both DNA-seq and RNA-seq data using the average of four 
observations to reduce variation, as well as to meet the nor-
mal assumption. Then, we replaced the original meanr/meand 
values in the same segment with the corresponding segment 
mean values. The range of CC calculated from these segment 
mean values increases substantially to (0.247, 0.761), indicating 
that DNA copy number does play an important role in gene 
expression. This is the motivation of the proposed method.

Figure 2 shows that the segmentation patterns are very 
similar between RNA-seq and DNA-seq data (Fig. 2a and b). 
For a comparison, we performed the same analysis on other 

variables constructed by a commonly used transformation, the 
log ratio between tumor and control read counts, and observed 
much lower correlation (Fig. 2c and d). The correlation between 
DNA copy number and gene expression has been evaluated in 
other studies. This correlation is comparatively weak, at round 
10%–20%, in most of these studies. However, by applying the 
proposed variable transformation/construction, that is, con-
structing r and d, as well as a fixed window average to reduce 
variation, the correlation increases dramatically. Supplemen-
tary Figure 5 demonstrates that comparing r/d with log ratio, 
the former magnifies the difference in the middle range of 
the data, and this increases the power to detect differential 
expression with lower magnitude.

identification of two-copy dnA regions using dnA-
seq data. The high correlation described in the previous section 
demonstrates the necessity and advantage of incorporating the 
information on CNA in the RNA-seq data normalization.

More specifically, a three-state HMM was applied to 
identify regions without CNAs using the DNA-seq data. 
Here, we did not use CBS for segmentation. While CBS 
can accurately identify change points in a sequence, it is not 
designed for automatically assigning segments with the same 
copy number state to a specific copy number. In the HMM, 
we defined the three hidden states as copy number loss, no 
CNAs, and copy number gain. Based on the first-difference46 
estimated variance, we set upper and lower bounds for the 
two-copy regions by simulation (details in Ref. 33).

For the initial values of the means of the regions without 
CNAs in the HMM, we used the copy number status con-
firmed in Ref.41 Note that this type of copy status information 
can be obtained if cytogenetic data are available. Specifically, 
we obtained the copy number status of two regions (regions 
with or without CNAs) in chromosomes 8 and 17 separately 
and identified the component distributions that harbor these 
two regions. We then set the initial mean of the component 
distribution harboring the regions without CNAs to 0.5. 
After applying the HMM, the copy number states of these 
regions were compared with those in Ref. 41 to ensure con-
sistency. As an example, we presented the identified regions 
without CNAs in an ER− cell line sample in Figure 3. It was 
confirmed in Ref.41 that this sample has a copy number loss 
in the region from 125,504,248 to 126,521,417 on chromo-
some 8, and no CNAs on chromosome 17 from 44,246,133 to 
63,413,540. This is consistent with Figure 3 (see two yellow 
vertical bars in Fig. 3b), indicating that our segmentation 
results are consistent with the lab results.

Note that, if the lab results are not available initially, we 
will assume that the largest component distribution harbors 
the two-copy regions. If this assumption is found to be incor-
rect during the lab validation process, we can reset the initial 
value and repeat the process.

normalization of rnA-seq signals. Based on the fact 
that RNA-seq and DNA-seq segment means are correlated, 
and the assumption that DE genes only account for a small 
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figure 2. Comparison of the correlation between Dna-seq and rna-seq data, using proposed variables d and r and log ratio separately. average data, 
over a fixed window of size 4 consecutive genes, were used. CBS segmentation results were superimposed in bold lines. (A) for Dna-seq data, the ratio 
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proportion of all the genes interrogated,15,47 we normalized 
the RNA-seq data such that the r values of genes in the regions 
without CNAs have a mean close to 0.5. In other words, given 
that the majority of genes in the regions without CNAs are not 
differentially expressed, they should have similar expression 

levels in both tumor and normal cells. The normalized r values 
were then transformed back to read counts as described in the 
“Methods” section for the downstream DE gene detection. 
Note that the generic control sample was only used as the 
baseline for constructing the variables we have proposed. 
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After the normalization process, DE gene detection will be 
performed using the normalized read count data of the four 
ER+ and three ER− cell lines only.

de gene detection comparison. To evaluate the effect 
of normalization method on the downstream analysis, DE 
gene detection was performed by using Bioconductor pack-
age DESeq.38 The distributions of the P values obtained after 
applying DESeq to the raw, DESeq default normalized, and 
integrated normalized data are presented in Figure 4. Though 
many of the DE genes are the same when applying DESeq to the 
three datasets, discrepancies do exist. For example, the smallest 
P values obtained are 6.58377 × 10−10 (raw), 6.460862 × 10−14 
(DESeq), and 7.390189 × 10−18 (integrated), respectively. This, 
together with Table 1, indicates that integrated normalization 
increases the power of detecting DE genes. Furthermore, the 
histograms of the P values from the raw and DESeq default 
normalized data are very similar (Fig. 4a and b), but there are 
more small P values when using the integrated normalized data 
(see the most left bars in Fig. 4). In addition, except for the very 
small P values, the majority of the P values from the integrated 
normalized data are more uniformly distributed. Our interpre-
tation is that if correctly normalized, the true DE genes can be 
detected with increased power, while P values of the true non-
DE genes should be uniformly distributed.48 Note that since 
read counts take discrete values and the expressions of some 
genes are quite low, a large fraction of P values being very close 
to 1 is expected.

We further generated and presented the volcano plots in 
Figure 5. We can see that a substantially larger number of 
smaller P values [equivalently, larger −log 10(P value)], which 
are associated with large absolute fold changes, are found for 
the integrated normalized data.

Next, we compared the total numbers of DE genes at dif-
ferent Benjamini and Hochberg (BH)12 cutoff values (Table 1). 
It is clear that for all the cutoff P values, the integrated 
normalization method detects most DE genes compared to 
other methods.

The numbers of DE genes (with BH-adjusted P value 
,0.001) found in common from three datasets are listed in 
Table 2. Among the 33 DE genes identified by using the raw 
data, 30 genes were identified by using the DESeq normalized 
data, out of which 25 genes were detected by using all three 
normalization methods. This indicates that the majority of 
DE genes identified by using the raw or DESeq normalization 
data can also be identified by using the integrated normalized 
data. On the other hand, using the integrated normalization 
data detects 21 (46 − 25) DE genes that were not detected by 
using the raw or DESeq normalized data.

We also used the concordance at the top plots to display 
the concordance among the genes discovered by the three 
methods. It is clear that the concordance rate of top differen-
tially expressed genes detected by using the raw data and the 
DESeq normalized data were very high. In addition, the top 
genes obtained from integrated normalized data slightly dif-
fered (Fig. 6).

We preformed the same analysis by using the edgeR soft-
ware, and similar results were observed. We further performed 
GC content and gene length adjustments using the conditional 
QN (CQN).24 However, adding CQN step resulted in smaller 
numbers of DE genes for small cutoff values (Supplementary 
Table 1).

Last, we constructed the heat maps in Figure 7 using 
DE genes with BH-adjusted P value less than 0.001. We 
observed that, when applying DESeq to the raw data and the 
DESeq default normalized data, unsupervised clustering did 
not provide the expected classification: all three ER− cell lines 
belonging to one cluster and all four ER+ cell lines belong-
ing to another cluster. More specifically, T47D, which is an 
ER+ cell line, was assigned to a separate cluster (Fig. 7a and b) 
other than the ER+ cluster. On the other hand, when apply-
ing DESeq to the integrated normalized data, the clustering 
results are consistent with the biological classification of the 
seven samples (Fig. 7c). Note that ER+ and ER− breast can-
cers are clinically different diseases with distinct responses 
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to hormonal therapy or other treatments. It has been shown 
by microarray and serial analysis of gene expression studies 
that ER+ and ER− subtype breast cancers have distinct gene 
expression profiles that can be used for both diagnosis and 
outcome prediction.49

To check the effect of using different BH-adjusted  
P value cutoffs on sample classification, we listed a series of 
classification results using different cutoff values in Supple-
mentary Figures 10–12. Our comment is that the classifica-
tion results are consistent regardless of which cutoff value is 
used for the integrated normalized data. However, the results 
are less consistent for the raw data and the DESeq default nor-
malized data.

The housekeeping genes. Housekeeping genes are 
those whose expressions, under ideal situations, should not 
be regulated or influenced by the experimental conditions/
tissue types.50 However, based on our results, the expression 
levels of these housekeeping genes are correlated with DNA 
copy number. As a comparison, the correlations between 
DNA copy numbers and expression levels of the housekeep-
ing genes are somewhat higher than those between DNA 
copy numbers and RNA expressions for all genes. For 
example, we observed that the highest correlation is 0.280 
for housekeeping genes, while the correlations for all genes 
range from 0.10 to 0.186. In addition, the spline smoothing 
fitted lines for DNA data and RNA data for the housekeeping 

genes look similar, indicating that the expressions of 
housekeeping genes are, against our intuition, affected by 
DNA copy number changes (Fig. 8a and b). Our interpreta-
tion is that changes in expression level caused by CNAs are 
less compensated by gene regulation mechanisms, and thus, 
CNAs play a more important role in affecting housekeep-
ing gene expression. These results provide strong evidence to 
suggest that, when CNAs exist, it might not be appropriate 
to use housekeeping genes as the reference genes for quanti-
tative real-time reverse transcription polymerase chain reac-
tion normalization, and these genes also should not be used 
as references in NGS data normalization.

conclusions
RNA-seq and expression array technologies have been widely 
used in cancer genetic studies to identify DE genes and reveal 
the biologic spectrum of cancers, as well as provide diag-
nostic tools and identify new therapeutic targets. RNA data 
normalization, especially for microarrays, has been well dis-
cussed. However, many normalization methods do not take 
into consideration how DNA copy number change alters gene 
expression. Consequently, though these methods work well 
for normal samples without CNAs, they may not be sufficient 
for cancer samples with substantial CNAs.

It can be very difficult to identify CNAs using RNA 
expression data directly, due to the on/off nature of gene 
expression, and the substantial differences in expression levels 
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figure 5. Volcano plots: (A) integrated normalized data; (b) Deseq normalized data; and (C) raw data. a few genes expressed in only one condition and, 
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table 1. Total numbers of DE genes identified at different cutoff values.

bh ADjuStED  
Cutoff vAluE

RAw  
DAtA

DESeq  
NoRmAlIzED

INtEgRAtED 
NoRmAlIzED

,0.01 75(2) 69(2) 77(2)

,0.001 33(2) 30(2) 46(2)

,0.0001 17(1) 17(1) 30(2)

,0.00001 7(0) 7(0) 22(2)

Note: numbers in parentheses are for housekeeping genes.

table 2. the numbers of De genes (BH-adjusted P values ,0.001) 
found in common for different normalization methods.

RAw  
DAtA

DESeq  
NoRmAlIzED

INtEgRAtED  
NoRmAlIzED

Raw data 33 30 25

DESeq normalized 30 25

Integrated normalized 46
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of different genes. On the other hand, DNA level data, along 
with RNA level data, have been collected in many cancer 
genetic studies to better understand the causes of tumorigen-
esis. This provides an excellent opportunity for biostatisti-
cians/bioinformaticians to develop integrated methodologies 
to extract more meaningful information from the data.

We demonstrated in this article that moderate-to-strong 
correlation between DNA and RNA data does exist, espe-
cially for cancer samples with substantial CNAs. This was 
achieved by taking the average of signal intensities within a 
window of fixed size for both RNA and DNA data to reduce 
signal intensity variation and using segment mean values in 
correlation calculation.

The magnitude of the correlation between DNA copy 
number and gene expression level is a good indication of 
whether DNA copy number change affects gene expression. 
The integrated normalization method proposed in this article 
benefits more with stronger correlation, in other words, when 
CNAs occur in many genomic regions.

Many current RNA-seq normalization methods do 
not have the capacity to make adjustments for CNA-caused 
variations. The integrated method in this article aims to 
address this issue by appropriately aligning the global sig-
nal intensity. The integrated normalization resulted in more 
differentially expressed genes being detected than using 
either the raw data or the DESeq default normalized data. 
Parenthetically, nuisance variations due to differences in 
CNAs and sequencing depths would not be removed with-
out proper normalization, thus, diluting the power for DE 
gene detection. After appropriate normalization, genes that 
are truly differentially expressed have a greater chance of 
being detected.

We demonstrated the utility of the proposed method 
using publicly available cell line data due to the facts that there 
is no restriction on the access of these data and that the cell 
lines are well studied, with many of their genomic characteris-
tics well known. Meanwhile, we do not foresee any theoretical 
challenges in applying the method on patient data. Specifi-
cally, there should be no difference in terms of aligning the 
reference two-copy regions across samples regardless whether 
the data came from cell lines or patient samples. Gene expres-
sion profiling is commonly used to provide accurate diagnosis/
classification results. In this study, we expect that expression 
profiling for all the cell lines agrees with the known biological 
classification. Meanwhile, we anticipate that such classifica-
tion results should not be affected by how many DE genes 
are used in the classification algorithm. However, to our 
surprise, other than using the integrated normalized data, 
using either the raw data or the DESeq default normalized 
data, resulted in inconsistent classification results (for diffe-
rent cutoff P values). Note that when including all genes in 
the profiling, ER+ and ER− breast cancers can be correctly 
classified, indicating that the difference between the ER+ and 
ER− cells are substantial.

We did not perform GC content and gene length adjust-
ments in the integrated normalization for two reasons:

1. GC content is supposed to affect the numerator and 
denominator of the constructed read count ratios simi-
larly; thus, it is not necessary to adjust the GC content 
for the ratios. We plotted the GC content versus the con-
structed ratio and did not observe obvious relationship 
between them (Supplementary Figs. 6 and 7);

2. In the DE gene detection stage, since GC content is the 
same for both the comparison and reference groups, GC 
content adjustment is also not necessary. Note that the 
relationship between GC content and DNA/RNA read 
counts are quite consistent across samples (Supplementary 
Figs. 8 and 9). In fact, many of the DE gene detection 
methods, for example, the protocol proposed by Trapnell 
et al.51, the DESeq software we used, and edgeR, do not 
suggest GC content adjustment because of the nature of 
such comparisons.

Nevertheless, to evaluate the performance of GC content 
and gene length adjustments, we applied CQN on those sam-
ples. Not surprisingly, CQN did not perform well when we 
used smaller cutoff values. Our interpretation is as follows:

1. CQN makes data adjustments based on GC content 
and gene length; however, since the comparison and 
the reference groups have the same GC content and 
gene length, such adjustments have little effect on 
the comparisons;

2. Since CQN made certain adjustments based on GC con-
tent and gene length, if such adjustments are not neces-
sary, then the CQN process turns out to introduce noises 
and, thus, may have negative effect on the comparisons. 
Note that, when the effect of GC content is consistent 
across the samples, then as mentioned in (1), GC con-
tent adjustment is not necessary; otherwise, if the effects 
are not consistent, then we cannot rule out the possibil-
ity that we are actually adjusting the spurious correlation 
between expression and GC content, which is not appro-
priate. As a comparison, the integrated normalization 
utilizes information obtained from real experiments, and 
thus, the adjustments bear biological meanings.

Performing RNA-seq data normalization by using 
CNAs detected from DNA-seq data can be very useful when 
CNAs do exist, and such normalization ensures that down-
stream analyses are more meaningful. For samples that have 
only focal CNAs or without any CNAs (normal samples), this 
approach is still applicable except that all the genome will be 
used as the reference in RNA-seq normalization.

The limitation of our method is that we need a control 
sample(s), preferably paired normal samples, for CNA detec-
tion (it is not needed for RNA-seq data). In fact, accurately 
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identifying CNAs without using any control sample(s) is not 
straightforward and may need some manual trial and error. In 
addition, our method improves the power of detecting truly 
DE genes, but it is not capable of discriminate the driver and 
passenger genes. Although DE genes located within CNA 
regions are more likely to be the driver genes than the pas-
senger genes, the nonuniqueness nature of the cause of gene 
expression level change, along with the very often near-ran-
dom distribution of CNAs, determines that seeking such an 
association is quite challenging.
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